root/arch/x86/kernel/umip.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __printf
  2. identify_insn
  3. emulate_umip_insn
  4. force_sig_info_umip_fault
  5. fixup_umip_exception

   1 /*
   2  * umip.c Emulation for instruction protected by the Intel User-Mode
   3  * Instruction Prevention feature
   4  *
   5  * Copyright (c) 2017, Intel Corporation.
   6  * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
   7  */
   8 
   9 #include <linux/uaccess.h>
  10 #include <asm/umip.h>
  11 #include <asm/traps.h>
  12 #include <asm/insn.h>
  13 #include <asm/insn-eval.h>
  14 #include <linux/ratelimit.h>
  15 
  16 #undef pr_fmt
  17 #define pr_fmt(fmt) "umip: " fmt
  18 
  19 /** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
  20  *
  21  * The feature User-Mode Instruction Prevention present in recent Intel
  22  * processor prevents a group of instructions (SGDT, SIDT, SLDT, SMSW and STR)
  23  * from being executed with CPL > 0. Otherwise, a general protection fault is
  24  * issued.
  25  *
  26  * Rather than relaying to the user space the general protection fault caused by
  27  * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
  28  * trapped and emulate the result of such instructions to provide dummy values.
  29  * This allows to both conserve the current kernel behavior and not reveal the
  30  * system resources that UMIP intends to protect (i.e., the locations of the
  31  * global descriptor and interrupt descriptor tables, the segment selectors of
  32  * the local descriptor table, the value of the task state register and the
  33  * contents of the CR0 register).
  34  *
  35  * This emulation is needed because certain applications (e.g., WineHQ and
  36  * DOSEMU2) rely on this subset of instructions to function.
  37  *
  38  * The instructions protected by UMIP can be split in two groups. Those which
  39  * return a kernel memory address (SGDT and SIDT) and those which return a
  40  * value (SLDT, STR and SMSW).
  41  *
  42  * For the instructions that return a kernel memory address, applications
  43  * such as WineHQ rely on the result being located in the kernel memory space,
  44  * not the actual location of the table. The result is emulated as a hard-coded
  45  * value that, lies close to the top of the kernel memory. The limit for the GDT
  46  * and the IDT are set to zero.
  47  *
  48  * Given that SLDT and STR are not commonly used in programs that run on WineHQ
  49  * or DOSEMU2, they are not emulated.
  50  *
  51  * The instruction smsw is emulated to return the value that the register CR0
  52  * has at boot time as set in the head_32.
  53  *
  54  * Emulation is provided for both 32-bit and 64-bit processes.
  55  *
  56  * Care is taken to appropriately emulate the results when segmentation is
  57  * used. That is, rather than relying on USER_DS and USER_CS, the function
  58  * insn_get_addr_ref() inspects the segment descriptor pointed by the
  59  * registers in pt_regs. This ensures that we correctly obtain the segment
  60  * base address and the address and operand sizes even if the user space
  61  * application uses a local descriptor table.
  62  */
  63 
  64 #define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL
  65 #define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL
  66 
  67 /*
  68  * The SGDT and SIDT instructions store the contents of the global descriptor
  69  * table and interrupt table registers, respectively. The destination is a
  70  * memory operand of X+2 bytes. X bytes are used to store the base address of
  71  * the table and 2 bytes are used to store the limit. In 32-bit processes X
  72  * has a value of 4, in 64-bit processes X has a value of 8.
