root/arch/x86/kernel/cpu/common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. setup_cpu_local_masks
  2. default_init
  3. x86_mpx_setup
  4. x86_nopcid_setup
  5. x86_noinvpcid_setup
  6. cachesize_setup
  7. x86_sep_setup
  8. flag_is_changeable_p
  9. have_cpuid_p
  10. squash_the_stupid_serial_number
  11. x86_serial_nr_setup
  12. flag_is_changeable_p
  13. squash_the_stupid_serial_number
  14. setup_disable_smep
  15. setup_smep
  16. setup_disable_smap
  17. setup_smap
  18. setup_umip
  19. native_write_cr0
  20. native_write_cr4
  21. cr4_init
  22. setup_cr_pinning
  23. setup_pku
  24. setup_disable_pku
  25. filter_cpuid_features
  26. table_lookup_model
  27. load_percpu_segment
  28. load_direct_gdt
  29. load_fixmap_gdt
  30. switch_to_new_gdt
  31. get_model_name
  32. detect_num_cpu_cores
  33. cpu_detect_cache_sizes
  34. cpu_detect_tlb
  35. detect_ht_early
  36. detect_ht
  37. get_cpu_vendor
  38. cpu_detect
  39. apply_forced_caps
  40. init_speculation_control
  41. init_cqm
  42. get_cpu_cap
  43. get_cpu_address_sizes
  44. identify_cpu_without_cpuid
  45. cpu_matches
  46. x86_read_arch_cap_msr
  47. cpu_set_bug_bits
  48. detect_nopl
  49. early_identify_cpu
  50. early_cpu_init
  51. detect_null_seg_behavior
  52. generic_identify
  53. x86_init_cache_qos
  54. validate_apic_and_package_id
  55. identify_cpu
  56. enable_sep_cpu
  57. identify_boot_cpu
  58. identify_secondary_cpu
  59. setup_noclflush
  60. print_cpu_info
  61. setup_clearcpuid
  62. syscall_init
  63. debug_stack_set_zero
  64. debug_stack_reset
  65. clear_all_debug_regs
  66. dbg_restore_debug_regs
  67. wait_for_master_cpu
  68. setup_getcpu
  69. cpu_init
  70. cpu_init
  71. microcode_check
  72. arch_smt_update

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* cpu_feature_enabled() cannot be used this early */
   3 #define USE_EARLY_PGTABLE_L5
   4 
   5 #include <linux/memblock.h>
   6 #include <linux/linkage.h>
   7 #include <linux/bitops.h>
   8 #include <linux/kernel.h>
   9 #include <linux/export.h>
  10 #include <linux/percpu.h>
  11 #include <linux/string.h>
  12 #include <linux/ctype.h>
  13 #include <linux/delay.h>
  14 #include <linux/sched/mm.h>
  15 #include <linux/sched/clock.h>
  16 #include <linux/sched/task.h>
  17 #include <linux/init.h>
  18 #include <linux/kprobes.h>
  19 #include <linux/kgdb.h>
  20 #include <linux/smp.h>
  21 #include <linux/io.h>
  22 #include <linux/syscore_ops.h>
  23 
  24 #include <asm/stackprotector.h>
  25 #include <asm/perf_event.h>
  26 #include <asm/mmu_context.h>
  27 #include <asm/archrandom.h>
  28 #include <asm/hypervisor.h>
  29 #include <asm/processor.h>
  30 #include <asm/tlbflush.h>
  31 #include <asm/debugreg.h>
  32 #include <asm/sections.h>
  33 #include <asm/vsyscall.h>
  34 #include <linux/topology.h>
  35 #include <linux/cpumask.h>
  36 #include <asm/pgtable.h>
  37 #include <linux/atomic.h>
  38 #include <asm/proto.h>
  39 #include <asm/setup.h>
  40 #include <asm/apic.h>
  41 #include <asm/desc.h>
  42 #include <asm/fpu/internal.h>
  43 #include <asm/mtrr.h>
  44 #include <asm/hwcap2.h>
  45 #include <linux/numa.h>
  46 #include <asm/asm.h>
  47 #include <asm/bugs.h>
  48 #include <asm/cpu.h>
  49 #include <asm/mce.h>
  50 #include <asm/msr.h>
  51 #include <asm/pat.h>
  52 #include <asm/microcode.h>
  53 #include <asm/microcode_intel.h>
  54 #include <asm/intel-family.h>
  55 #include <asm/cpu_device_id.h>
  56 
  57 #ifdef CONFIG_X86_LOCAL_APIC
  58 #include <asm/uv/uv.h>
  59 #endif
  60 
  61 #include "cpu.h"
  62 
  63 u32 elf_hwcap2 __read_mostly;
  64 
  65 /* all of these masks are initialized in setup_cpu_local_masks() */
  66 cpumask_var_t cpu_initialized_mask;
  67 cpumask_var_t cpu_callout_mask;
  68 cpumask_var_t cpu_callin_mask;
  69 
  70 /* representing cpus for which sibling maps can be computed */
  71 cpumask_var_t cpu_sibling_setup_mask;
  72 
  73 /* Number of siblings per CPU package */
  74 int smp_num_siblings = 1;
  75 EXPORT_SYMBOL(smp_num_siblings);
  76 
  77 /* Last level cache ID of each logical CPU */
  78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
  79 
  80 /* correctly size the local cpu masks */
  81 void __init setup_cpu_local_masks(void)
  82 {
  83         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  84         alloc_bootmem_cpumask_var(&cpu_callin_mask);
  85         alloc_bootmem_cpumask_var(&cpu_callout_mask);
  86         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  87 }
  88 
  89 static void default_init(struct cpuinfo_x86 *c)
  90 {
  91 #ifdef CONFIG_X86_64
  92         cpu_detect_cache_sizes(c);
  93 #else
  94         /* Not much we can do here... */
  95         /* Check if at least it has cpuid */
  96         if (c->cpuid_level == -1) {
  97                 /* No cpuid. It must be an ancient CPU */
  98                 if (c->x86 == 4)
  99                         strcpy(c->x86_model_id, "486");
 100                 else if (c->x86 == 3)
 101                         strcpy(c->x86_model_id, "386");
 102         }
 103 #endif
 104 }
 105 
 106 static const struct cpu_dev default_cpu = {
 107         .c_init         = default_init,
 108         .c_vendor       = "Unknown",
 109         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
 110 };
 111 
 112 static const struct cpu_dev *this_cpu = &default_cpu;
 113 
 114 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 115 #ifdef CONFIG_X86_64
 116         /*
 117          * We need valid kernel segments for data and code in long mode too
 118          * IRET will check the segment types  kkeil 2000/10/28
 119          * Also sysret mandates a special GDT layout
 120          *
 121          * TLS descriptors are currently at a different place compared to i386.
 122          * Hopefully nobody expects them at a fixed place (Wine?)
 123          */
 124         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 125         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 126         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 127         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 128         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 129         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 130 #else
 131         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 132         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 133         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 134         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 135         /*
 136          * Segments used for calling PnP BIOS have byte granularity.
 137          * They code segments and data segments have fixed 64k limits,
 138          * the transfer segment sizes are set at run time.
 139          */
 140         /* 32-bit code */
 141         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 142         /* 16-bit code */
 143         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 144         /* 16-bit data */
 145         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 146         /* 16-bit data */
 147         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 148         /* 16-bit data */
 149         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 150         /*
 151          * The APM segments have byte granularity and their bases
 152          * are set at run time.  All have 64k limits.
