root/arch/x86/kernel/tsc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cyc2ns_read_begin
  2. cyc2ns_read_end
  3. cycles_2_ns
  4. __set_cyc2ns_scale
  5. set_cyc2ns_scale
  6. cyc2ns_init_boot_cpu
  7. cyc2ns_init_secondary_cpus
  8. native_sched_clock
  9. native_sched_clock_from_tsc
  10. sched_clock
  11. using_native_sched_clock
  12. using_native_sched_clock
  13. check_tsc_unstable
  14. notsc_setup
  15. notsc_setup
  16. tsc_setup
  17. tsc_read_refs
  18. calc_hpet_ref
  19. calc_pmtimer_ref
  20. pit_calibrate_tsc
  21. pit_verify_msb
  22. pit_expect_msb
  23. quick_pit_calibrate
  24. native_calibrate_tsc
  25. cpu_khz_from_cpuid
  26. pit_hpet_ptimer_calibrate_cpu
  27. native_calibrate_cpu_early
  28. native_calibrate_cpu
  29. recalibrate_cpu_khz
  30. tsc_save_sched_clock_state
  31. tsc_restore_sched_clock_state
  32. time_cpufreq_notifier
  33. cpufreq_register_tsc_scaling
  34. detect_art
  35. tsc_resume
  36. read_tsc
  37. tsc_cs_mark_unstable
  38. tsc_cs_tick_stable
  39. mark_tsc_unstable
  40. check_system_tsc_reliable
  41. unsynchronized_tsc
  42. convert_art_to_tsc
  43. convert_art_ns_to_tsc
  44. tsc_refine_calibration_work
  45. init_tsc_clocksource
  46. determine_cpu_tsc_frequencies
  47. get_loops_per_jiffy
  48. tsc_enable_sched_clock
  49. tsc_early_init
  50. tsc_init
  51. calibrate_delay_is_known

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3 
   4 #include <linux/kernel.h>
   5 #include <linux/sched.h>
   6 #include <linux/sched/clock.h>
   7 #include <linux/init.h>
   8 #include <linux/export.h>
   9 #include <linux/timer.h>
  10 #include <linux/acpi_pmtmr.h>
  11 #include <linux/cpufreq.h>
  12 #include <linux/delay.h>
  13 #include <linux/clocksource.h>
  14 #include <linux/percpu.h>
  15 #include <linux/timex.h>
  16 #include <linux/static_key.h>
  17 
  18 #include <asm/hpet.h>
  19 #include <asm/timer.h>
  20 #include <asm/vgtod.h>
  21 #include <asm/time.h>
  22 #include <asm/delay.h>
  23 #include <asm/hypervisor.h>
  24 #include <asm/nmi.h>
  25 #include <asm/x86_init.h>
  26 #include <asm/geode.h>
  27 #include <asm/apic.h>
  28 #include <asm/intel-family.h>
  29 #include <asm/i8259.h>
  30 #include <asm/uv/uv.h>
  31 
  32 unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  33 EXPORT_SYMBOL(cpu_khz);
  34 
  35 unsigned int __read_mostly tsc_khz;
  36 EXPORT_SYMBOL(tsc_khz);
  37 
  38 #define KHZ     1000
  39 
  40 /*
  41  * TSC can be unstable due to cpufreq or due to unsynced TSCs
  42  */
  43 static int __read_mostly tsc_unstable;
  44 
  45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  46 
  47 int tsc_clocksource_reliable;
  48 
  49 static u32 art_to_tsc_numerator;
  50 static u32 art_to_tsc_denominator;
  51 static u64 art_to_tsc_offset;
  52 struct clocksource *art_related_clocksource;
  53 
  54 struct cyc2ns {
  55         struct cyc2ns_data data[2];     /*  0 + 2*16 = 32 */
  56         seqcount_t         seq;         /* 32 + 4    = 36 */
  57 
  58 }; /* fits one cacheline */
  59 
  60 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  61 
  62 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  63 {
  64         int seq, idx;
  65 
  66         preempt_disable_notrace();
  67 
  68         do {
  69                 seq = this_cpu_read(cyc2ns.seq.sequence);
  70                 idx = seq & 1;
  71 
  72                 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  73                 data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  74                 data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  75 
  76         } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
  77 }
  78 
  79 __always_inline void cyc2ns_read_end(void)
  80 {
  81         preempt_enable_notrace();
  82 }
  83 
  84 /*
  85  * Accelerators for sched_clock()
  86  * convert from cycles(64bits) => nanoseconds (64bits)
  87  *  basic equation:
  88  *              ns = cycles / (freq / ns_per_sec)
  89  *              ns = cycles * (ns_per_sec / freq)
  90  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
  91  *              ns = cycles * (10^6 / cpu_khz)
  92  *
  93  *      Then we use scaling math (suggested by george@mvista.com) to get:
  94  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
  95  *              ns = cycles * cyc2ns_scale / SC
  96  *
  97  *      And since SC is a constant power of two, we can convert the div
  98  *  into a shift. The larger SC is, the more accurate the conversion, but
  99  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 100  *  (64-bit result) can be used.
