root/arch/x86/kernel/cpu/resctrl/monitor.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __rmid_entry
  2. __rmid_read
  3. rmid_dirty
  4. __check_limbo
  5. has_busy_rmid
  6. alloc_rmid
  7. add_rmid_to_limbo
  8. free_rmid
  9. mbm_overflow_count
  10. __mon_event_count
  11. mbm_bw_count
  12. mon_event_count
  13. update_mba_bw
  14. mbm_update
  15. cqm_handle_limbo
  16. cqm_setup_limbo_handler
  17. mbm_handle_overflow
  18. mbm_setup_overflow_handler
  19. dom_data_init
  20. l3_mon_evt_init
  21. rdt_get_mon_l3_config

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Resource Director Technology(RDT)
   4  * - Monitoring code
   5  *
   6  * Copyright (C) 2017 Intel Corporation
   7  *
   8  * Author:
   9  *    Vikas Shivappa <vikas.shivappa@intel.com>
  10  *
  11  * This replaces the cqm.c based on perf but we reuse a lot of
  12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
  13  *
  14  * More information about RDT be found in the Intel (R) x86 Architecture
  15  * Software Developer Manual June 2016, volume 3, section 17.17.
  16  */
  17 
  18 #include <linux/module.h>
  19 #include <linux/slab.h>
  20 #include <asm/cpu_device_id.h>
  21 #include "internal.h"
  22 
  23 struct rmid_entry {
  24         u32                             rmid;
  25         int                             busy;
  26         struct list_head                list;
  27 };
  28 
  29 /**
  30  * @rmid_free_lru    A least recently used list of free RMIDs
  31  *     These RMIDs are guaranteed to have an occupancy less than the
  32  *     threshold occupancy
  33  */
  34 static LIST_HEAD(rmid_free_lru);
  35 
  36 /**
  37  * @rmid_limbo_count     count of currently unused but (potentially)
  38  *     dirty RMIDs.
  39  *     This counts RMIDs that no one is currently using but that
  40  *     may have a occupancy value > intel_cqm_threshold. User can change
  41  *     the threshold occupancy value.
  42  */
  43 static unsigned int rmid_limbo_count;
  44 
  45 /**
  46  * @rmid_entry - The entry in the limbo and free lists.
  47  */
  48 static struct rmid_entry        *rmid_ptrs;
  49 
  50 /*
  51  * Global boolean for rdt_monitor which is true if any
  52  * resource monitoring is enabled.
  53  */
  54 bool rdt_mon_capable;
  55 
  56 /*
  57  * Global to indicate which monitoring events are enabled.
  58  */
  59 unsigned int rdt_mon_features;
  60 
  61 /*
  62  * This is the threshold cache occupancy at which we will consider an
  63  * RMID available for re-allocation.
  64  */
  65 unsigned int resctrl_cqm_threshold;
  66 
  67 static inline struct rmid_entry *__rmid_entry(u32 rmid)
  68 {
  69         struct rmid_entry *entry;
  70 
  71         entry = &rmid_ptrs[rmid];
  72         WARN_ON(entry->rmid != rmid);
  73 
  74         return entry;
  75 }
  76 
  77 static u64 __rmid_read(u32 rmid, u32 eventid)
  78 {
  79         u64 val;
  80 
  81         /*
  82          * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
  83          * with a valid event code for supported resource type and the bits
  84          * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
  85          * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
  86          * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
  87          * are error bits.
  88          */
  89         wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
  90         rdmsrl(MSR_IA32_QM_CTR, val);
  91 
  92         return val;
  93 }
  94 
  95 static bool rmid_dirty(struct rmid_entry *entry)
  96 {
  97         u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
  98 
  99         return val >= resctrl_cqm_threshold;
 100 }
 101 
 102 /*
 103  * Check the RMIDs that are marked as busy for this domain. If the
 104  * reported LLC occupancy is below the threshold clear the busy bit and
 105  * decrement the count. If the busy count gets to zero on an RMID, we
 106  * free the RMID
 107  */
 108 void __check_limbo(struct rdt_domain *d, bool force_free)
 109 {
 110         struct rmid_entry *entry;
 111         struct rdt_resource *r;
 112         u32 crmid = 1, nrmid;
 113 
 114         r = &rdt_resources_all[RDT_RESOURCE_L3];
 115 
 116         /*
 117          * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
 118          * are marked as busy for occupancy < threshold. If the occupancy
 119          * is less than the threshold decrement the busy counter of the
 120          * RMID and move it to the free list when the counter reaches 0.