  73  */
  74 #define UMIP_GDT_IDT_BASE_SIZE_64BIT 8
  75 #define UMIP_GDT_IDT_BASE_SIZE_32BIT 4
  76 #define UMIP_GDT_IDT_LIMIT_SIZE 2
  77 
  78 #define UMIP_INST_SGDT  0       /* 0F 01 /0 */
  79 #define UMIP_INST_SIDT  1       /* 0F 01 /1 */
  80 #define UMIP_INST_SMSW  2       /* 0F 01 /4 */
  81 #define UMIP_INST_SLDT  3       /* 0F 00 /0 */
  82 #define UMIP_INST_STR   4       /* 0F 00 /1 */
  83 
  84 const char * const umip_insns[5] = {
  85         [UMIP_INST_SGDT] = "SGDT",
  86         [UMIP_INST_SIDT] = "SIDT",
  87         [UMIP_INST_SMSW] = "SMSW",
  88         [UMIP_INST_SLDT] = "SLDT",
  89         [UMIP_INST_STR] = "STR",
  90 };
  91 
  92 #define umip_pr_err(regs, fmt, ...) \
  93         umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
  94 #define umip_pr_warning(regs, fmt, ...) \
  95         umip_printk(regs, KERN_WARNING, fmt,  ##__VA_ARGS__)
  96 
  97 /**
  98  * umip_printk() - Print a rate-limited message
  99  * @regs:       Register set with the context in which the warning is printed
 100  * @log_level:  Kernel log level to print the message
 101  * @fmt:        The text string to print
 102  *
 103  * Print the text contained in @fmt. The print rate is limited to bursts of 5
 104  * messages every two minutes. The purpose of this customized version of
 105  * printk() is to print messages when user space processes use any of the
 106  * UMIP-protected instructions. Thus, the printed text is prepended with the
 107  * task name and process ID number of the current task as well as the
 108  * instruction and stack pointers in @regs as seen when entering kernel mode.
 109  *
 110  * Returns:
 111  *
 112  * None.
 113  */
 114 static __printf(3, 4)
 115 void umip_printk(const struct pt_regs *regs, const char *log_level,
 116                  const char *fmt, ...)
 117 {
 118         /* Bursts of 5 messages every two minutes */
 119         static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5);
 120         struct task_struct *tsk = current;
 121         struct va_format vaf;
 122         va_list args;
 123 
 124         if (!__ratelimit(&ratelimit))
 125                 return;
 126 
 127         va_start(args, fmt);
 128         vaf.fmt = fmt;
 129         vaf.va = &args;
 130         printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm,
 131                task_pid_nr(tsk), regs->ip, regs->sp, &vaf);
 132         va_end(args);
 133 }
 134 
 135 /**
 136  * identify_insn() - Identify a UMIP-protected instruction
 137  * @insn:       Instruction structure with opcode and ModRM byte.
 138  *
 139  * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
 140  * instruction that can be emulated.
 141  *
 142  * Returns:
 143  *
 144  * On success, a constant identifying a specific UMIP-protected instruction that
 145  * can be emulated.
 146  *
 147  * -EINVAL on error or when not an UMIP-protected instruction that can be
 148  * emulated.
 149  */
 150 static int identify_insn(struct insn *insn)
 151 {
 152         /* By getting modrm we also get the opcode. */
 153         insn_get_modrm(insn);
 154 
 155         if (!insn->modrm.nbytes)
 156                 return -EINVAL;
 157 
 158         /* All the instructions of interest start with 0x0f. */
 159         if (insn->opcode.bytes[0] != 0xf)
 160                 return -EINVAL;
 161 
 162         if (insn->opcode.bytes[1] == 0x1) {
 163                 switch (X86_MODRM_REG(insn->modrm.value)) {
 164                 case 0:
 165                         return UMIP_INST_SGDT;
 166                 case 1:
 167                         return UMIP_INST_SIDT;
 168                 case 4:
 169                         return UMIP_INST_SMSW;
 170                 default:
 171                         return -EINVAL;
 172                 }
 173         } else if (insn->opcode.bytes[1] == 0x0) {
 174                 if (X86_MODRM_REG(insn->modrm.value) == 0)
 175                         return UMIP_INST_SLDT;
 176                 else if (X86_MODRM_REG(insn->modrm.value) == 1)
 177                         return UMIP_INST_STR;
 178                 else
 179                         return -EINVAL;
 180         } else {
 181                 return -EINVAL;
 182         }
 183 }
 184 
 185 /**
 186  * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
 187  * @insn:       Instruction structure with operands
 188  * @umip_inst:  A constant indicating the instruction to emulate
 189  * @data:       Buffer into which the dummy result is stored
 190  * @data_size:  Size of the emulated result
 191  * @x86_64:     true if process is 64-bit, false otherwise
 192  *
 193  * Emulate an instruction protected by UMIP and provide a dummy result. The
 194  * result of the emulation is saved in @data. The size of the results depends
 195  * on both the instruction and type of operand (register vs memory address).
 196  * The size of the result is updated in @data_size. Caller is responsible
 197  * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
 198  * UMIP_GDT_IDT_LIMIT_SIZE bytes.
 199  *
 200  * Returns:
 201  *
 202  * 0 on success, -EINVAL on error while emulating.