 101  *
 102  *  We can use khz divisor instead of mhz to keep a better precision.
 103  *  (mathieu.desnoyers@polymtl.ca)
 104  *
 105  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 106  */
 107 
 108 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 109 {
 110         struct cyc2ns_data data;
 111         unsigned long long ns;
 112 
 113         cyc2ns_read_begin(&data);
 114 
 115         ns = data.cyc2ns_offset;
 116         ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 117 
 118         cyc2ns_read_end();
 119 
 120         return ns;
 121 }
 122 
 123 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 124 {
 125         unsigned long long ns_now;
 126         struct cyc2ns_data data;
 127         struct cyc2ns *c2n;
 128 
 129         ns_now = cycles_2_ns(tsc_now);
 130 
 131         /*
 132          * Compute a new multiplier as per the above comment and ensure our
 133          * time function is continuous; see the comment near struct
 134          * cyc2ns_data.
 135          */
 136         clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 137                                NSEC_PER_MSEC, 0);
 138 
 139         /*
 140          * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 141          * not expected to be greater than 31 due to the original published
 142          * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 143          * value) - refer perf_event_mmap_page documentation in perf_event.h.
 144          */
 145         if (data.cyc2ns_shift == 32) {
 146                 data.cyc2ns_shift = 31;
 147                 data.cyc2ns_mul >>= 1;
 148         }
 149 
 150         data.cyc2ns_offset = ns_now -
 151                 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 152 
 153         c2n = per_cpu_ptr(&cyc2ns, cpu);
 154 
 155         raw_write_seqcount_latch(&c2n->seq);
 156         c2n->data[0] = data;
 157         raw_write_seqcount_latch(&c2n->seq);
 158         c2n->data[1] = data;
 159 }
 160 
 161 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 162 {
 163         unsigned long flags;
 164 
 165         local_irq_save(flags);
 166         sched_clock_idle_sleep_event();
 167 
 168         if (khz)
 169                 __set_cyc2ns_scale(khz, cpu, tsc_now);
 170 
 171         sched_clock_idle_wakeup_event();
 172         local_irq_restore(flags);
 173 }
 174 
 175 /*
 176  * Initialize cyc2ns for boot cpu
 177  */
 178 static void __init cyc2ns_init_boot_cpu(void)
 179 {
 180         struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 181 
 182         seqcount_init(&c2n->seq);
 183         __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 184 }
 185 
 186 /*
 187  * Secondary CPUs do not run through tsc_init(), so set up
 188  * all the scale factors for all CPUs, assuming the same
 189  * speed as the bootup CPU.
 190  */
 191 static void __init cyc2ns_init_secondary_cpus(void)
 192 {
 193         unsigned int cpu, this_cpu = smp_processor_id();
 194         struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 195         struct cyc2ns_data *data = c2n->data;
 196 
 197         for_each_possible_cpu(cpu) {
 198                 if (cpu != this_cpu) {
 199                         seqcount_init(&c2n->seq);
 200                         c2n = per_cpu_ptr(&cyc2ns, cpu);
 201                         c2n->data[0] = data[0];
 202                         c2n->data[1] = data[1];
 203                 }
 204         }
 205 }
 206 
 207 /*
 208  * Scheduler clock - returns current time in nanosec units.
 209  */
 210 u64 native_sched_clock(void)
 211 {
 212         if (static_branch_likely(&__use_tsc)) {
 213                 u64 tsc_now = rdtsc();
 214 
 215                 /* return the value in ns */
 216                 return cycles_2_ns(tsc_now);
 217         }
 218 
 219         /*
 220          * Fall back to jiffies if there's no TSC available:
 221          * ( But note that we still use it if the TSC is marked
 222          *   unstable. We do this because unlike Time Of Day,
 223          *   the scheduler clock tolerates small errors and it's
 224          *   very important for it to be as fast as the platform
 225          *   can achieve it. )
 226          */
 227 
 228         /* No locking but a rare wrong value is not a big deal: */
 229         return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 230 }
 231 
 232 /*
 233  * Generate a sched_clock if you already have a TSC value.