 121          */
 122         for (;;) {
 123                 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
 124                 if (nrmid >= r->num_rmid)
 125                         break;
 126 
 127                 entry = __rmid_entry(nrmid);
 128                 if (force_free || !rmid_dirty(entry)) {
 129                         clear_bit(entry->rmid, d->rmid_busy_llc);
 130                         if (!--entry->busy) {
 131                                 rmid_limbo_count--;
 132                                 list_add_tail(&entry->list, &rmid_free_lru);
 133                         }
 134                 }
 135                 crmid = nrmid + 1;
 136         }
 137 }
 138 
 139 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
 140 {
 141         return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
 142 }
 143 
 144 /*
 145  * As of now the RMIDs allocation is global.
 146  * However we keep track of which packages the RMIDs
 147  * are used to optimize the limbo list management.
 148  */
 149 int alloc_rmid(void)
 150 {
 151         struct rmid_entry *entry;
 152 
 153         lockdep_assert_held(&rdtgroup_mutex);
 154 
 155         if (list_empty(&rmid_free_lru))
 156                 return rmid_limbo_count ? -EBUSY : -ENOSPC;
 157 
 158         entry = list_first_entry(&rmid_free_lru,
 159                                  struct rmid_entry, list);
 160         list_del(&entry->list);
 161 
 162         return entry->rmid;
 163 }
 164 
 165 static void add_rmid_to_limbo(struct rmid_entry *entry)
 166 {
 167         struct rdt_resource *r;
 168         struct rdt_domain *d;
 169         int cpu;
 170         u64 val;
 171 
 172         r = &rdt_resources_all[RDT_RESOURCE_L3];
 173 
 174         entry->busy = 0;
 175         cpu = get_cpu();
 176         list_for_each_entry(d, &r->domains, list) {
 177                 if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
 178                         val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
 179                         if (val <= resctrl_cqm_threshold)
 180                                 continue;
 181                 }
 182 
 183                 /*
 184                  * For the first limbo RMID in the domain,
 185                  * setup up the limbo worker.
 186                  */
 187                 if (!has_busy_rmid(r, d))
 188                         cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
 189                 set_bit(entry->rmid, d->rmid_busy_llc);
 190                 entry->busy++;
 191         }
 192         put_cpu();
 193 
 194         if (entry->busy)
 195                 rmid_limbo_count++;
 196         else
 197                 list_add_tail(&entry->list, &rmid_free_lru);
 198 }
 199 
 200 void free_rmid(u32 rmid)
 201 {
 202         struct rmid_entry *entry;
 203 
 204         if (!rmid)
 205                 return;
 206 
 207         lockdep_assert_held(&rdtgroup_mutex);
 208 
 209         entry = __rmid_entry(rmid);
 210 
 211         if (is_llc_occupancy_enabled())
 212                 add_rmid_to_limbo(entry);
 213         else
 214                 list_add_tail(&entry->list, &rmid_free_lru);
 215 }
 216 
 217 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
 218 {
 219         u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
 220 
 221         chunks = (cur_msr << shift) - (prev_msr << shift);
 222         return chunks >>= shift;
 223 }
 224 
 225 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
 226 {
 227         struct mbm_state *m;
 228         u64 chunks, tval;
 229 
 230         tval = __rmid_read(rmid, rr->evtid);
 231         if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
 232                 rr->val = tval;
 233                 return -EINVAL;
 234         }
 235         switch (rr->evtid) {
 236         case QOS_L3_OCCUP_EVENT_ID:
 237                 rr->val += tval;
 238                 return 0;
 239         case QOS_L3_MBM_TOTAL_EVENT_ID:
 240                 m = &rr->d->mbm_total[rmid];
 241                 break;
 242         case QOS_L3_MBM_LOCAL_EVENT_ID:
 243                 m = &rr->d->mbm_local[rmid];
 244                 break;
 245         default:
 246                 /*
 247                  * Code would never reach here because
 248                  * an invalid event id would fail the __rmid_read.