 153          */
 154         /* 32-bit code */
 155         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 156         /* 16-bit code */
 157         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 158         /* data */
 159         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 160 
 161         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 162         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 163         GDT_STACK_CANARY_INIT
 164 #endif
 165 } };
 166 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 167 
 168 static int __init x86_mpx_setup(char *s)
 169 {
 170         /* require an exact match without trailing characters */
 171         if (strlen(s))
 172                 return 0;
 173 
 174         /* do not emit a message if the feature is not present */
 175         if (!boot_cpu_has(X86_FEATURE_MPX))
 176                 return 1;
 177 
 178         setup_clear_cpu_cap(X86_FEATURE_MPX);
 179         pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
 180         return 1;
 181 }
 182 __setup("nompx", x86_mpx_setup);
 183 
 184 #ifdef CONFIG_X86_64
 185 static int __init x86_nopcid_setup(char *s)
 186 {
 187         /* nopcid doesn't accept parameters */
 188         if (s)
 189                 return -EINVAL;
 190 
 191         /* do not emit a message if the feature is not present */
 192         if (!boot_cpu_has(X86_FEATURE_PCID))
 193                 return 0;
 194 
 195         setup_clear_cpu_cap(X86_FEATURE_PCID);
 196         pr_info("nopcid: PCID feature disabled\n");
 197         return 0;
 198 }
 199 early_param("nopcid", x86_nopcid_setup);
 200 #endif
 201 
 202 static int __init x86_noinvpcid_setup(char *s)
 203 {
 204         /* noinvpcid doesn't accept parameters */
 205         if (s)
 206                 return -EINVAL;
 207 
 208         /* do not emit a message if the feature is not present */
 209         if (!boot_cpu_has(X86_FEATURE_INVPCID))
 210                 return 0;
 211 
 212         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 213         pr_info("noinvpcid: INVPCID feature disabled\n");
 214         return 0;
 215 }
 216 early_param("noinvpcid", x86_noinvpcid_setup);
 217 
 218 #ifdef CONFIG_X86_32
 219 static int cachesize_override = -1;
 220 static int disable_x86_serial_nr = 1;
 221 
 222 static int __init cachesize_setup(char *str)
 223 {
 224         get_option(&str, &cachesize_override);
 225         return 1;
 226 }
 227 __setup("cachesize=", cachesize_setup);
 228 
 229 static int __init x86_sep_setup(char *s)
 230 {
 231         setup_clear_cpu_cap(X86_FEATURE_SEP);
 232         return 1;
 233 }
 234 __setup("nosep", x86_sep_setup);
 235 
 236 /* Standard macro to see if a specific flag is changeable */
 237 static inline int flag_is_changeable_p(u32 flag)
 238 {
 239         u32 f1, f2;
 240 
 241         /*
 242          * Cyrix and IDT cpus allow disabling of CPUID
 243          * so the code below may return different results
 244          * when it is executed before and after enabling
 245          * the CPUID. Add "volatile" to not allow gcc to
 246          * optimize the subsequent calls to this function.
 247          */
 248         asm volatile ("pushfl           \n\t"
 249                       "pushfl           \n\t"
 250                       "popl %0          \n\t"
 251                       "movl %0, %1      \n\t"
 252                       "xorl %2, %0      \n\t"
 253                       "pushl %0         \n\t"
 254                       "popfl            \n\t"
 255                       "pushfl           \n\t"
 256                       "popl %0          \n\t"
 257                       "popfl            \n\t"
 258 
 259                       : "=&r" (f1), "=&r" (f2)
 260                       : "ir" (flag));
 261 
 262         return ((f1^f2) & flag) != 0;
 263 }
 264 
 265 /* Probe for the CPUID instruction */
 266 int have_cpuid_p(void)
 267 {
 268         return flag_is_changeable_p(X86_EFLAGS_ID);
 269 }
 270 
 271 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 272 {
 273         unsigned long lo, hi;
 274 
 275         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 276                 return;
 277 
 278         /* Disable processor serial number: */
 279 
 280         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 281         lo |= 0x200000;
 282         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 283 
 284         pr_notice("CPU serial number disabled.\n");
 285         clear_cpu_cap(c, X86_FEATURE_PN);
 286 
 287         /* Disabling the serial number may affect the cpuid level */
 288         c->cpuid_level = cpuid_eax(0);
 289 }
 290 
 291 static int __init x86_serial_nr_setup(char *s)
 292 {
 293         disable_x86_serial_nr = 0;
 294         return 1;
 295 }
 296 __setup("serialnumber", x86_serial_nr_setup);
 297 #else
 298 static inline int flag_is_changeable_p(u32 flag)
 299 {
 300         return 1;
 301 }
 302 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 303 {
 304 }
 305 #endif
 306 
 307 static __init int setup_disable_smep(char *arg)
 308 {
 309         setup_clear_cpu_cap(X86_FEATURE_SMEP);
 310         /* Check for things that depend on SMEP being enabled: */
 311         check_mpx_erratum(&boot_cpu_data);
 312         return 1;
 313 }
 314 __setup("nosmep", setup_disable_smep);
 315 
 316 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 317 {
 318         if (cpu_has(c, X86_FEATURE_SMEP))
 319                 cr4_set_bits(X86_CR4_SMEP);
 320 }
 321 
 322 static __init int setup_disable_smap(char *arg)
 323 {
 324         setup_clear_cpu_cap(X86_FEATURE_SMAP);
 325         return 1;
 326 }
 327 __setup("nosmap", setup_disable_smap);
 328 
 329 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 330 {
 331         unsigned long eflags = native_save_fl();
 332 
 333         /* This should have been cleared long ago */
 334         BUG_ON(eflags & X86_EFLAGS_AC);
 335 
 336         if (cpu_has(c, X86_FEATURE_SMAP)) {
 337 #ifdef CONFIG_X86_SMAP
 338                 cr4_set_bits(X86_CR4_SMAP);
 339 #else
 340                 cr4_clear_bits(X86_CR4_SMAP);
 341 #endif
 342         }
 343 }
 344 
 345 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 346 {
 347         /* Check the boot processor, plus build option for UMIP. */
 348         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 349                 goto out;
 350 
 351         /* Check the current processor's cpuid bits. */
 352         if (!cpu_has(c, X86_FEATURE_UMIP))
 353                 goto out;
 354 
 355         cr4_set_bits(X86_CR4_UMIP);
 356 
 357         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 358 
 359         return;
 360 
 361 out:
 362         /*
 363          * Make sure UMIP is disabled in case it was enabled in a
 364          * previous boot (e.g., via kexec).
 365          */
 366         cr4_clear_bits(X86_CR4_UMIP);
 367 }
 368 
 369 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
 370 static unsigned long cr4_pinned_bits __ro_after_init;
 371 
 372 void native_write_cr0(unsigned long val)
 373 {
 374         unsigned long bits_missing = 0;
 375 
 376 set_register:
 377         asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
 378 
 379         if (static_branch_likely(&cr_pinning)) {
 380                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
 381                         bits_missing = X86_CR0_WP;
 382                         val |= bits_missing;
 383                         goto set_register;
 384                 }
 385                 /* Warn after we've set the missing bits. */
 386                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
 387         }
 388 }
 389 EXPORT_SYMBOL(native_write_cr0);
 390 
 391 void native_write_cr4(unsigned long val)
 392 {
 393         unsigned long bits_missing = 0;
 394 
 395 set_register:
 396         asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
 397 
 398         if (static_branch_likely(&cr_pinning)) {
 399                 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
 400                         bits_missing = ~val & cr4_pinned_bits;
 401                         val |= bits_missing;
 402                         goto set_register;
 403                 }
 404                 /* Warn after we've set the missing bits. */
 405                 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
 406                           bits_missing);
 407         }
 408 }
 409 EXPORT_SYMBOL(native_write_cr4);
 410 
 411 void cr4_init(void)
 412 {
 413         unsigned long cr4 = __read_cr4();
 414 
 415         if (boot_cpu_has(X86_FEATURE_PCID))
 416                 cr4 |= X86_CR4_PCIDE;
 417         if (static_branch_likely(&cr_pinning))
 418                 cr4 |= cr4_pinned_bits;
 419 
 420         __write_cr4(cr4);
 421 
 422         /* Initialize cr4 shadow for this CPU. */
 423         this_cpu_write(cpu_tlbstate.cr4, cr4);
 424 }
 425 
 426 /*
 427  * Once CPU feature detection is finished (and boot params have been
 428  * parsed), record any of the sensitive CR bits that are set, and
 429  * enable CR pinning.