 234  */
 235 u64 native_sched_clock_from_tsc(u64 tsc)
 236 {
 237         return cycles_2_ns(tsc);
 238 }
 239 
 240 /* We need to define a real function for sched_clock, to override the
 241    weak default version */
 242 #ifdef CONFIG_PARAVIRT
 243 unsigned long long sched_clock(void)
 244 {
 245         return paravirt_sched_clock();
 246 }
 247 
 248 bool using_native_sched_clock(void)
 249 {
 250         return pv_ops.time.sched_clock == native_sched_clock;
 251 }
 252 #else
 253 unsigned long long
 254 sched_clock(void) __attribute__((alias("native_sched_clock")));
 255 
 256 bool using_native_sched_clock(void) { return true; }
 257 #endif
 258 
 259 int check_tsc_unstable(void)
 260 {
 261         return tsc_unstable;
 262 }
 263 EXPORT_SYMBOL_GPL(check_tsc_unstable);
 264 
 265 #ifdef CONFIG_X86_TSC
 266 int __init notsc_setup(char *str)
 267 {
 268         mark_tsc_unstable("boot parameter notsc");
 269         return 1;
 270 }
 271 #else
 272 /*
 273  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 274  * in cpu/common.c
 275  */
 276 int __init notsc_setup(char *str)
 277 {
 278         setup_clear_cpu_cap(X86_FEATURE_TSC);
 279         return 1;
 280 }
 281 #endif
 282 
 283 __setup("notsc", notsc_setup);
 284 
 285 static int no_sched_irq_time;
 286 static int no_tsc_watchdog;
 287 
 288 static int __init tsc_setup(char *str)
 289 {
 290         if (!strcmp(str, "reliable"))
 291                 tsc_clocksource_reliable = 1;
 292         if (!strncmp(str, "noirqtime", 9))
 293                 no_sched_irq_time = 1;
 294         if (!strcmp(str, "unstable"))
 295                 mark_tsc_unstable("boot parameter");
 296         if (!strcmp(str, "nowatchdog"))
 297                 no_tsc_watchdog = 1;
 298         return 1;
 299 }
 300 
 301 __setup("tsc=", tsc_setup);
 302 
 303 #define MAX_RETRIES             5
 304 #define TSC_DEFAULT_THRESHOLD   0x20000
 305 
 306 /*
 307  * Read TSC and the reference counters. Take care of any disturbances
 308  */
 309 static u64 tsc_read_refs(u64 *p, int hpet)
 310 {
 311         u64 t1, t2;
 312         u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 313         int i;
 314 
 315         for (i = 0; i < MAX_RETRIES; i++) {
 316                 t1 = get_cycles();
 317                 if (hpet)
 318                         *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 319                 else
 320                         *p = acpi_pm_read_early();
 321                 t2 = get_cycles();
 322                 if ((t2 - t1) < thresh)
 323                         return t2;
 324         }
 325         return ULLONG_MAX;
 326 }
 327 
 328 /*
 329  * Calculate the TSC frequency from HPET reference
 330  */
 331 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 332 {
 333         u64 tmp;
 334 
 335         if (hpet2 < hpet1)
 336                 hpet2 += 0x100000000ULL;
 337         hpet2 -= hpet1;
 338         tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 339         do_div(tmp, 1000000);
 340         deltatsc = div64_u64(deltatsc, tmp);
 341 
 342         return (unsigned long) deltatsc;
 343 }
 344 
 345 /*
 346  * Calculate the TSC frequency from PMTimer reference
 347  */
 348 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 349 {
 350         u64 tmp;
 351 
 352         if (!pm1 && !pm2)
 353                 return ULONG_MAX;
 354 
 355         if (pm2 < pm1)
 356                 pm2 += (u64)ACPI_PM_OVRRUN;
 357         pm2 -= pm1;
 358         tmp = pm2 * 1000000000LL;
 359         do_div(tmp, PMTMR_TICKS_PER_SEC);
 360         do_div(deltatsc, tmp);
 361 
 362         return (unsigned long) deltatsc;
 363 }
 364 
 365 #define CAL_MS          10
 366 #define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 367 #define CAL_PIT_LOOPS   1000
 368 
 369 #define CAL2_MS         50
 370 #define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 371 #define CAL2_PIT_LOOPS  5000
 372 
 373 
 374 /*
 375  * Try to calibrate the TSC against the Programmable
 376  * Interrupt Timer and return the frequency of the TSC
 377  * in kHz.