 249                  */
 250                 return -EINVAL;
 251         }
 252 
 253         if (rr->first) {
 254                 memset(m, 0, sizeof(struct mbm_state));
 255                 m->prev_bw_msr = m->prev_msr = tval;
 256                 return 0;
 257         }
 258 
 259         chunks = mbm_overflow_count(m->prev_msr, tval);
 260         m->chunks += chunks;
 261         m->prev_msr = tval;
 262 
 263         rr->val += m->chunks;
 264         return 0;
 265 }
 266 
 267 /*
 268  * Supporting function to calculate the memory bandwidth
 269  * and delta bandwidth in MBps.
 270  */
 271 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
 272 {
 273         struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
 274         struct mbm_state *m = &rr->d->mbm_local[rmid];
 275         u64 tval, cur_bw, chunks;
 276 
 277         tval = __rmid_read(rmid, rr->evtid);
 278         if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
 279                 return;
 280 
 281         chunks = mbm_overflow_count(m->prev_bw_msr, tval);
 282         m->chunks_bw += chunks;
 283         m->chunks = m->chunks_bw;
 284         cur_bw = (chunks * r->mon_scale) >> 20;
 285 
 286         if (m->delta_comp)
 287                 m->delta_bw = abs(cur_bw - m->prev_bw);
 288         m->delta_comp = false;
 289         m->prev_bw = cur_bw;
 290         m->prev_bw_msr = tval;
 291 }
 292 
 293 /*
 294  * This is called via IPI to read the CQM/MBM counters
 295  * on a domain.
 296  */
 297 void mon_event_count(void *info)
 298 {
 299         struct rdtgroup *rdtgrp, *entry;
 300         struct rmid_read *rr = info;
 301         struct list_head *head;
 302 
 303         rdtgrp = rr->rgrp;
 304 
 305         if (__mon_event_count(rdtgrp->mon.rmid, rr))
 306                 return;
 307 
 308         /*
 309          * For Ctrl groups read data from child monitor groups.
 310          */
 311         head = &rdtgrp->mon.crdtgrp_list;
 312 
 313         if (rdtgrp->type == RDTCTRL_GROUP) {
 314                 list_for_each_entry(entry, head, mon.crdtgrp_list) {
 315                         if (__mon_event_count(entry->mon.rmid, rr))
 316                                 return;
 317                 }
 318         }
 319 }
 320 
 321 /*
 322  * Feedback loop for MBA software controller (mba_sc)
 323  *
 324  * mba_sc is a feedback loop where we periodically read MBM counters and
 325  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
 326  * that:
 327  *
 328  *   current bandwdith(cur_bw) < user specified bandwidth(user_bw)
 329  *
 330  * This uses the MBM counters to measure the bandwidth and MBA throttle
 331  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
 332  * fact that resctrl rdtgroups have both monitoring and control.
 333  *
 334  * The frequency of the checks is 1s and we just tag along the MBM overflow
 335  * timer. Having 1s interval makes the calculation of bandwidth simpler.
 336  *
 337  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
 338  * be a need to increase the bandwidth to avoid uncecessarily restricting
 339  * the L2 <-> L3 traffic.
 340  *
 341  * Since MBA controls the L2 external bandwidth where as MBM measures the
 342  * L3 external bandwidth the following sequence could lead to such a
 343  * situation.
 344  *
 345  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
 346  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
 347  * after some time rdtgroup has mostly L2 <-> L3 traffic.
 348  *
 349  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
 350  * throttle MSRs already have low percentage values.  To avoid
 351  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
 352  */
 353 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
 354 {
 355         u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
 356         struct mbm_state *pmbm_data, *cmbm_data;
 357         u32 cur_bw, delta_bw, user_bw;
 358         struct rdt_resource *r_mba;
 359         struct rdt_domain *dom_mba;
 360         struct list_head *head;
 361         struct rdtgroup *entry;
 362 
 363         if (!is_mbm_local_enabled())
 364                 return;
 365 
 366         r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
 367         closid = rgrp->closid;
 368         rmid = rgrp->mon.rmid;
 369         pmbm_data = &dom_mbm->mbm_local[rmid];
 370 
 371         dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
 372         if (!dom_mba) {
 373                 pr_warn_once("Failure to get domain for MBA update\n");
 374                 return;
 375         }
 376 
 377         cur_bw = pmbm_data->prev_bw;
 378         user_bw = dom_mba->mbps_val[closid];
 379         delta_bw = pmbm_data->delta_bw;
 380         cur_msr_val = dom_mba->ctrl_val[closid];
 381 
 382         /*
 383          * For Ctrl groups read data from child monitor groups.