 430  */
 431 static void __init setup_cr_pinning(void)
 432 {
 433         unsigned long mask;
 434 
 435         mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
 436         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
 437         static_key_enable(&cr_pinning.key);
 438 }
 439 
 440 /*
 441  * Protection Keys are not available in 32-bit mode.
 442  */
 443 static bool pku_disabled;
 444 
 445 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 446 {
 447         struct pkru_state *pk;
 448 
 449         /* check the boot processor, plus compile options for PKU: */
 450         if (!cpu_feature_enabled(X86_FEATURE_PKU))
 451                 return;
 452         /* checks the actual processor's cpuid bits: */
 453         if (!cpu_has(c, X86_FEATURE_PKU))
 454                 return;
 455         if (pku_disabled)
 456                 return;
 457 
 458         cr4_set_bits(X86_CR4_PKE);
 459         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
 460         if (pk)
 461                 pk->pkru = init_pkru_value;
 462         /*
 463          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
 464          * cpuid bit to be set.  We need to ensure that we
 465          * update that bit in this CPU's "cpu_info".
 466          */
 467         set_cpu_cap(c, X86_FEATURE_OSPKE);
 468 }
 469 
 470 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 471 static __init int setup_disable_pku(char *arg)
 472 {
 473         /*
 474          * Do not clear the X86_FEATURE_PKU bit.  All of the
 475          * runtime checks are against OSPKE so clearing the
 476          * bit does nothing.
 477          *
 478          * This way, we will see "pku" in cpuinfo, but not
 479          * "ospke", which is exactly what we want.  It shows
 480          * that the CPU has PKU, but the OS has not enabled it.
 481          * This happens to be exactly how a system would look
 482          * if we disabled the config option.
 483          */
 484         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 485         pku_disabled = true;
 486         return 1;
 487 }
 488 __setup("nopku", setup_disable_pku);
 489 #endif /* CONFIG_X86_64 */
 490 
 491 /*
 492  * Some CPU features depend on higher CPUID levels, which may not always
 493  * be available due to CPUID level capping or broken virtualization
 494  * software.  Add those features to this table to auto-disable them.
 495  */
 496 struct cpuid_dependent_feature {
 497         u32 feature;
 498         u32 level;
 499 };
 500 
 501 static const struct cpuid_dependent_feature
 502 cpuid_dependent_features[] = {
 503         { X86_FEATURE_MWAIT,            0x00000005 },
 504         { X86_FEATURE_DCA,              0x00000009 },
 505         { X86_FEATURE_XSAVE,            0x0000000d },
 506         { 0, 0 }
 507 };
 508 
 509 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 510 {
 511         const struct cpuid_dependent_feature *df;
 512 
 513         for (df = cpuid_dependent_features; df->feature; df++) {
 514 
 515                 if (!cpu_has(c, df->feature))
 516                         continue;
 517                 /*
 518                  * Note: cpuid_level is set to -1 if unavailable, but
 519                  * extended_extended_level is set to 0 if unavailable
 520                  * and the legitimate extended levels are all negative
 521                  * when signed; hence the weird messing around with
 522                  * signs here...
 523                  */
 524                 if (!((s32)df->level < 0 ?
 525                      (u32)df->level > (u32)c->extended_cpuid_level :
 526                      (s32)df->level > (s32)c->cpuid_level))
 527                         continue;
 528 
 529                 clear_cpu_cap(c, df->feature);
 530                 if (!warn)
 531                         continue;
 532 
 533                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 534                         x86_cap_flag(df->feature), df->level);
 535         }
 536 }
 537 
 538 /*
 539  * Naming convention should be: <Name> [(<Codename>)]
 540  * This table only is used unless init_<vendor>() below doesn't set it;
 541  * in particular, if CPUID levels 0x80000002..4 are supported, this
 542  * isn't used
 543  */
 544 
 545 /* Look up CPU names by table lookup. */
 546 static const char *table_lookup_model(struct cpuinfo_x86 *c)
 547 {
 548 #ifdef CONFIG_X86_32
 549         const struct legacy_cpu_model_info *info;
 550 
 551         if (c->x86_model >= 16)
 552                 return NULL;    /* Range check */
 553 
 554         if (!this_cpu)
 555                 return NULL;
 556 
 557         info = this_cpu->legacy_models;
 558 
 559         while (info->family) {
 560                 if (info->family == c->x86)
 561                         return info->model_names[c->x86_model];
 562                 info++;
 563         }
 564 #endif
 565         return NULL;            /* Not found */
 566 }
 567 
 568 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
 569 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
 570 
 571 void load_percpu_segment(int cpu)
 572 {
 573 #ifdef CONFIG_X86_32
 574         loadsegment(fs, __KERNEL_PERCPU);
 575 #else
 576         __loadsegment_simple(gs, 0);
 577         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 578 #endif
 579         load_stack_canary_segment();
 580 }
 581 
 582 #ifdef CONFIG_X86_32
 583 /* The 32-bit entry code needs to find cpu_entry_area. */
 584 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 585 #endif
 586 
 587 /* Load the original GDT from the per-cpu structure */
 588 void load_direct_gdt(int cpu)
 589 {
 590         struct desc_ptr gdt_descr;
 591 
 592         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 593         gdt_descr.size = GDT_SIZE - 1;
 594         load_gdt(&gdt_descr);
 595 }
 596 EXPORT_SYMBOL_GPL(load_direct_gdt);
 597 
 598 /* Load a fixmap remapping of the per-cpu GDT */
 599 void load_fixmap_gdt(int cpu)
 600 {
 601         struct desc_ptr gdt_descr;
 602 
 603         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 604         gdt_descr.size = GDT_SIZE - 1;
 605         load_gdt(&gdt_descr);
 606 }
 607 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 608 
 609 /*
 610  * Current gdt points %fs at the "master" per-cpu area: after this,
 611  * it's on the real one.