 378  *
 379  * Return ULONG_MAX on failure to calibrate.
 380  */
 381 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 382 {
 383         u64 tsc, t1, t2, delta;
 384         unsigned long tscmin, tscmax;
 385         int pitcnt;
 386 
 387         if (!has_legacy_pic()) {
 388                 /*
 389                  * Relies on tsc_early_delay_calibrate() to have given us semi
 390                  * usable udelay(), wait for the same 50ms we would have with
 391                  * the PIT loop below.
 392                  */
 393                 udelay(10 * USEC_PER_MSEC);
 394                 udelay(10 * USEC_PER_MSEC);
 395                 udelay(10 * USEC_PER_MSEC);
 396                 udelay(10 * USEC_PER_MSEC);
 397                 udelay(10 * USEC_PER_MSEC);
 398                 return ULONG_MAX;
 399         }
 400 
 401         /* Set the Gate high, disable speaker */
 402         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 403 
 404         /*
 405          * Setup CTC channel 2* for mode 0, (interrupt on terminal
 406          * count mode), binary count. Set the latch register to 50ms
 407          * (LSB then MSB) to begin countdown.
 408          */
 409         outb(0xb0, 0x43);
 410         outb(latch & 0xff, 0x42);
 411         outb(latch >> 8, 0x42);
 412 
 413         tsc = t1 = t2 = get_cycles();
 414 
 415         pitcnt = 0;
 416         tscmax = 0;
 417         tscmin = ULONG_MAX;
 418         while ((inb(0x61) & 0x20) == 0) {
 419                 t2 = get_cycles();
 420                 delta = t2 - tsc;
 421                 tsc = t2;
 422                 if ((unsigned long) delta < tscmin)
 423                         tscmin = (unsigned int) delta;
 424                 if ((unsigned long) delta > tscmax)
 425                         tscmax = (unsigned int) delta;
 426                 pitcnt++;
 427         }
 428 
 429         /*
 430          * Sanity checks:
 431          *
 432          * If we were not able to read the PIT more than loopmin
 433          * times, then we have been hit by a massive SMI
 434          *
 435          * If the maximum is 10 times larger than the minimum,
 436          * then we got hit by an SMI as well.
 437          */
 438         if (pitcnt < loopmin || tscmax > 10 * tscmin)
 439                 return ULONG_MAX;
 440 
 441         /* Calculate the PIT value */
 442         delta = t2 - t1;
 443         do_div(delta, ms);
 444         return delta;
 445 }
 446 
 447 /*
 448  * This reads the current MSB of the PIT counter, and
 449  * checks if we are running on sufficiently fast and
 450  * non-virtualized hardware.
 451  *
 452  * Our expectations are:
 453  *
 454  *  - the PIT is running at roughly 1.19MHz
 455  *
 456  *  - each IO is going to take about 1us on real hardware,
 457  *    but we allow it to be much faster (by a factor of 10) or
 458  *    _slightly_ slower (ie we allow up to a 2us read+counter
 459  *    update - anything else implies a unacceptably slow CPU
 460  *    or PIT for the fast calibration to work.
 461  *
 462  *  - with 256 PIT ticks to read the value, we have 214us to
 463  *    see the same MSB (and overhead like doing a single TSC
 464  *    read per MSB value etc).
 465  *
 466  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 467  *    them each to take about a microsecond on real hardware.
 468  *    So we expect a count value of around 100. But we'll be
 469  *    generous, and accept anything over 50.
 470  *
 471  *  - if the PIT is stuck, and we see *many* more reads, we
 472  *    return early (and the next caller of pit_expect_msb()
 473  *    then consider it a failure when they don't see the
 474  *    next expected value).
 475  *
 476  * These expectations mean that we know that we have seen the
 477  * transition from one expected value to another with a fairly
 478  * high accuracy, and we didn't miss any events. We can thus
 479  * use the TSC value at the transitions to calculate a pretty
 480  * good value for the TSC frequencty.
 481  */
 482 static inline int pit_verify_msb(unsigned char val)
 483 {
 484         /* Ignore LSB */
 485         inb(0x42);
 486         return inb(0x42) == val;
 487 }
 488 
 489 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 490 {
 491         int count;
 492         u64 tsc = 0, prev_tsc = 0;
 493 
 494         for (count = 0; count < 50000; count++) {
 495                 if (!pit_verify_msb(val))
 496                         break;
 497                 prev_tsc = tsc;
 498                 tsc = get_cycles();
 499         }
 500         *deltap = get_cycles() - prev_tsc;
 501         *tscp = tsc;
 502 
 503         /*
 504          * We require _some_ success, but the quality control
 505          * will be based on the error terms on the TSC values.