 384          */
 385         head = &rgrp->mon.crdtgrp_list;
 386         list_for_each_entry(entry, head, mon.crdtgrp_list) {
 387                 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
 388                 cur_bw += cmbm_data->prev_bw;
 389                 delta_bw += cmbm_data->delta_bw;
 390         }
 391 
 392         /*
 393          * Scale up/down the bandwidth linearly for the ctrl group.  The
 394          * bandwidth step is the bandwidth granularity specified by the
 395          * hardware.
 396          *
 397          * The delta_bw is used when increasing the bandwidth so that we
 398          * dont alternately increase and decrease the control values
 399          * continuously.
 400          *
 401          * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
 402          * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
 403          * switching between 90 and 110 continuously if we only check
 404          * cur_bw < user_bw.
 405          */
 406         if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
 407                 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
 408         } else if (cur_msr_val < MAX_MBA_BW &&
 409                    (user_bw > (cur_bw + delta_bw))) {
 410                 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
 411         } else {
 412                 return;
 413         }
 414 
 415         cur_msr = r_mba->msr_base + closid;
 416         wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
 417         dom_mba->ctrl_val[closid] = new_msr_val;
 418 
 419         /*
 420          * Delta values are updated dynamically package wise for each
 421          * rdtgrp everytime the throttle MSR changes value.
 422          *
 423          * This is because (1)the increase in bandwidth is not perfectly
 424          * linear and only "approximately" linear even when the hardware
 425          * says it is linear.(2)Also since MBA is a core specific
 426          * mechanism, the delta values vary based on number of cores used
 427          * by the rdtgrp.
 428          */
 429         pmbm_data->delta_comp = true;
 430         list_for_each_entry(entry, head, mon.crdtgrp_list) {
 431                 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
 432                 cmbm_data->delta_comp = true;
 433         }
 434 }
 435 
 436 static void mbm_update(struct rdt_domain *d, int rmid)
 437 {
 438         struct rmid_read rr;
 439 
 440         rr.first = false;
 441         rr.d = d;
 442 
 443         /*
 444          * This is protected from concurrent reads from user
 445          * as both the user and we hold the global mutex.
 446          */
 447         if (is_mbm_total_enabled()) {
 448                 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
 449                 __mon_event_count(rmid, &rr);
 450         }
 451         if (is_mbm_local_enabled()) {
 452                 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
 453 
 454                 /*
 455                  * Call the MBA software controller only for the
 456                  * control groups and when user has enabled
 457                  * the software controller explicitly.
 458                  */
 459                 if (!is_mba_sc(NULL))
 460                         __mon_event_count(rmid, &rr);
 461                 else
 462                         mbm_bw_count(rmid, &rr);
 463         }
 464 }
 465 
 466 /*
 467  * Handler to scan the limbo list and move the RMIDs
 468  * to free list whose occupancy < threshold_occupancy.
 469  */
 470 void cqm_handle_limbo(struct work_struct *work)
 471 {
 472         unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
 473         int cpu = smp_processor_id();
 474         struct rdt_resource *r;
 475         struct rdt_domain *d;
 476 
 477         mutex_lock(&rdtgroup_mutex);
 478 
 479         r = &rdt_resources_all[RDT_RESOURCE_L3];
 480         d = get_domain_from_cpu(cpu, r);
 481 
 482         if (!d) {
 483                 pr_warn_once("Failure to get domain for limbo worker\n");
 484                 goto out_unlock;
 485         }
 486 
 487         __check_limbo(d, false);
 488 
 489         if (has_busy_rmid(r, d))
 490                 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
 491 
 492 out_unlock:
 493         mutex_unlock(&rdtgroup_mutex);
 494 }
 495 
 496 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
 497 {
 498         unsigned long delay = msecs_to_jiffies(delay_ms);
 499         int cpu;
 500 
 501         cpu = cpumask_any(&dom->cpu_mask);
 502         dom->cqm_work_cpu = cpu;
 503 
 504         schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
 505 }
 506 
 507 void mbm_handle_overflow(struct work_struct *work)
