root/arch/x86/kernel/nmi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. setup_unknown_nmi_panic
  2. nmi_warning_debugfs
  3. nmi_check_duration
  4. nmi_handle
  5. __register_nmi_handler
  6. unregister_nmi_handler
  7. pci_serr_error
  8. io_check_error
  9. unknown_nmi_error
  10. default_do_nmi
  11. is_debug_stack
  12. do_nmi
  13. stop_nmi
  14. restart_nmi
  15. local_touch_nmi

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  Copyright (C) 1991, 1992  Linus Torvalds
   4  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   5  *  Copyright (C) 2011  Don Zickus Red Hat, Inc.
   6  *
   7  *  Pentium III FXSR, SSE support
   8  *      Gareth Hughes <gareth@valinux.com>, May 2000
   9  */
  10 
  11 /*
  12  * Handle hardware traps and faults.
  13  */
  14 #include <linux/spinlock.h>
  15 #include <linux/kprobes.h>
  16 #include <linux/kdebug.h>
  17 #include <linux/sched/debug.h>
  18 #include <linux/nmi.h>
  19 #include <linux/debugfs.h>
  20 #include <linux/delay.h>
  21 #include <linux/hardirq.h>
  22 #include <linux/ratelimit.h>
  23 #include <linux/slab.h>
  24 #include <linux/export.h>
  25 #include <linux/atomic.h>
  26 #include <linux/sched/clock.h>
  27 
  28 #if defined(CONFIG_EDAC)
  29 #include <linux/edac.h>
  30 #endif
  31 
  32 #include <asm/cpu_entry_area.h>
  33 #include <asm/traps.h>
  34 #include <asm/mach_traps.h>
  35 #include <asm/nmi.h>
  36 #include <asm/x86_init.h>
  37 #include <asm/reboot.h>
  38 #include <asm/cache.h>
  39 #include <asm/nospec-branch.h>
  40 
  41 #define CREATE_TRACE_POINTS
  42 #include <trace/events/nmi.h>
  43 
  44 struct nmi_desc {
  45         raw_spinlock_t lock;
  46         struct list_head head;
  47 };
  48 
  49 static struct nmi_desc nmi_desc[NMI_MAX] = 
  50 {
  51         {
  52                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  53                 .head = LIST_HEAD_INIT(nmi_desc[0].head),
  54         },
  55         {
  56                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  57                 .head = LIST_HEAD_INIT(nmi_desc[1].head),
  58         },
  59         {
  60                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  61                 .head = LIST_HEAD_INIT(nmi_desc[2].head),
  62         },
  63         {
  64                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  65                 .head = LIST_HEAD_INIT(nmi_desc[3].head),
  66         },
  67 
  68 };
  69 
  70 struct nmi_stats {
  71         unsigned int normal;
  72         unsigned int unknown;
  73         unsigned int external;
  74         unsigned int swallow;
  75 };
  76 
  77 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  78 
  79 static int ignore_nmis __read_mostly;
  80 
  81 int unknown_nmi_panic;
  82 /*
  83  * Prevent NMI reason port (0x61) being accessed simultaneously, can
  84  * only be used in NMI handler.
  85  */
  86 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  87 
  88 static int __init setup_unknown_nmi_panic(char *str)
  89 {
  90         unknown_nmi_panic = 1;
  91         return 1;
  92 }
  93 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  94 
  95 #define nmi_to_desc(type) (&nmi_desc[type])
  96 
  97 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  98 
  99 static int __init nmi_warning_debugfs(void)
 100 {
 101         debugfs_create_u64("nmi_longest_ns", 0644,
 102                         arch_debugfs_dir, &nmi_longest_ns);
 103         return 0;
 104 }
 105 fs_initcall(nmi_warning_debugfs);
 106 
 107 static void nmi_check_duration(struct nmiaction *action, u64 duration)
 108 {
 109         u64 whole_msecs = READ_ONCE(action->max_duration);
 110         int remainder_ns, decimal_msecs;
 111 
 112         if (duration < nmi_longest_ns || duration < action->max_duration)
 113                 return;
 114 
 115         action->max_duration = duration;
 116 
 117         remainder_ns = do_div(whole_msecs, (1000 * 1000));
 118         decimal_msecs = remainder_ns / 1000;
 119 
 120         printk_ratelimited(KERN_INFO
 121                 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
 122                 action->handler, whole_msecs, decimal_msecs);
 123 }
 124 
 125 static int nmi_handle(unsigned int type, struct pt_regs *regs)
 126 {
 127         struct nmi_desc *desc = nmi_to_desc(type);
 128         struct nmiaction *a;
 129         int handled=0;
 130 
 131         rcu_read_lock();
 132 
 133         /*
 134          * NMIs are edge-triggered, which means if you have enough
 135          * of them concurrently, you can lose some because only one
 136          * can be latched at any given time.  Walk the whole list
 137          * to handle those situations.