 506          */
 507         return count > 5;
 508 }
 509 
 510 /*
 511  * How many MSB values do we want to see? We aim for
 512  * a maximum error rate of 500ppm (in practice the
 513  * real error is much smaller), but refuse to spend
 514  * more than 50ms on it.
 515  */
 516 #define MAX_QUICK_PIT_MS 50
 517 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 518 
 519 static unsigned long quick_pit_calibrate(void)
 520 {
 521         int i;
 522         u64 tsc, delta;
 523         unsigned long d1, d2;
 524 
 525         if (!has_legacy_pic())
 526                 return 0;
 527 
 528         /* Set the Gate high, disable speaker */
 529         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 530 
 531         /*
 532          * Counter 2, mode 0 (one-shot), binary count
 533          *
 534          * NOTE! Mode 2 decrements by two (and then the
 535          * output is flipped each time, giving the same
 536          * final output frequency as a decrement-by-one),
 537          * so mode 0 is much better when looking at the
 538          * individual counts.
 539          */
 540         outb(0xb0, 0x43);
 541 
 542         /* Start at 0xffff */
 543         outb(0xff, 0x42);
 544         outb(0xff, 0x42);
 545 
 546         /*
 547          * The PIT starts counting at the next edge, so we
 548          * need to delay for a microsecond. The easiest way
 549          * to do that is to just read back the 16-bit counter
 550          * once from the PIT.
 551          */
 552         pit_verify_msb(0);
 553 
 554         if (pit_expect_msb(0xff, &tsc, &d1)) {
 555                 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 556                         if (!pit_expect_msb(0xff-i, &delta, &d2))
 557                                 break;
 558 
 559                         delta -= tsc;
 560 
 561                         /*
 562                          * Extrapolate the error and fail fast if the error will
 563                          * never be below 500 ppm.
 564                          */
 565                         if (i == 1 &&
 566                             d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 567                                 return 0;
 568 
 569                         /*
 570                          * Iterate until the error is less than 500 ppm
 571                          */
 572                         if (d1+d2 >= delta >> 11)
 573                                 continue;
 574 
 575                         /*
 576                          * Check the PIT one more time to verify that
 577                          * all TSC reads were stable wrt the PIT.
 578                          *
 579                          * This also guarantees serialization of the
 580                          * last cycle read ('d2') in pit_expect_msb.
 581                          */
 582                         if (!pit_verify_msb(0xfe - i))
 583                                 break;
 584                         goto success;
 585                 }
 586         }
 587         pr_info("Fast TSC calibration failed\n");
 588         return 0;
 589 
 590 success:
 591         /*
 592          * Ok, if we get here, then we've seen the
 593          * MSB of the PIT decrement 'i' times, and the
 594          * error has shrunk to less than 500 ppm.
 595          *
 596          * As a result, we can depend on there not being
 597          * any odd delays anywhere, and the TSC reads are
 598          * reliable (within the error).
 599          *
 600          * kHz = ticks / time-in-seconds / 1000;
 601          * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 602          * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 603          */
 604         delta *= PIT_TICK_RATE;
 605         do_div(delta, i*256*1000);
 606         pr_info("Fast TSC calibration using PIT\n");
 607         return delta;
 608 }
 609 
 610 /**
 611  * native_calibrate_tsc
 612  * Determine TSC frequency via CPUID, else return 0.
 613  */
 614 unsigned long native_calibrate_tsc(void)
 615 {
 616         unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 617         unsigned int crystal_khz;
 618 
 619         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 620                 return 0;
 621 
 622         if (boot_cpu_data.cpuid_level < 0x15)
 623                 return 0;
 624 
 625         eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 626 
 627         /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 628         cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 629 
 630         if (ebx_numerator == 0 || eax_denominator == 0)
 631                 return 0;
 632 
 633         crystal_khz = ecx_hz / 1000;
 634 
 635         /*
 636          * Denverton SoCs don't report crystal clock, and also don't support
 637          * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 638          * clock.
 639          */
 640         if (crystal_khz == 0 &&
 641                         boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 642                 crystal_khz = 25000;
 643 
 644         /*
 645          * TSC frequency reported directly by CPUID is a "hardware reported"
 646          * frequency and is the most accurate one so far we have. This
 647          * is considered a known frequency.