 612  */
 613 void switch_to_new_gdt(int cpu)
 614 {
 615         /* Load the original GDT */
 616         load_direct_gdt(cpu);
 617         /* Reload the per-cpu base */
 618         load_percpu_segment(cpu);
 619 }
 620 
 621 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 622 
 623 static void get_model_name(struct cpuinfo_x86 *c)
 624 {
 625         unsigned int *v;
 626         char *p, *q, *s;
 627 
 628         if (c->extended_cpuid_level < 0x80000004)
 629                 return;
 630 
 631         v = (unsigned int *)c->x86_model_id;
 632         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 633         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 634         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 635         c->x86_model_id[48] = 0;
 636 
 637         /* Trim whitespace */
 638         p = q = s = &c->x86_model_id[0];
 639 
 640         while (*p == ' ')
 641                 p++;
 642 
 643         while (*p) {
 644                 /* Note the last non-whitespace index */
 645                 if (!isspace(*p))
 646                         s = q;
 647 
 648                 *q++ = *p++;
 649         }
 650 
 651         *(s + 1) = '\0';
 652 }
 653 
 654 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
 655 {
 656         unsigned int eax, ebx, ecx, edx;
 657 
 658         c->x86_max_cores = 1;
 659         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 660                 return;
 661 
 662         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 663         if (eax & 0x1f)
 664                 c->x86_max_cores = (eax >> 26) + 1;
 665 }
 666 
 667 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 668 {
 669         unsigned int n, dummy, ebx, ecx, edx, l2size;
 670 
 671         n = c->extended_cpuid_level;
 672 
 673         if (n >= 0x80000005) {
 674                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 675                 c->x86_cache_size = (ecx>>24) + (edx>>24);
 676 #ifdef CONFIG_X86_64
 677                 /* On K8 L1 TLB is inclusive, so don't count it */
 678                 c->x86_tlbsize = 0;
 679 #endif
 680         }
 681 
 682         if (n < 0x80000006)     /* Some chips just has a large L1. */
 683                 return;
 684 
 685         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 686         l2size = ecx >> 16;
 687 
 688 #ifdef CONFIG_X86_64
 689         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 690 #else
 691         /* do processor-specific cache resizing */
 692         if (this_cpu->legacy_cache_size)
 693                 l2size = this_cpu->legacy_cache_size(c, l2size);
 694 
 695         /* Allow user to override all this if necessary. */
 696         if (cachesize_override != -1)
 697                 l2size = cachesize_override;
 698 
 699         if (l2size == 0)
 700                 return;         /* Again, no L2 cache is possible */
 701 #endif
 702 
 703         c->x86_cache_size = l2size;
 704 }
 705 
 706 u16 __read_mostly tlb_lli_4k[NR_INFO];
 707 u16 __read_mostly tlb_lli_2m[NR_INFO];
 708 u16 __read_mostly tlb_lli_4m[NR_INFO];
 709 u16 __read_mostly tlb_lld_4k[NR_INFO];
 710 u16 __read_mostly tlb_lld_2m[NR_INFO];
 711 u16 __read_mostly tlb_lld_4m[NR_INFO];
 712 u16 __read_mostly tlb_lld_1g[NR_INFO];
 713 
 714 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 715 {
 716         if (this_cpu->c_detect_tlb)
 717                 this_cpu->c_detect_tlb(c);
 718 
 719         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 720                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 721                 tlb_lli_4m[ENTRIES]);
 722 
 723         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 724                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 725                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 726 }
 727 
 728 int detect_ht_early(struct cpuinfo_x86 *c)
 729 {
 730 #ifdef CONFIG_SMP
 731         u32 eax, ebx, ecx, edx;
 732 
 733         if (!cpu_has(c, X86_FEATURE_HT))
 734                 return -1;
 735 
 736         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 737                 return -1;
 738 
 739         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 740                 return -1;
 741 
 742         cpuid(1, &eax, &ebx, &ecx, &edx);
 743 
 744         smp_num_siblings = (ebx & 0xff0000) >> 16;
 745         if (smp_num_siblings == 1)
 746                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
 747 #endif
 748         return 0;
 749 }
 750 
 751 void detect_ht(struct cpuinfo_x86 *c)
 752 {
 753 #ifdef CONFIG_SMP
 754         int index_msb, core_bits;
 755 
 756         if (detect_ht_early(c) < 0)
 757                 return;
 758 
 759         index_msb = get_count_order(smp_num_siblings);
 760         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 761 
 762         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 763 
 764         index_msb = get_count_order(smp_num_siblings);
 765 
 766         core_bits = get_count_order(c->x86_max_cores);
 767 
 768         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 769                                        ((1 << core_bits) - 1);
 770 #endif
 771 }
 772 
 773 static void get_cpu_vendor(struct cpuinfo_x86 *c)
 774 {
 775         char *v = c->x86_vendor_id;
 776         int i;
 777 
 778         for (i = 0; i < X86_VENDOR_NUM; i++) {
 779                 if (!cpu_devs[i])
 780                         break;
 781 
 782                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 783                     (cpu_devs[i]->c_ident[1] &&
 784                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 785 
 786                         this_cpu = cpu_devs[i];
 787                         c->x86_vendor = this_cpu->c_x86_vendor;
 788                         return;
 789                 }
 790         }
 791 
 792         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 793                     "CPU: Your system may be unstable.\n", v);
 794 
 795         c->x86_vendor = X86_VENDOR_UNKNOWN;
 796         this_cpu = &default_cpu;
 797 }
 798 
 799 void cpu_detect(struct cpuinfo_x86 *c)
 800 {
 801         /* Get vendor name */
 802         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 803               (unsigned int *)&c->x86_vendor_id[0],
 804               (unsigned int *)&c->x86_vendor_id[8],
 805               (unsigned int *)&c->x86_vendor_id[4]);
 806 
 807         c->x86 = 4;
 808         /* Intel-defined flags: level 0x00000001 */
 809         if (c->cpuid_level >= 0x00000001) {
 810                 u32 junk, tfms, cap0, misc;
 811 
 812                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 813                 c->x86          = x86_family(tfms);
 814                 c->x86_model    = x86_model(tfms);
 815                 c->x86_stepping = x86_stepping(tfms);
 816 
 817                 if (cap0 & (1<<19)) {
 818                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 819                         c->x86_cache_alignment = c->x86_clflush_size;
 820                 }
 821         }
 822 }
 823 
 824 static void apply_forced_caps(struct cpuinfo_x86 *c)
 825 {
 826         int i;
 827 
 828         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 829                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
 830                 c->x86_capability[i] |= cpu_caps_set[i];
 831         }
 832 }
 833 
 834 static void init_speculation_control(struct cpuinfo_x86 *c)
 835 {
 836         /*
 837          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 838          * and they also have a different bit for STIBP support. Also,
 839          * a hypervisor might have set the individual AMD bits even on
 840          * Intel CPUs, for finer-grained selection of what's available.
 841          */
 842         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 843                 set_cpu_cap(c, X86_FEATURE_IBRS);
 844                 set_cpu_cap(c, X86_FEATURE_IBPB);
 845                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 846         }
 847 
 848         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 849                 set_cpu_cap(c, X86_FEATURE_STIBP);
 850 
 851         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 852             cpu_has(c, X86_FEATURE_VIRT_SSBD))
 853                 set_cpu_cap(c, X86_FEATURE_SSBD);
 854 
 855         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 856                 set_cpu_cap(c, X86_FEATURE_IBRS);
 857                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 858         }
 859 
 860         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 861                 set_cpu_cap(c, X86_FEATURE_IBPB);
 862 
 863         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 864                 set_cpu_cap(c, X86_FEATURE_STIBP);
 865                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 866         }
 867 
 868         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
 869                 set_cpu_cap(c, X86_FEATURE_SSBD);
 870                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 871                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
 872         }
 873 }
 874 
 875 static void init_cqm(struct cpuinfo_x86 *c)
 876 {
 877         if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
 878                 c->x86_cache_max_rmid  = -1;
 879                 c->x86_cache_occ_scale = -1;
 880                 return;
 881         }
 882 
 883         /* will be overridden if occupancy monitoring exists */
 884         c->x86_cache_max_rmid = cpuid_ebx(0xf);
 885 
 886         if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
 887             cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
 888             cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
 889                 u32 eax, ebx, ecx, edx;
 890 
 891                 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
 892                 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
 893 
 894                 c->x86_cache_max_rmid  = ecx;
 895                 c->x86_cache_occ_scale = ebx;
 896         }
 897 }
 898 
 899 void get_cpu_cap(struct cpuinfo_x86 *c)
 900 {
 901         u32 eax, ebx, ecx, edx;
 902 
 903         /* Intel-defined flags: level 0x00000001 */
 904         if (c->cpuid_level >= 0x00000001) {
 905                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 906 
 907                 c->x86_capability[CPUID_1_ECX] = ecx;
 908                 c->x86_capability[CPUID_1_EDX] = edx;
 909         }
 910 
 911         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 912         if (c->cpuid_level >= 0x00000006)
 913                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 914 
 915         /* Additional Intel-defined flags: level 0x00000007 */
 916         if (c->cpuid_level >= 0x00000007) {
 917                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 918                 c->x86_capability[CPUID_7_0_EBX] = ebx;
 919                 c->x86_capability[CPUID_7_ECX] = ecx;
 920                 c->x86_capability[CPUID_7_EDX] = edx;
 921 
 922                 /* Check valid sub-leaf index before accessing it */
 923                 if (eax >= 1) {
 924                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
 925                         c->x86_capability[CPUID_7_1_EAX] = eax;
 926                 }
 927         }
 928 
 929         /* Extended state features: level 0x0000000d */
 930         if (c->cpuid_level >= 0x0000000d) {
 931                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 932 
 933                 c->x86_capability[CPUID_D_1_EAX] = eax;
 934         }
 935 
 936         /* AMD-defined flags: level 0x80000001 */
 937         eax = cpuid_eax(0x80000000);
 938         c->extended_cpuid_level = eax;
 939 
 940         if ((eax & 0xffff0000) == 0x80000000) {
 941                 if (eax >= 0x80000001) {
 942                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 943 
 944                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 945                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
 946                 }
 947         }
 948 
 949         if (c->extended_cpuid_level >= 0x80000007) {
 950                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 951 
 952                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 953                 c->x86_power = edx;
 954         }
 955 
 956         if (c->extended_cpuid_level >= 0x80000008) {
 957                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 958                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 959         }
 960 
 961         if (c->extended_cpuid_level >= 0x8000000a)
 962                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 963 
 964         init_scattered_cpuid_features(c);
 965         init_speculation_control(c);
 966         init_cqm(c);
 967 
 968         /*
 969          * Clear/Set all flags overridden by options, after probe.