 138          */
 139         list_for_each_entry_rcu(a, &desc->head, list) {
 140                 int thishandled;
 141                 u64 delta;
 142 
 143                 delta = sched_clock();
 144                 thishandled = a->handler(type, regs);
 145                 handled += thishandled;
 146                 delta = sched_clock() - delta;
 147                 trace_nmi_handler(a->handler, (int)delta, thishandled);
 148 
 149                 nmi_check_duration(a, delta);
 150         }
 151 
 152         rcu_read_unlock();
 153 
 154         /* return total number of NMI events handled */
 155         return handled;
 156 }
 157 NOKPROBE_SYMBOL(nmi_handle);
 158 
 159 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
 160 {
 161         struct nmi_desc *desc = nmi_to_desc(type);
 162         unsigned long flags;
 163 
 164         if (!action->handler)
 165                 return -EINVAL;
 166 
 167         raw_spin_lock_irqsave(&desc->lock, flags);
 168 
 169         /*
 170          * Indicate if there are multiple registrations on the
 171          * internal NMI handler call chains (SERR and IO_CHECK).
 172          */
 173         WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
 174         WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
 175 
 176         /*
 177          * some handlers need to be executed first otherwise a fake
 178          * event confuses some handlers (kdump uses this flag)
 179          */
 180         if (action->flags & NMI_FLAG_FIRST)
 181                 list_add_rcu(&action->list, &desc->head);
 182         else
 183                 list_add_tail_rcu(&action->list, &desc->head);
 184         
 185         raw_spin_unlock_irqrestore(&desc->lock, flags);
 186         return 0;
 187 }
 188 EXPORT_SYMBOL(__register_nmi_handler);
 189 
 190 void unregister_nmi_handler(unsigned int type, const char *name)
 191 {
 192         struct nmi_desc *desc = nmi_to_desc(type);
 193         struct nmiaction *n;
 194         unsigned long flags;
 195 
 196         raw_spin_lock_irqsave(&desc->lock, flags);
 197 
 198         list_for_each_entry_rcu(n, &desc->head, list) {
 199                 /*
 200                  * the name passed in to describe the nmi handler
 201                  * is used as the lookup key
 202                  */
 203                 if (!strcmp(n->name, name)) {
 204                         WARN(in_nmi(),
 205                                 "Trying to free NMI (%s) from NMI context!\n", n->name);
 206                         list_del_rcu(&n->list);
 207                         break;
 208                 }
 209         }
 210 
 211         raw_spin_unlock_irqrestore(&desc->lock, flags);
 212         synchronize_rcu();
 213 }
 214 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
 215 
 216 static void
 217 pci_serr_error(unsigned char reason, struct pt_regs *regs)
 218 {
 219         /* check to see if anyone registered against these types of errors */
 220         if (nmi_handle(NMI_SERR, regs))
 221                 return;
 222 
 223         pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
 224                  reason, smp_processor_id());
 225 
 226         if (panic_on_unrecovered_nmi)
 227                 nmi_panic(regs, "NMI: Not continuing");
 228 
 229         pr_emerg("Dazed and confused, but trying to continue\n");
 230 
 231         /* Clear and disable the PCI SERR error line. */
 232         reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
 233         outb(reason, NMI_REASON_PORT);
 234 }
 235 NOKPROBE_SYMBOL(pci_serr_error);
 236 
 237 static void
 238 io_check_error(unsigned char reason, struct pt_regs *regs)
 239 {
 240         unsigned long i;
 241 
 242         /* check to see if anyone registered against these types of errors */
 243         if (nmi_handle(NMI_IO_CHECK, regs))
 244                 return;
 245 
 246         pr_emerg(
 247         "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
 248                  reason, smp_processor_id());
 249         show_regs(regs);
 250 
 251         if (panic_on_io_nmi) {
 252                 nmi_panic(regs, "NMI IOCK error: Not continuing");
 253 
 254                 /*
 255                  * If we end up here, it means we have received an NMI while
 256                  * processing panic(). Simply return without delaying and
 257                  * re-enabling NMIs.