 648          */
 649         if (crystal_khz != 0)
 650                 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 651 
 652         /*
 653          * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 654          * clock, but we can easily calculate it to a high degree of accuracy
 655          * by considering the crystal ratio and the CPU speed.
 656          */
 657         if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 658                 unsigned int eax_base_mhz, ebx, ecx, edx;
 659 
 660                 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 661                 crystal_khz = eax_base_mhz * 1000 *
 662                         eax_denominator / ebx_numerator;
 663         }
 664 
 665         if (crystal_khz == 0)
 666                 return 0;
 667 
 668         /*
 669          * For Atom SoCs TSC is the only reliable clocksource.
 670          * Mark TSC reliable so no watchdog on it.
 671          */
 672         if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 673                 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 674 
 675 #ifdef CONFIG_X86_LOCAL_APIC
 676         /*
 677          * The local APIC appears to be fed by the core crystal clock
 678          * (which sounds entirely sensible). We can set the global
 679          * lapic_timer_period here to avoid having to calibrate the APIC
 680          * timer later.
 681          */
 682         lapic_timer_period = crystal_khz * 1000 / HZ;
 683 #endif
 684 
 685         return crystal_khz * ebx_numerator / eax_denominator;
 686 }
 687 
 688 static unsigned long cpu_khz_from_cpuid(void)
 689 {
 690         unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 691 
 692         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 693                 return 0;
 694 
 695         if (boot_cpu_data.cpuid_level < 0x16)
 696                 return 0;
 697 
 698         eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 699 
 700         cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 701 
 702         return eax_base_mhz * 1000;
 703 }
 704 
 705 /*
 706  * calibrate cpu using pit, hpet, and ptimer methods. They are available
 707  * later in boot after acpi is initialized.
 708  */
 709 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 710 {
 711         u64 tsc1, tsc2, delta, ref1, ref2;
 712         unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 713         unsigned long flags, latch, ms;
 714         int hpet = is_hpet_enabled(), i, loopmin;
 715 
 716         /*
 717          * Run 5 calibration loops to get the lowest frequency value
 718          * (the best estimate). We use two different calibration modes
 719          * here:
 720          *
 721          * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 722          * load a timeout of 50ms. We read the time right after we
 723          * started the timer and wait until the PIT count down reaches
 724          * zero. In each wait loop iteration we read the TSC and check
 725          * the delta to the previous read. We keep track of the min
 726          * and max values of that delta. The delta is mostly defined
 727          * by the IO time of the PIT access, so we can detect when
 728          * any disturbance happened between the two reads. If the
 729          * maximum time is significantly larger than the minimum time,
 730          * then we discard the result and have another try.
 731          *
 732          * 2) Reference counter. If available we use the HPET or the
 733          * PMTIMER as a reference to check the sanity of that value.
 734          * We use separate TSC readouts and check inside of the
 735          * reference read for any possible disturbance. We dicard
 736          * disturbed values here as well. We do that around the PIT
 737          * calibration delay loop as we have to wait for a certain
 738          * amount of time anyway.
 739          */
 740 
 741         /* Preset PIT loop values */
 742         latch = CAL_LATCH;
 743         ms = CAL_MS;
 744         loopmin = CAL_PIT_LOOPS;
 745 
 746         for (i = 0; i < 3; i++) {
 747                 unsigned long tsc_pit_khz;
 748 
 749                 /*
 750                  * Read the start value and the reference count of
 751                  * hpet/pmtimer when available. Then do the PIT
 752                  * calibration, which will take at least 50ms, and
 753                  * read the end value.
 754                  */
 755                 local_irq_save(flags);
 756                 tsc1 = tsc_read_refs(&ref1, hpet);
 757                 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 758                 tsc2 = tsc_read_refs(&ref2, hpet);
 759                 local_irq_restore(flags);
 760 
 761                 /* Pick the lowest PIT TSC calibration so far */
 762                 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 763 
 764                 /* hpet or pmtimer available ? */
 765                 if (ref1 == ref2)
 766                         continue;
 767 
 768                 /* Check, whether the sampling was disturbed */
 769                 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 770                         continue;
 771 
 772                 tsc2 = (tsc2 - tsc1) * 1000000LL;
 773                 if (hpet)
 774                         tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 775                 else
 776                         tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 777 
 778                 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 779 
 780                 /* Check the reference deviation */
 781                 delta = ((u64) tsc_pit_min) * 100;
 782                 do_div(delta, tsc_ref_min);
 783 
 784                 /*
 785                  * If both calibration results are inside a 10% window
 786                  * then we can be sure, that the calibration
 787                  * succeeded. We break out of the loop right away. We
 788                  * use the reference value, as it is more precise.