 970          * This needs to happen each time we re-probe, which may happen
 971          * several times during CPU initialization.
 972          */
 973         apply_forced_caps(c);
 974 }
 975 
 976 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 977 {
 978         u32 eax, ebx, ecx, edx;
 979 
 980         if (c->extended_cpuid_level >= 0x80000008) {
 981                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 982 
 983                 c->x86_virt_bits = (eax >> 8) & 0xff;
 984                 c->x86_phys_bits = eax & 0xff;
 985         }
 986 #ifdef CONFIG_X86_32
 987         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 988                 c->x86_phys_bits = 36;
 989 #endif
 990         c->x86_cache_bits = c->x86_phys_bits;
 991 }
 992 
 993 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 994 {
 995 #ifdef CONFIG_X86_32
 996         int i;
 997 
 998         /*
 999          * First of all, decide if this is a 486 or higher
1000          * It's a 486 if we can modify the AC flag
1001          */
1002         if (flag_is_changeable_p(X86_EFLAGS_AC))
1003                 c->x86 = 4;
1004         else
1005                 c->x86 = 3;
1006 
1007         for (i = 0; i < X86_VENDOR_NUM; i++)
1008                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1009                         c->x86_vendor_id[0] = 0;
1010                         cpu_devs[i]->c_identify(c);
1011                         if (c->x86_vendor_id[0]) {
1012                                 get_cpu_vendor(c);
1013                                 break;
1014                         }
1015                 }
1016 #endif
1017 }
1018 
1019 #define NO_SPECULATION          BIT(0)
1020 #define NO_MELTDOWN             BIT(1)
1021 #define NO_SSB                  BIT(2)
1022 #define NO_L1TF                 BIT(3)
1023 #define NO_MDS                  BIT(4)
1024 #define MSBDS_ONLY              BIT(5)
1025 #define NO_SWAPGS               BIT(6)
1026 #define NO_ITLB_MULTIHIT        BIT(7)
1027 #define NO_SPECTRE_V2           BIT(8)
1028 
1029 #define VULNWL(_vendor, _family, _model, _whitelist)    \
1030         { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1031 
1032 #define VULNWL_INTEL(model, whitelist)          \
1033         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1034 
1035 #define VULNWL_AMD(family, whitelist)           \
1036         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1037 
1038 #define VULNWL_HYGON(family, whitelist)         \
1039         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1040 
1041 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1042         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1043         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1044         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1045         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1046 
1047         /* Intel Family 6 */
1048         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1049         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1050         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1051         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1052         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1053 
1054         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 
1061         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1062 
1063         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 
1066         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069 
1070         /*
1071          * Technically, swapgs isn't serializing on AMD (despite it previously
1072          * being documented as such in the APM).  But according to AMD, %gs is
1073          * updated non-speculatively, and the issuing of %gs-relative memory
1074          * operands will be blocked until the %gs update completes, which is
1075          * good enough for our purposes.
1076          */
1077 
1078         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1079 
1080         /* AMD Family 0xf - 0x12 */
1081         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 
1086         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1087         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1088         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1089 
1090         /* Zhaoxin Family 7 */
1091         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2),
1092         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2),
1093         {}
1094 };
1095 
1096 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1097         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1098                                             INTEL_FAM6_##model, steppings, \
1099                                             X86_FEATURE_ANY, issues)
1100 
1101 #define SRBDS           BIT(0)
1102 
1103 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1104         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1105         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1106         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1107         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1108         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1109         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1110         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1111         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1112         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1113         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1114         {}
1115 };
1116 
1117 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1118 {
1119         const struct x86_cpu_id *m = x86_match_cpu(table);
1120 
1121         return m && !!(m->driver_data & which);
1122 }
1123 
1124 u64 x86_read_arch_cap_msr(void)
1125 {
1126         u64 ia32_cap = 0;
1127 
1128         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1129                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1130 
1131         return ia32_cap;
1132 }
1133 
1134 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1135 {
1136         u64 ia32_cap = x86_read_arch_cap_msr();
1137 
1138         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1139         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1140             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1141                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1142 
1143         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1144                 return;
1145 
1146         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1147 
1148         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1149                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1150 
1151         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1152             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1153            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1154                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1155 
1156         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1157                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1158 
1159         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1160             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1161                 setup_force_cpu_bug(X86_BUG_MDS);
1162                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1163                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1164         }
1165 
1166         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1167                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1168 
1169         /*
1170          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1171          *      - TSX is supported or
1172          *      - TSX_CTRL is present
1173          *
1174          * TSX_CTRL check is needed for cases when TSX could be disabled before
1175          * the kernel boot e.g. kexec.
1176          * TSX_CTRL check alone is not sufficient for cases when the microcode
1177          * update is not present or running as guest that don't get TSX_CTRL.
1178          */
1179         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1180             (cpu_has(c, X86_FEATURE_RTM) ||
1181              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1182                 setup_force_cpu_bug(X86_BUG_TAA);
1183 
1184         /*
1185          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1186          * in the vulnerability blacklist.
1187          */
1188         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1189              cpu_has(c, X86_FEATURE_RDSEED)) &&
1190             cpu_matches(cpu_vuln_blacklist, SRBDS))
1191                     setup_force_cpu_bug(X86_BUG_SRBDS);
1192 
1193         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1194                 return;
1195 
1196         /* Rogue Data Cache Load? No! */
1197         if (ia32_cap & ARCH_CAP_RDCL_NO)
1198                 return;
1199 
1200         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1201 
1202         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1203                 return;
1204 
1205         setup_force_cpu_bug(X86_BUG_L1TF);
1206 }
1207 
1208 /*
1209  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1210  * unfortunately, that's not true in practice because of early VIA
1211  * chips and (more importantly) broken virtualizers that are not easy
1212  * to detect. In the latter case it doesn't even *fail* reliably, so
1213  * probing for it doesn't even work. Disable it completely on 32-bit
1214  * unless we can find a reliable way to detect all the broken cases.
1215  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1216  */
1217 static void detect_nopl(void)
1218 {
1219 #ifdef CONFIG_X86_32
1220         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1221 #else
1222         setup_force_cpu_cap(X86_FEATURE_NOPL);
1223 #endif
1224 }
1225 
1226 /*
1227  * Do minimum CPU detection early.
1228  * Fields really needed: vendor, cpuid_level, family, model, mask,
1229  * cache alignment.
1230  * The others are not touched to avoid unwanted side effects.
1231  *
1232  * WARNING: this function is only called on the boot CPU.  Don't add code
1233  * here that is supposed to run on all CPUs.