 258                  */
 259                 return;
 260         }
 261 
 262         /* Re-enable the IOCK line, wait for a few seconds */
 263         reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
 264         outb(reason, NMI_REASON_PORT);
 265 
 266         i = 20000;
 267         while (--i) {
 268                 touch_nmi_watchdog();
 269                 udelay(100);
 270         }
 271 
 272         reason &= ~NMI_REASON_CLEAR_IOCHK;
 273         outb(reason, NMI_REASON_PORT);
 274 }
 275 NOKPROBE_SYMBOL(io_check_error);
 276 
 277 static void
 278 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 279 {
 280         int handled;
 281 
 282         /*
 283          * Use 'false' as back-to-back NMIs are dealt with one level up.
 284          * Of course this makes having multiple 'unknown' handlers useless
 285          * as only the first one is ever run (unless it can actually determine
 286          * if it caused the NMI)
 287          */
 288         handled = nmi_handle(NMI_UNKNOWN, regs);
 289         if (handled) {
 290                 __this_cpu_add(nmi_stats.unknown, handled);
 291                 return;
 292         }
 293 
 294         __this_cpu_add(nmi_stats.unknown, 1);
 295 
 296         pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
 297                  reason, smp_processor_id());
 298 
 299         pr_emerg("Do you have a strange power saving mode enabled?\n");
 300         if (unknown_nmi_panic || panic_on_unrecovered_nmi)
 301                 nmi_panic(regs, "NMI: Not continuing");
 302 
 303         pr_emerg("Dazed and confused, but trying to continue\n");
 304 }
 305 NOKPROBE_SYMBOL(unknown_nmi_error);
 306 
 307 static DEFINE_PER_CPU(bool, swallow_nmi);
 308 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
 309 
 310 static void default_do_nmi(struct pt_regs *regs)
 311 {
 312         unsigned char reason = 0;
 313         int handled;
 314         bool b2b = false;
 315 
 316         /*
 317          * CPU-specific NMI must be processed before non-CPU-specific
 318          * NMI, otherwise we may lose it, because the CPU-specific
 319          * NMI can not be detected/processed on other CPUs.
 320          */
 321 
 322         /*
 323          * Back-to-back NMIs are interesting because they can either
 324          * be two NMI or more than two NMIs (any thing over two is dropped
 325          * due to NMI being edge-triggered).  If this is the second half
 326          * of the back-to-back NMI, assume we dropped things and process
 327          * more handlers.  Otherwise reset the 'swallow' NMI behaviour
 328          */
 329         if (regs->ip == __this_cpu_read(last_nmi_rip))
 330                 b2b = true;
 331         else
 332                 __this_cpu_write(swallow_nmi, false);
 333 
 334         __this_cpu_write(last_nmi_rip, regs->ip);
 335 
 336         handled = nmi_handle(NMI_LOCAL, regs);
 337         __this_cpu_add(nmi_stats.normal, handled);
 338         if (handled) {
 339                 /*
 340                  * There are cases when a NMI handler handles multiple
 341                  * events in the current NMI.  One of these events may
 342                  * be queued for in the next NMI.  Because the event is
 343                  * already handled, the next NMI will result in an unknown
 344                  * NMI.  Instead lets flag this for a potential NMI to
 345                  * swallow.
 346                  */
 347                 if (handled > 1)
 348                         __this_cpu_write(swallow_nmi, true);
 349                 return;
 350         }
 351 
 352         /*
 353          * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
 354          *
 355          * Another CPU may be processing panic routines while holding
 356          * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
 357          * and if so, call its callback directly.  If there is no CPU preparing
 358          * crash dump, we simply loop here.