 789                  */
 790                 if (delta >= 90 && delta <= 110) {
 791                         pr_info("PIT calibration matches %s. %d loops\n",
 792                                 hpet ? "HPET" : "PMTIMER", i + 1);
 793                         return tsc_ref_min;
 794                 }
 795 
 796                 /*
 797                  * Check whether PIT failed more than once. This
 798                  * happens in virtualized environments. We need to
 799                  * give the virtual PC a slightly longer timeframe for
 800                  * the HPET/PMTIMER to make the result precise.
 801                  */
 802                 if (i == 1 && tsc_pit_min == ULONG_MAX) {
 803                         latch = CAL2_LATCH;
 804                         ms = CAL2_MS;
 805                         loopmin = CAL2_PIT_LOOPS;
 806                 }
 807         }
 808 
 809         /*
 810          * Now check the results.
 811          */
 812         if (tsc_pit_min == ULONG_MAX) {
 813                 /* PIT gave no useful value */
 814                 pr_warn("Unable to calibrate against PIT\n");
 815 
 816                 /* We don't have an alternative source, disable TSC */
 817                 if (!hpet && !ref1 && !ref2) {
 818                         pr_notice("No reference (HPET/PMTIMER) available\n");
 819                         return 0;
 820                 }
 821 
 822                 /* The alternative source failed as well, disable TSC */
 823                 if (tsc_ref_min == ULONG_MAX) {
 824                         pr_warn("HPET/PMTIMER calibration failed\n");
 825                         return 0;
 826                 }
 827 
 828                 /* Use the alternative source */
 829                 pr_info("using %s reference calibration\n",
 830                         hpet ? "HPET" : "PMTIMER");
 831 
 832                 return tsc_ref_min;
 833         }
 834 
 835         /* We don't have an alternative source, use the PIT calibration value */
 836         if (!hpet && !ref1 && !ref2) {
 837                 pr_info("Using PIT calibration value\n");
 838                 return tsc_pit_min;
 839         }
 840 
 841         /* The alternative source failed, use the PIT calibration value */
 842         if (tsc_ref_min == ULONG_MAX) {
 843                 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 844                 return tsc_pit_min;
 845         }
 846 
 847         /*
 848          * The calibration values differ too much. In doubt, we use
 849          * the PIT value as we know that there are PMTIMERs around
 850          * running at double speed. At least we let the user know:
 851          */
 852         pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 853                 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 854         pr_info("Using PIT calibration value\n");
 855         return tsc_pit_min;
 856 }
 857 
 858 /**
 859  * native_calibrate_cpu_early - can calibrate the cpu early in boot
 860  */
 861 unsigned long native_calibrate_cpu_early(void)
 862 {
 863         unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 864 
 865         if (!fast_calibrate)
 866                 fast_calibrate = cpu_khz_from_msr();
 867         if (!fast_calibrate) {
 868                 local_irq_save(flags);
 869                 fast_calibrate = quick_pit_calibrate();
 870                 local_irq_restore(flags);
 871         }
 872         return fast_calibrate;
 873 }
 874 
 875 
 876 /**
 877  * native_calibrate_cpu - calibrate the cpu
 878  */
 879 static unsigned long native_calibrate_cpu(void)
 880 {
 881         unsigned long tsc_freq = native_calibrate_cpu_early();
 882 
 883         if (!tsc_freq)
 884                 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 885 
 886         return tsc_freq;
 887 }
 888 
 889 void recalibrate_cpu_khz(void)
 890 {
 891 #ifndef CONFIG_SMP
 892         unsigned long cpu_khz_old = cpu_khz;
 893 
 894         if (!boot_cpu_has(X86_FEATURE_TSC))
 895                 return;
 896 
 897         cpu_khz = x86_platform.calibrate_cpu();
 898         tsc_khz = x86_platform.calibrate_tsc();
 899         if (tsc_khz == 0)
 900                 tsc_khz = cpu_khz;
 901         else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 902                 cpu_khz = tsc_khz;
 903         cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 904                                                     cpu_khz_old, cpu_khz);
 905 #endif
 906 }
 907 
 908 EXPORT_SYMBOL(recalibrate_cpu_khz);
 909 
 910 
 911 static unsigned long long cyc2ns_suspend;
 912 
 913 void tsc_save_sched_clock_state(void)
 914 {
 915         if (!sched_clock_stable())
 916                 return;
 917 
 918         cyc2ns_suspend = sched_clock();
 919 }
 920 
 921 /*
 922  * Even on processors with invariant TSC, TSC gets reset in some the
 923  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 924  * arbitrary value (still sync'd across cpu's) during resume from such sleep
 925  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 926  * that sched_clock() continues from the point where it was left off during
 927  * suspend.