1234  */
1235 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1236 {
1237 #ifdef CONFIG_X86_64
1238         c->x86_clflush_size = 64;
1239         c->x86_phys_bits = 36;
1240         c->x86_virt_bits = 48;
1241 #else
1242         c->x86_clflush_size = 32;
1243         c->x86_phys_bits = 32;
1244         c->x86_virt_bits = 32;
1245 #endif
1246         c->x86_cache_alignment = c->x86_clflush_size;
1247 
1248         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1249         c->extended_cpuid_level = 0;
1250 
1251         if (!have_cpuid_p())
1252                 identify_cpu_without_cpuid(c);
1253 
1254         /* cyrix could have cpuid enabled via c_identify()*/
1255         if (have_cpuid_p()) {
1256                 cpu_detect(c);
1257                 get_cpu_vendor(c);
1258                 get_cpu_cap(c);
1259                 get_cpu_address_sizes(c);
1260                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1261 
1262                 if (this_cpu->c_early_init)
1263                         this_cpu->c_early_init(c);
1264 
1265                 c->cpu_index = 0;
1266                 filter_cpuid_features(c, false);
1267 
1268                 if (this_cpu->c_bsp_init)
1269                         this_cpu->c_bsp_init(c);
1270         } else {
1271                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1272         }
1273 
1274         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1275 
1276         cpu_set_bug_bits(c);
1277 
1278         fpu__init_system(c);
1279 
1280 #ifdef CONFIG_X86_32
1281         /*
1282          * Regardless of whether PCID is enumerated, the SDM says
1283          * that it can't be enabled in 32-bit mode.
1284          */
1285         setup_clear_cpu_cap(X86_FEATURE_PCID);
1286 #endif
1287 
1288         /*
1289          * Later in the boot process pgtable_l5_enabled() relies on
1290          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1291          * enabled by this point we need to clear the feature bit to avoid
1292          * false-positives at the later stage.
1293          *
1294          * pgtable_l5_enabled() can be false here for several reasons:
1295          *  - 5-level paging is disabled compile-time;
1296          *  - it's 32-bit kernel;
1297          *  - machine doesn't support 5-level paging;
1298          *  - user specified 'no5lvl' in kernel command line.
1299          */
1300         if (!pgtable_l5_enabled())
1301                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1302 
1303         detect_nopl();
1304 }
1305 
1306 void __init early_cpu_init(void)
1307 {
1308         const struct cpu_dev *const *cdev;
1309         int count = 0;
1310 
1311 #ifdef CONFIG_PROCESSOR_SELECT
1312         pr_info("KERNEL supported cpus:\n");
1313 #endif
1314 
1315         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1316                 const struct cpu_dev *cpudev = *cdev;
1317 
1318                 if (count >= X86_VENDOR_NUM)
1319                         break;
1320                 cpu_devs[count] = cpudev;
1321                 count++;
1322 
1323 #ifdef CONFIG_PROCESSOR_SELECT
1324                 {
1325                         unsigned int j;
1326 
1327                         for (j = 0; j < 2; j++) {
1328                                 if (!cpudev->c_ident[j])
1329                                         continue;
1330                                 pr_info("  %s %s\n", cpudev->c_vendor,
1331                                         cpudev->c_ident[j]);
1332                         }
1333                 }
1334 #endif
1335         }
1336         early_identify_cpu(&boot_cpu_data);
1337 }
1338 
1339 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1340 {
1341 #ifdef CONFIG_X86_64
1342         /*
1343          * Empirically, writing zero to a segment selector on AMD does
1344          * not clear the base, whereas writing zero to a segment
1345          * selector on Intel does clear the base.  Intel's behavior
1346          * allows slightly faster context switches in the common case
1347          * where GS is unused by the prev and next threads.
1348          *
1349          * Since neither vendor documents this anywhere that I can see,
1350          * detect it directly instead of hardcoding the choice by
1351          * vendor.
1352          *
1353          * I've designated AMD's behavior as the "bug" because it's
1354          * counterintuitive and less friendly.
1355          */
1356 
1357         unsigned long old_base, tmp;
1358         rdmsrl(MSR_FS_BASE, old_base);
1359         wrmsrl(MSR_FS_BASE, 1);
1360         loadsegment(fs, 0);
1361         rdmsrl(MSR_FS_BASE, tmp);
1362         if (tmp != 0)
1363                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1364         wrmsrl(MSR_FS_BASE, old_base);
1365 #endif
1366 }
1367 
1368 static void generic_identify(struct cpuinfo_x86 *c)
1369 {
1370         c->extended_cpuid_level = 0;
1371 
1372         if (!have_cpuid_p())
1373                 identify_cpu_without_cpuid(c);
1374 
1375         /* cyrix could have cpuid enabled via c_identify()*/
1376         if (!have_cpuid_p())
1377                 return;
1378 
1379         cpu_detect(c);
1380 
1381         get_cpu_vendor(c);
1382 
1383         get_cpu_cap(c);
1384 
1385         get_cpu_address_sizes(c);
1386 
1387         if (c->cpuid_level >= 0x00000001) {
1388                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1389 #ifdef CONFIG_X86_32
1390 # ifdef CONFIG_SMP
1391                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1392 # else
1393                 c->apicid = c->initial_apicid;
1394 # endif
1395 #endif
1396                 c->phys_proc_id = c->initial_apicid;
1397         }
1398 
1399         get_model_name(c); /* Default name */
1400 
1401         detect_null_seg_behavior(c);
1402 
1403         /*
1404          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1405          * systems that run Linux at CPL > 0 may or may not have the
1406          * issue, but, even if they have the issue, there's absolutely
1407          * nothing we can do about it because we can't use the real IRET
1408          * instruction.
1409          *
1410          * NB: For the time being, only 32-bit kernels support
1411          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1412          * whether to apply espfix using paravirt hooks.  If any
1413          * non-paravirt system ever shows up that does *not* have the
1414          * ESPFIX issue, we can change this.
1415          */
1416 #ifdef CONFIG_X86_32
1417 # ifdef CONFIG_PARAVIRT_XXL
1418         do {
1419                 extern void native_iret(void);
1420                 if (pv_ops.cpu.iret == native_iret)
1421                         set_cpu_bug(c, X86_BUG_ESPFIX);
1422         } while (0);
1423 # else
1424         set_cpu_bug(c, X86_BUG_ESPFIX);
1425 # endif
1426 #endif
1427 }
1428 
1429 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1430 {
1431         /*
1432          * The heavy lifting of max_rmid and cache_occ_scale are handled
1433          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1434          * in case CQM bits really aren't there in this CPU.
1435          */
1436         if (c != &boot_cpu_data) {
1437                 boot_cpu_data.x86_cache_max_rmid =
1438                         min(boot_cpu_data.x86_cache_max_rmid,
1439                             c->x86_cache_max_rmid);
1440         }
1441 }
1442 
1443 /*
1444  * Validate that ACPI/mptables have the same information about the
1445  * effective APIC id and update the package map.
1446  */
1447 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1448 {
1449 #ifdef CONFIG_SMP
1450         unsigned int apicid, cpu = smp_processor_id();
1451 
1452         apicid = apic->cpu_present_to_apicid(cpu);
1453 
1454         if (apicid != c->apicid) {
1455                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1456                        cpu, apicid, c->initial_apicid);
1457         }
1458         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1459         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1460 #else
1461         c->logical_proc_id = 0;
1462 #endif
1463 }
1464 
1465 /*
1466  * This does the hard work of actually picking apart the CPU stuff...