 359          */
 360         while (!raw_spin_trylock(&nmi_reason_lock)) {
 361                 run_crash_ipi_callback(regs);
 362                 cpu_relax();
 363         }
 364 
 365         reason = x86_platform.get_nmi_reason();
 366 
 367         if (reason & NMI_REASON_MASK) {
 368                 if (reason & NMI_REASON_SERR)
 369                         pci_serr_error(reason, regs);
 370                 else if (reason & NMI_REASON_IOCHK)
 371                         io_check_error(reason, regs);
 372 #ifdef CONFIG_X86_32
 373                 /*
 374                  * Reassert NMI in case it became active
 375                  * meanwhile as it's edge-triggered:
 376                  */
 377                 reassert_nmi();
 378 #endif
 379                 __this_cpu_add(nmi_stats.external, 1);
 380                 raw_spin_unlock(&nmi_reason_lock);
 381                 return;
 382         }
 383         raw_spin_unlock(&nmi_reason_lock);
 384 
 385         /*
 386          * Only one NMI can be latched at a time.  To handle
 387          * this we may process multiple nmi handlers at once to
 388          * cover the case where an NMI is dropped.  The downside
 389          * to this approach is we may process an NMI prematurely,
 390          * while its real NMI is sitting latched.  This will cause
 391          * an unknown NMI on the next run of the NMI processing.
 392          *
 393          * We tried to flag that condition above, by setting the
 394          * swallow_nmi flag when we process more than one event.
 395          * This condition is also only present on the second half
 396          * of a back-to-back NMI, so we flag that condition too.
 397          *
 398          * If both are true, we assume we already processed this
 399          * NMI previously and we swallow it.  Otherwise we reset
 400          * the logic.
 401          *
 402          * There are scenarios where we may accidentally swallow
 403          * a 'real' unknown NMI.  For example, while processing
 404          * a perf NMI another perf NMI comes in along with a
 405          * 'real' unknown NMI.  These two NMIs get combined into
 406          * one (as descibed above).  When the next NMI gets
 407          * processed, it will be flagged by perf as handled, but
 408          * noone will know that there was a 'real' unknown NMI sent
 409          * also.  As a result it gets swallowed.  Or if the first
 410          * perf NMI returns two events handled then the second
 411          * NMI will get eaten by the logic below, again losing a
 412          * 'real' unknown NMI.  But this is the best we can do
 413          * for now.
 414          */
 415         if (b2b && __this_cpu_read(swallow_nmi))
 416                 __this_cpu_add(nmi_stats.swallow, 1);
 417         else
 418                 unknown_nmi_error(reason, regs);
 419 }
 420 NOKPROBE_SYMBOL(default_do_nmi);
 421 
 422 /*
 423  * NMIs can page fault or hit breakpoints which will cause it to lose
 424  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
 425  *
 426  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
 427  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
 428  * if the outer NMI came from kernel mode, but we can still nest if the
 429  * outer NMI came from user mode.
 430  *
 431  * To handle these nested NMIs, we have three states:
 432  *
 433  *  1) not running
 434  *  2) executing
 435  *  3) latched
 436  *
 437  * When no NMI is in progress, it is in the "not running" state.
 438  * When an NMI comes in, it goes into the "executing" state.
 439  * Normally, if another NMI is triggered, it does not interrupt
 440  * the running NMI and the HW will simply latch it so that when
 441  * the first NMI finishes, it will restart the second NMI.
 442  * (Note, the latch is binary, thus multiple NMIs triggering,
 443  *  when one is running, are ignored. Only one NMI is restarted.)
 444  *
 445  * If an NMI executes an iret, another NMI can preempt it. We do not
 446  * want to allow this new NMI to run, but we want to execute it when the
 447  * first one finishes.  We set the state to "latched", and the exit of
 448  * the first NMI will perform a dec_return, if the result is zero
 449  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
 450  * dec_return would have set the state to NMI_EXECUTING (what we want it
 451  * to be when we are running). In this case, we simply jump back to
 452  * rerun the NMI handler again, and restart the 'latched' NMI.
 453  *
 454  * No trap (breakpoint or page fault) should be hit before nmi_restart,
 455  * thus there is no race between the first check of state for NOT_RUNNING
 456  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 457  * at this point.