 508 {
 509         unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
 510         struct rdtgroup *prgrp, *crgrp;
 511         int cpu = smp_processor_id();
 512         struct list_head *head;
 513         struct rdt_domain *d;
 514 
 515         mutex_lock(&rdtgroup_mutex);
 516 
 517         if (!static_branch_likely(&rdt_mon_enable_key))
 518                 goto out_unlock;
 519 
 520         d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
 521         if (!d)
 522                 goto out_unlock;
 523 
 524         list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
 525                 mbm_update(d, prgrp->mon.rmid);
 526 
 527                 head = &prgrp->mon.crdtgrp_list;
 528                 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
 529                         mbm_update(d, crgrp->mon.rmid);
 530 
 531                 if (is_mba_sc(NULL))
 532                         update_mba_bw(prgrp, d);
 533         }
 534 
 535         schedule_delayed_work_on(cpu, &d->mbm_over, delay);
 536 
 537 out_unlock:
 538         mutex_unlock(&rdtgroup_mutex);
 539 }
 540 
 541 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
 542 {
 543         unsigned long delay = msecs_to_jiffies(delay_ms);
 544         int cpu;
 545 
 546         if (!static_branch_likely(&rdt_mon_enable_key))
 547                 return;
 548         cpu = cpumask_any(&dom->cpu_mask);
 549         dom->mbm_work_cpu = cpu;
 550         schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
 551 }
 552 
 553 static int dom_data_init(struct rdt_resource *r)
 554 {
 555         struct rmid_entry *entry = NULL;
 556         int i, nr_rmids;
 557 
 558         nr_rmids = r->num_rmid;
 559         rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
 560         if (!rmid_ptrs)
 561                 return -ENOMEM;
 562 
 563         for (i = 0; i < nr_rmids; i++) {
 564                 entry = &rmid_ptrs[i];
 565                 INIT_LIST_HEAD(&entry->list);
 566 
 567                 entry->rmid = i;
 568                 list_add_tail(&entry->list, &rmid_free_lru);
 569         }
 570 
 571         /*
 572          * RMID 0 is special and is always allocated. It's used for all
 573          * tasks that are not monitored.
 574          */
 575         entry = __rmid_entry(0);
 576         list_del(&entry->list);
 577 
 578         return 0;
 579 }
 580 
 581 static struct mon_evt llc_occupancy_event = {
 582         .name           = "llc_occupancy",
 583         .evtid          = QOS_L3_OCCUP_EVENT_ID,
 584 };
 585 
 586 static struct mon_evt mbm_total_event = {
 587         .name           = "mbm_total_bytes",
 588         .evtid          = QOS_L3_MBM_TOTAL_EVENT_ID,
 589 };
 590 
 591 static struct mon_evt mbm_local_event = {
 592         .name           = "mbm_local_bytes",
 593         .evtid          = QOS_L3_MBM_LOCAL_EVENT_ID,
 594 };
 595 
 596 /*
 597  * Initialize the event list for the resource.
 598  *
 599  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
 600  * because as per the SDM the total and local memory bandwidth
 601  * are enumerated as part of L3 monitoring.
 602  */
 603 static void l3_mon_evt_init(struct rdt_resource *r)
 604 {
 605         INIT_LIST_HEAD(&r->evt_list);
 606 
 607         if (is_llc_occupancy_enabled())
 608                 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
 609         if (is_mbm_total_enabled())
 610                 list_add_tail(&mbm_total_event.list, &r->evt_list);
 611         if (is_mbm_local_enabled())
 612                 list_add_tail(&mbm_local_event.list, &r->evt_list);
 613 }
 614 
 615 int rdt_get_mon_l3_config(struct rdt_resource *r)
 616 {
 617         unsigned int cl_size = boot_cpu_data.x86_cache_size;
 618         int ret;
 619 
 620         r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
 621         r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
 622 
 623         /*
 624          * A reasonable upper limit on the max threshold is the number
 625          * of lines tagged per RMID if all RMIDs have the same number of
 626          * lines tagged in the LLC.
 627          *
 628          * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
 629          */
 630         resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
 631 
 632         /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
 633         resctrl_cqm_threshold /= r->mon_scale;
 634 
 635         ret = dom_data_init(r);
 636         if (ret)
 637                 return ret;
 638 
 639         l3_mon_evt_init(r);
 640 
 641         r->mon_capable = true;
 642         r->mon_enabled = true;
 643 
 644         return 0;
 645 }

/* [<][>][^][v][top][bottom][index][help] */