1467  */
1468 static void identify_cpu(struct cpuinfo_x86 *c)
1469 {
1470         int i;
1471 
1472         c->loops_per_jiffy = loops_per_jiffy;
1473         c->x86_cache_size = 0;
1474         c->x86_vendor = X86_VENDOR_UNKNOWN;
1475         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1476         c->x86_vendor_id[0] = '\0'; /* Unset */
1477         c->x86_model_id[0] = '\0';  /* Unset */
1478         c->x86_max_cores = 1;
1479         c->x86_coreid_bits = 0;
1480         c->cu_id = 0xff;
1481 #ifdef CONFIG_X86_64
1482         c->x86_clflush_size = 64;
1483         c->x86_phys_bits = 36;
1484         c->x86_virt_bits = 48;
1485 #else
1486         c->cpuid_level = -1;    /* CPUID not detected */
1487         c->x86_clflush_size = 32;
1488         c->x86_phys_bits = 32;
1489         c->x86_virt_bits = 32;
1490 #endif
1491         c->x86_cache_alignment = c->x86_clflush_size;
1492         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1493 
1494         generic_identify(c);
1495 
1496         if (this_cpu->c_identify)
1497                 this_cpu->c_identify(c);
1498 
1499         /* Clear/Set all flags overridden by options, after probe */
1500         apply_forced_caps(c);
1501 
1502 #ifdef CONFIG_X86_64
1503         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1504 #endif
1505 
1506         /*
1507          * Vendor-specific initialization.  In this section we
1508          * canonicalize the feature flags, meaning if there are
1509          * features a certain CPU supports which CPUID doesn't
1510          * tell us, CPUID claiming incorrect flags, or other bugs,
1511          * we handle them here.
1512          *
1513          * At the end of this section, c->x86_capability better
1514          * indicate the features this CPU genuinely supports!
1515          */
1516         if (this_cpu->c_init)
1517                 this_cpu->c_init(c);
1518 
1519         /* Disable the PN if appropriate */
1520         squash_the_stupid_serial_number(c);
1521 
1522         /* Set up SMEP/SMAP/UMIP */
1523         setup_smep(c);
1524         setup_smap(c);
1525         setup_umip(c);
1526 
1527         /*
1528          * The vendor-specific functions might have changed features.
1529          * Now we do "generic changes."
1530          */
1531 
1532         /* Filter out anything that depends on CPUID levels we don't have */
1533         filter_cpuid_features(c, true);
1534 
1535         /* If the model name is still unset, do table lookup. */
1536         if (!c->x86_model_id[0]) {
1537                 const char *p;
1538                 p = table_lookup_model(c);
1539                 if (p)
1540                         strcpy(c->x86_model_id, p);
1541                 else
1542                         /* Last resort... */
1543                         sprintf(c->x86_model_id, "%02x/%02x",
1544                                 c->x86, c->x86_model);
1545         }
1546 
1547 #ifdef CONFIG_X86_64
1548         detect_ht(c);
1549 #endif
1550 
1551         x86_init_rdrand(c);
1552         x86_init_cache_qos(c);
1553         setup_pku(c);
1554 
1555         /*
1556          * Clear/Set all flags overridden by options, need do it
1557          * before following smp all cpus cap AND.
1558          */
1559         apply_forced_caps(c);
1560 
1561         /*
1562          * On SMP, boot_cpu_data holds the common feature set between
1563          * all CPUs; so make sure that we indicate which features are
1564          * common between the CPUs.  The first time this routine gets
1565          * executed, c == &boot_cpu_data.
1566          */
1567         if (c != &boot_cpu_data) {
1568                 /* AND the already accumulated flags with these */
1569                 for (i = 0; i < NCAPINTS; i++)
1570                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1571 
1572                 /* OR, i.e. replicate the bug flags */
1573                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1574                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1575         }
1576 
1577         /* Init Machine Check Exception if available. */
1578         mcheck_cpu_init(c);
1579 
1580         select_idle_routine(c);
1581 
1582 #ifdef CONFIG_NUMA
1583         numa_add_cpu(smp_processor_id());
1584 #endif
1585 }
1586 
1587 /*
1588  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1589  * on 32-bit kernels:
1590  */
1591 #ifdef CONFIG_X86_32
1592 void enable_sep_cpu(void)
1593 {
1594         struct tss_struct *tss;
1595         int cpu;
1596 
1597         if (!boot_cpu_has(X86_FEATURE_SEP))
1598                 return;
1599 
1600         cpu = get_cpu();
1601         tss = &per_cpu(cpu_tss_rw, cpu);
1602 
1603         /*
1604          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1605          * see the big comment in struct x86_hw_tss's definition.
1606          */
1607 
1608         tss->x86_tss.ss1 = __KERNEL_CS;
1609         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1610         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1611         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1612 
1613         put_cpu();
1614 }
1615 #endif
1616 
1617 void __init identify_boot_cpu(void)
1618 {
1619         identify_cpu(&boot_cpu_data);
1620 #ifdef CONFIG_X86_32
1621         sysenter_setup();
1622         enable_sep_cpu();
1623 #endif
1624         cpu_detect_tlb(&boot_cpu_data);
1625         setup_cr_pinning();
1626 
1627         tsx_init();
1628 }
1629 
1630 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1631 {
1632         BUG_ON(c == &boot_cpu_data);
1633         identify_cpu(c);
1634 #ifdef CONFIG_X86_32
1635         enable_sep_cpu();
1636 #endif
1637         mtrr_ap_init();
1638         validate_apic_and_package_id(c);
1639         x86_spec_ctrl_setup_ap();
1640         update_srbds_msr();
1641 }
1642 
1643 static __init int setup_noclflush(char *arg)
1644 {
1645         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1646         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1647         return 1;
1648 }
1649 __setup("noclflush", setup_noclflush);
1650 
1651 void print_cpu_info(struct cpuinfo_x86 *c)
1652 {
1653         const char *vendor = NULL;
1654 
1655         if (c->x86_vendor < X86_VENDOR_NUM) {
1656                 vendor = this_cpu->c_vendor;
1657         } else {
1658                 if (c->cpuid_level >= 0)
1659                         vendor = c->x86_vendor_id;
1660         }
1661 
1662         if (vendor && !strstr(c->x86_model_id, vendor))
1663                 pr_cont("%s ", vendor);
1664 
1665         if (c->x86_model_id[0])
1666                 pr_cont("%s", c->x86_model_id);
1667         else
1668                 pr_cont("%d86", c->x86);
1669 
1670         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1671 
1672         if (c->x86_stepping || c->cpuid_level >= 0)
1673                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1674         else
1675                 pr_cont(")\n");
1676 }
1677 
1678 /*
1679  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1680  * But we need to keep a dummy __setup around otherwise it would
1681  * show up as an environment variable for init.
1682  */
1683 static __init int setup_clearcpuid(char *arg)
1684 {
1685         return 1;
1686 }
1687 __setup("clearcpuid=", setup_clearcpuid);
1688 
1689 #ifdef CONFIG_X86_64
1690 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1691                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1692 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1693 
1694 /*
1695  * The following percpu variables are hot.  Align current_task to
1696  * cacheline size such that they fall in the same cacheline.
1697  */
1698 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1699         &init_task;
1700 EXPORT_PER_CPU_SYMBOL(current_task);
1701 
1702 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1703 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1704 
1705 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1706 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1707 
1708 /* May not be marked __init: used by software suspend */
1709 void syscall_init(void)
1710 {
1711         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1712         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1713 
1714 #ifdef CONFIG_IA32_EMULATION
1715         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1716         /*
1717          * This only works on Intel CPUs.
1718          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1719          * This does not cause SYSENTER to jump to the wrong location, because
1720          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1721          */
1722         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1723         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1724                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1725         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1726 #else
1727         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1728         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1729         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1730         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1731 #endif
1732 
1733         /* Flags to clear on syscall */
1734         wrmsrl(MSR_SYSCALL_MASK,
1735                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1736                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1737 }
1738 
1739 DEFINE_PER_CPU(int, debug_stack_usage);
1740 DEFINE_PER_CPU(u32, debug_idt_ctr);
1741 
1742 void debug_stack_set_zero(void)
1743 {
1744         this_cpu_inc(debug_idt_ctr);
1745         load_current_idt();
1746 }
1747 NOKPROBE_SYMBOL(debug_stack_set_zero);
1748 
1749 void debug_stack_reset(void)
1750 {
1751         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1752                 return;
1753         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1754                 load_current_idt();
1755 }
1756 NOKPROBE_SYMBOL(debug_stack_reset);
1757 
1758 #else   /* CONFIG_X86_64 */
1759 
1760 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1761 EXPORT_PER_CPU_SYMBOL(current_task);
1762 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1763 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1764 
1765 /*
1766  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1767  * the top of the kernel stack.  Use an extra percpu variable to track the
1768  * top of the kernel stack directly.