 203  */
 204 static int emulate_umip_insn(struct insn *insn, int umip_inst,
 205                              unsigned char *data, int *data_size, bool x86_64)
 206 {
 207         if (!data || !data_size || !insn)
 208                 return -EINVAL;
 209         /*
 210          * These two instructions return the base address and limit of the
 211          * global and interrupt descriptor table, respectively. According to the
 212          * Intel Software Development manual, the base address can be 24-bit,
 213          * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
 214          * 16-bit, the returned value of the base address is supposed to be a
 215          * zero-extended 24-byte number. However, it seems that a 32-byte number
 216          * is always returned irrespective of the operand size.
 217          */
 218         if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) {
 219                 u64 dummy_base_addr;
 220                 u16 dummy_limit = 0;
 221 
 222                 /* SGDT and SIDT do not use registers operands. */
 223                 if (X86_MODRM_MOD(insn->modrm.value) == 3)
 224                         return -EINVAL;
 225 
 226                 if (umip_inst == UMIP_INST_SGDT)
 227                         dummy_base_addr = UMIP_DUMMY_GDT_BASE;
 228                 else
 229                         dummy_base_addr = UMIP_DUMMY_IDT_BASE;
 230 
 231                 /*
 232                  * 64-bit processes use the entire dummy base address.
 233                  * 32-bit processes use the lower 32 bits of the base address.
 234                  * dummy_base_addr is always 64 bits, but we memcpy the correct
 235                  * number of bytes from it to the destination.
 236                  */
 237                 if (x86_64)
 238                         *data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT;
 239                 else
 240                         *data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT;
 241 
 242                 memcpy(data + 2, &dummy_base_addr, *data_size);
 243 
 244                 *data_size += UMIP_GDT_IDT_LIMIT_SIZE;
 245                 memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE);
 246 
 247         } else if (umip_inst == UMIP_INST_SMSW) {
 248                 unsigned long dummy_value = CR0_STATE;
 249 
 250                 /*
 251                  * Even though the CR0 register has 4 bytes, the number
 252                  * of bytes to be copied in the result buffer is determined
 253                  * by whether the operand is a register or a memory location.
 254                  * If operand is a register, return as many bytes as the operand
 255                  * size. If operand is memory, return only the two least
 256                  * siginificant bytes of CR0.
 257                  */
 258                 if (X86_MODRM_MOD(insn->modrm.value) == 3)
 259                         *data_size = insn->opnd_bytes;
 260                 else
 261                         *data_size = 2;
 262 
 263                 memcpy(data, &dummy_value, *data_size);
 264         /* STR and SLDT  are not emulated */
 265         } else {
 266                 return -EINVAL;
 267         }
 268 
 269         return 0;
 270 }
 271 
 272 /**
 273  * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
 274  * @addr:       Address that caused the signal
 275  * @regs:       Register set containing the instruction pointer
 276  *
 277  * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
 278  * intended to be used to provide a segmentation fault when the result of the
 279  * UMIP emulation could not be copied to the user space memory.
 280  *
 281  * Returns: none
 282  */
 283 static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs)
 284 {
 285         struct task_struct *tsk = current;
 286 
 287         tsk->thread.cr2         = (unsigned long)addr;
 288         tsk->thread.error_code  = X86_PF_USER | X86_PF_WRITE;
 289         tsk->thread.trap_nr     = X86_TRAP_PF;
 290 
 291         force_sig_fault(SIGSEGV, SEGV_MAPERR, addr);
 292 
 293         if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV)))
 294                 return;
 295 
 296         umip_pr_err(regs, "segfault in emulation. error%x\n",
 297                     X86_PF_USER | X86_PF_WRITE);
 298 }
 299 
 300 /**
 301  * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
 302  * @regs:       Registers as saved when entering the #GP handler
 303  *
 304  * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection
 305  * fault if executed with CPL > 0 (i.e., from user space). This function fixes
 306  * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR
 307  * and SLDT are not fixed up.
 308  *
 309  * If operands are memory addresses, results are copied to user-space memory as
 310  * indicated by the instruction pointed by eIP using the registers indicated in
 311  * the instruction operands. If operands are registers, results are copied into
 312  * the context that was saved when entering kernel mode.
 313  *
 314  * Returns:
 315  *
 316  * True if emulation was successful; false if not.