 458  *
 459  * In case the NMI takes a page fault, we need to save off the CR2
 460  * because the NMI could have preempted another page fault and corrupt
 461  * the CR2 that is about to be read. As nested NMIs must be restarted
 462  * and they can not take breakpoints or page faults, the update of the
 463  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 464  * Otherwise, there would be a race of another nested NMI coming in
 465  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
 466  */
 467 enum nmi_states {
 468         NMI_NOT_RUNNING = 0,
 469         NMI_EXECUTING,
 470         NMI_LATCHED,
 471 };
 472 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
 473 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
 474 
 475 #ifdef CONFIG_X86_64
 476 /*
 477  * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
 478  * some care, the inner breakpoint will clobber the outer breakpoint's
 479  * stack.
 480  *
 481  * If a breakpoint is being processed, and the debug stack is being
 482  * used, if an NMI comes in and also hits a breakpoint, the stack
 483  * pointer will be set to the same fixed address as the breakpoint that
 484  * was interrupted, causing that stack to be corrupted. To handle this
 485  * case, check if the stack that was interrupted is the debug stack, and
 486  * if so, change the IDT so that new breakpoints will use the current
 487  * stack and not switch to the fixed address. On return of the NMI,
 488  * switch back to the original IDT.
 489  */
 490 static DEFINE_PER_CPU(int, update_debug_stack);
 491 
 492 static bool notrace is_debug_stack(unsigned long addr)
 493 {
 494         struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
 495         unsigned long top = CEA_ESTACK_TOP(cs, DB);
 496         unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
 497 
 498         if (__this_cpu_read(debug_stack_usage))
 499                 return true;
 500         /*
 501          * Note, this covers the guard page between DB and DB1 as well to
 502          * avoid two checks. But by all means @addr can never point into
 503          * the guard page.
 504          */
 505         return addr >= bot && addr < top;
 506 }
 507 NOKPROBE_SYMBOL(is_debug_stack);
 508 #endif
 509 
 510 dotraplinkage notrace void
 511 do_nmi(struct pt_regs *regs, long error_code)
 512 {
 513         if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id()))
 514                 return;
 515 
 516         if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
 517                 this_cpu_write(nmi_state, NMI_LATCHED);
 518                 return;
 519         }
 520         this_cpu_write(nmi_state, NMI_EXECUTING);
 521         this_cpu_write(nmi_cr2, read_cr2());
 522 nmi_restart:
 523 
 524 #ifdef CONFIG_X86_64
 525         /*
 526          * If we interrupted a breakpoint, it is possible that
 527          * the nmi handler will have breakpoints too. We need to
 528          * change the IDT such that breakpoints that happen here
 529          * continue to use the NMI stack.
 530          */
 531         if (unlikely(is_debug_stack(regs->sp))) {
 532                 debug_stack_set_zero();
 533                 this_cpu_write(update_debug_stack, 1);
 534         }
 535 #endif
 536 
 537         nmi_enter();
 538 
 539         inc_irq_stat(__nmi_count);
 540 
 541         if (!ignore_nmis)
 542                 default_do_nmi(regs);
 543 
 544         nmi_exit();
 545 
 546 #ifdef CONFIG_X86_64
 547         if (unlikely(this_cpu_read(update_debug_stack))) {
 548                 debug_stack_reset();
 549                 this_cpu_write(update_debug_stack, 0);
 550         }
 551 #endif
 552 
 553         if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
 554                 write_cr2(this_cpu_read(nmi_cr2));
 555         if (this_cpu_dec_return(nmi_state))
 556                 goto nmi_restart;
 557 
 558         if (user_mode(regs))
 559                 mds_user_clear_cpu_buffers();
 560 }
 561 NOKPROBE_SYMBOL(do_nmi);
 562 
 563 void stop_nmi(void)
 564 {
 565         ignore_nmis++;
 566 }
 567 
 568 void restart_nmi(void)
 569 {
 570         ignore_nmis--;
 571 }
 572 
 573 /* reset the back-to-back NMI logic */
 574 void local_touch_nmi(void)
 575 {
 576         __this_cpu_write(last_nmi_rip, 0);
 577 }
 578 EXPORT_SYMBOL_GPL(local_touch_nmi);

/* [<][>][^][v][top][bottom][index][help] */