1769  */
1770 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1771         (unsigned long)&init_thread_union + THREAD_SIZE;
1772 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1773 
1774 #ifdef CONFIG_STACKPROTECTOR
1775 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1776 #endif
1777 
1778 #endif  /* CONFIG_X86_64 */
1779 
1780 /*
1781  * Clear all 6 debug registers:
1782  */
1783 static void clear_all_debug_regs(void)
1784 {
1785         int i;
1786 
1787         for (i = 0; i < 8; i++) {
1788                 /* Ignore db4, db5 */
1789                 if ((i == 4) || (i == 5))
1790                         continue;
1791 
1792                 set_debugreg(0, i);
1793         }
1794 }
1795 
1796 #ifdef CONFIG_KGDB
1797 /*
1798  * Restore debug regs if using kgdbwait and you have a kernel debugger
1799  * connection established.
1800  */
1801 static void dbg_restore_debug_regs(void)
1802 {
1803         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1804                 arch_kgdb_ops.correct_hw_break();
1805 }
1806 #else /* ! CONFIG_KGDB */
1807 #define dbg_restore_debug_regs()
1808 #endif /* ! CONFIG_KGDB */
1809 
1810 static void wait_for_master_cpu(int cpu)
1811 {
1812 #ifdef CONFIG_SMP
1813         /*
1814          * wait for ACK from master CPU before continuing
1815          * with AP initialization
1816          */
1817         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1818         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1819                 cpu_relax();
1820 #endif
1821 }
1822 
1823 #ifdef CONFIG_X86_64
1824 static void setup_getcpu(int cpu)
1825 {
1826         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1827         struct desc_struct d = { };
1828 
1829         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1830                 write_rdtscp_aux(cpudata);
1831 
1832         /* Store CPU and node number in limit. */
1833         d.limit0 = cpudata;
1834         d.limit1 = cpudata >> 16;
1835 
1836         d.type = 5;             /* RO data, expand down, accessed */
1837         d.dpl = 3;              /* Visible to user code */
1838         d.s = 1;                /* Not a system segment */
1839         d.p = 1;                /* Present */
1840         d.d = 1;                /* 32-bit */
1841 
1842         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1843 }
1844 #endif
1845 
1846 /*
1847  * cpu_init() initializes state that is per-CPU. Some data is already
1848  * initialized (naturally) in the bootstrap process, such as the GDT
1849  * and IDT. We reload them nevertheless, this function acts as a
1850  * 'CPU state barrier', nothing should get across.
1851  */
1852 #ifdef CONFIG_X86_64
1853 
1854 void cpu_init(void)
1855 {
1856         int cpu = raw_smp_processor_id();
1857         struct task_struct *me;
1858         struct tss_struct *t;
1859         int i;
1860 
1861         wait_for_master_cpu(cpu);
1862 
1863         if (cpu)
1864                 load_ucode_ap();
1865 
1866         t = &per_cpu(cpu_tss_rw, cpu);
1867 
1868 #ifdef CONFIG_NUMA
1869         if (this_cpu_read(numa_node) == 0 &&
1870             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1871                 set_numa_node(early_cpu_to_node(cpu));
1872 #endif
1873         setup_getcpu(cpu);
1874 
1875         me = current;
1876 
1877         pr_debug("Initializing CPU#%d\n", cpu);
1878 
1879         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1880 
1881         /*
1882          * Initialize the per-CPU GDT with the boot GDT,
1883          * and set up the GDT descriptor:
1884          */
1885 
1886         switch_to_new_gdt(cpu);
1887         loadsegment(fs, 0);
1888 
1889         load_current_idt();
1890 
1891         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1892         syscall_init();
1893 
1894         wrmsrl(MSR_FS_BASE, 0);
1895         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1896         barrier();
1897 
1898         x86_configure_nx();
1899         x2apic_setup();
1900 
1901         /*
1902          * set up and load the per-CPU TSS
1903          */
1904         if (!t->x86_tss.ist[0]) {
1905                 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1906                 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1907                 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1908                 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1909         }
1910 
1911         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1912 
1913         /*
1914          * <= is required because the CPU will access up to
1915          * 8 bits beyond the end of the IO permission bitmap.
1916          */
1917         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1918                 t->io_bitmap[i] = ~0UL;
1919 
1920         mmgrab(&init_mm);
1921         me->active_mm = &init_mm;
1922         BUG_ON(me->mm);
1923         initialize_tlbstate_and_flush();
1924         enter_lazy_tlb(&init_mm, me);
1925 
1926         /*
1927          * Initialize the TSS.  sp0 points to the entry trampoline stack
1928          * regardless of what task is running.
1929          */
1930         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1931         load_TR_desc();
1932         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1933 
1934         load_mm_ldt(&init_mm);
1935 
1936         clear_all_debug_regs();
1937         dbg_restore_debug_regs();
1938 
1939         fpu__init_cpu();
1940 
1941         if (is_uv_system())
1942                 uv_cpu_init();
1943 
1944         load_fixmap_gdt(cpu);
1945 }
1946 
1947 #else
1948 
1949 void cpu_init(void)
1950 {
1951         int cpu = smp_processor_id();
1952         struct task_struct *curr = current;
1953         struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1954 
1955         wait_for_master_cpu(cpu);
1956 
1957         show_ucode_info_early();
1958 
1959         pr_info("Initializing CPU#%d\n", cpu);
1960 
1961         if (cpu_feature_enabled(X86_FEATURE_VME) ||
1962             boot_cpu_has(X86_FEATURE_TSC) ||
1963             boot_cpu_has(X86_FEATURE_DE))
1964                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1965 
1966         load_current_idt();
1967         switch_to_new_gdt(cpu);
1968 
1969         /*
1970          * Set up and load the per-CPU TSS and LDT
1971          */
1972         mmgrab(&init_mm);
1973         curr->active_mm = &init_mm;
1974         BUG_ON(curr->mm);
1975         initialize_tlbstate_and_flush();
1976         enter_lazy_tlb(&init_mm, curr);
1977 
1978         /*
1979          * Initialize the TSS.  sp0 points to the entry trampoline stack
1980          * regardless of what task is running.
1981          */
1982         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1983         load_TR_desc();
1984         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1985 
1986         load_mm_ldt(&init_mm);
1987 
1988         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1989 
1990 #ifdef CONFIG_DOUBLEFAULT
1991         /* Set up doublefault TSS pointer in the GDT */
1992         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1993 #endif
1994 
1995         clear_all_debug_regs();
1996         dbg_restore_debug_regs();
1997 
1998         fpu__init_cpu();
1999 
2000         load_fixmap_gdt(cpu);
2001 }
2002 #endif
2003 
2004 /*
2005  * The microcode loader calls this upon late microcode load to recheck features,
2006  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2007  * hotplug lock.
2008  */
2009 void microcode_check(void)
2010 {
2011         struct cpuinfo_x86 info;
2012 
2013         perf_check_microcode();
2014 
2015         /* Reload CPUID max function as it might've changed. */
2016         info.cpuid_level = cpuid_eax(0);
2017 
2018         /*
2019          * Copy all capability leafs to pick up the synthetic ones so that
2020          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2021          * get overwritten in get_cpu_cap().
2022          */
2023         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2024 
2025         get_cpu_cap(&info);
2026 
2027         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2028                 return;
2029 
2030         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2031         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2032 }
2033 
2034 /*
2035  * Invoked from core CPU hotplug code after hotplug operations
2036  */
2037 void arch_smt_update(void)
2038 {
2039         /* Handle the speculative execution misfeatures */
2040         cpu_bugs_smt_update();
2041         /* Check whether IPI broadcasting can be enabled */
2042         apic_smt_update();
2043 }

/* [<][>][^][v][top][bottom][index][help] */