 317  */
 318 bool fixup_umip_exception(struct pt_regs *regs)
 319 {
 320         int not_copied, nr_copied, reg_offset, dummy_data_size, umip_inst;
 321         unsigned long seg_base = 0, *reg_addr;
 322         /* 10 bytes is the maximum size of the result of UMIP instructions */
 323         unsigned char dummy_data[10] = { 0 };
 324         unsigned char buf[MAX_INSN_SIZE];
 325         void __user *uaddr;
 326         struct insn insn;
 327         int seg_defs;
 328 
 329         if (!regs)
 330                 return false;
 331 
 332         /*
 333          * If not in user-space long mode, a custom code segment could be in
 334          * use. This is true in protected mode (if the process defined a local
 335          * descriptor table), or virtual-8086 mode. In most of the cases
 336          * seg_base will be zero as in USER_CS.
 337          */
 338         if (!user_64bit_mode(regs))
 339                 seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
 340 
 341         if (seg_base == -1L)
 342                 return false;
 343 
 344         not_copied = copy_from_user(buf, (void __user *)(seg_base + regs->ip),
 345                                     sizeof(buf));
 346         nr_copied = sizeof(buf) - not_copied;
 347 
 348         /*
 349          * The copy_from_user above could have failed if user code is protected
 350          * by a memory protection key. Give up on emulation in such a case.
 351          * Should we issue a page fault?
 352          */
 353         if (!nr_copied)
 354                 return false;
 355 
 356         insn_init(&insn, buf, nr_copied, user_64bit_mode(regs));
 357 
 358         /*
 359          * Override the default operand and address sizes with what is specified
 360          * in the code segment descriptor. The instruction decoder only sets
 361          * the address size it to either 4 or 8 address bytes and does nothing
 362          * for the operand bytes. This OK for most of the cases, but we could
 363          * have special cases where, for instance, a 16-bit code segment
 364          * descriptor is used.
 365          * If there is an address override prefix, the instruction decoder
 366          * correctly updates these values, even for 16-bit defaults.
 367          */
 368         seg_defs = insn_get_code_seg_params(regs);
 369         if (seg_defs == -EINVAL)
 370                 return false;
 371 
 372         insn.addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
 373         insn.opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
 374 
 375         insn_get_length(&insn);
 376         if (nr_copied < insn.length)
 377                 return false;
 378 
 379         umip_inst = identify_insn(&insn);
 380         if (umip_inst < 0)
 381                 return false;
 382 
 383         umip_pr_warning(regs, "%s instruction cannot be used by applications.\n",
 384                         umip_insns[umip_inst]);
 385 
 386         /* Do not emulate (spoof) SLDT or STR. */
 387         if (umip_inst == UMIP_INST_STR || umip_inst == UMIP_INST_SLDT)
 388                 return false;
 389 
 390         umip_pr_warning(regs, "For now, expensive software emulation returns the result.\n");
 391 
 392         if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size,
 393                               user_64bit_mode(regs)))
 394                 return false;
 395 
 396         /*
 397          * If operand is a register, write result to the copy of the register
 398          * value that was pushed to the stack when entering into kernel mode.
 399          * Upon exit, the value we write will be restored to the actual hardware
 400          * register.
 401          */
 402         if (X86_MODRM_MOD(insn.modrm.value) == 3) {
 403                 reg_offset = insn_get_modrm_rm_off(&insn, regs);
 404 
 405                 /*
 406                  * Negative values are usually errors. In memory addressing,
 407                  * the exception is -EDOM. Since we expect a register operand,
 408                  * all negative values are errors.
 409                  */
 410                 if (reg_offset < 0)
 411                         return false;
 412 
 413                 reg_addr = (unsigned long *)((unsigned long)regs + reg_offset);
 414                 memcpy(reg_addr, dummy_data, dummy_data_size);
 415         } else {
 416                 uaddr = insn_get_addr_ref(&insn, regs);
 417                 if ((unsigned long)uaddr == -1L)
 418                         return false;
 419 
 420                 nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size);
 421                 if (nr_copied  > 0) {
 422                         /*
 423                          * If copy fails, send a signal and tell caller that
 424                          * fault was fixed up.
 425                          */
 426                         force_sig_info_umip_fault(uaddr, regs);
 427                         return true;
 428                 }
 429         }
 430 
 431         /* increase IP to let the program keep going */
 432         regs->ip += insn.length;
 433         return true;
 434 }

/* [<][>][^][v][top][bottom][index][help] */