 928  */
 929 void tsc_restore_sched_clock_state(void)
 930 {
 931         unsigned long long offset;
 932         unsigned long flags;
 933         int cpu;
 934 
 935         if (!sched_clock_stable())
 936                 return;
 937 
 938         local_irq_save(flags);
 939 
 940         /*
 941          * We're coming out of suspend, there's no concurrency yet; don't
 942          * bother being nice about the RCU stuff, just write to both
 943          * data fields.
 944          */
 945 
 946         this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 947         this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 948 
 949         offset = cyc2ns_suspend - sched_clock();
 950 
 951         for_each_possible_cpu(cpu) {
 952                 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 953                 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 954         }
 955 
 956         local_irq_restore(flags);
 957 }
 958 
 959 #ifdef CONFIG_CPU_FREQ
 960 /*
 961  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
 962  * changes.
 963  *
 964  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
 965  * as unstable and give up in those cases.
 966  *
 967  * Should fix up last_tsc too. Currently gettimeofday in the
 968  * first tick after the change will be slightly wrong.
 969  */
 970 
 971 static unsigned int  ref_freq;
 972 static unsigned long loops_per_jiffy_ref;
 973 static unsigned long tsc_khz_ref;
 974 
 975 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 976                                 void *data)
 977 {
 978         struct cpufreq_freqs *freq = data;
 979 
 980         if (num_online_cpus() > 1) {
 981                 mark_tsc_unstable("cpufreq changes on SMP");
 982                 return 0;
 983         }
 984 
 985         if (!ref_freq) {
 986                 ref_freq = freq->old;
 987                 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
 988                 tsc_khz_ref = tsc_khz;
 989         }
 990 
 991         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 992             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 993                 boot_cpu_data.loops_per_jiffy =
 994                         cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 995 
 996                 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 997                 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 998                         mark_tsc_unstable("cpufreq changes");
 999 
1000                 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1001         }
1002 
1003         return 0;
1004 }
1005 
1006 static struct notifier_block time_cpufreq_notifier_block = {
1007         .notifier_call  = time_cpufreq_notifier
1008 };
1009 
1010 static int __init cpufreq_register_tsc_scaling(void)
1011 {
1012         if (!boot_cpu_has(X86_FEATURE_TSC))
1013                 return 0;
1014         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1015                 return 0;
1016         cpufreq_register_notifier(&time_cpufreq_notifier_block,
1017                                 CPUFREQ_TRANSITION_NOTIFIER);
1018         return 0;
1019 }
1020 
1021 core_initcall(cpufreq_register_tsc_scaling);
1022 
1023 #endif /* CONFIG_CPU_FREQ */
1024 
1025 #define ART_CPUID_LEAF (0x15)
1026 #define ART_MIN_DENOMINATOR (1)
1027 
1028 
1029 /*
1030  * If ART is present detect the numerator:denominator to convert to TSC
1031  */
1032 static void __init detect_art(void)
1033 {
1034         unsigned int unused[2];
1035 
1036         if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1037                 return;
1038 
1039         /*
1040          * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1041          * and the TSC counter resets must not occur asynchronously.
1042          */
1043         if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1044             !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1045             !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1046             tsc_async_resets)
1047                 return;
1048 
1049         cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1050               &art_to_tsc_numerator, unused, unused+1);
1051 
1052         if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1053                 return;
1054 
1055         rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1056 
1057         /* Make this sticky over multiple CPU init calls */
1058         setup_force_cpu_cap(X86_FEATURE_ART);
1059 }
1060 
1061 
1062 /* clocksource code */
1063 
1064 static void tsc_resume(struct clocksource *cs)
1065 {
1066         tsc_verify_tsc_adjust(true);
1067 }
1068 
1069 /*
1070  * We used to compare the TSC to the cycle_last value in the clocksource
1071  * structure to avoid a nasty time-warp. This can be observed in a
1072  * very small window right after one CPU updated cycle_last under
1073  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074  * is smaller than the cycle_last reference value due to a TSC which
1075  * is slighty behind. This delta is nowhere else observable, but in
1076  * that case it results in a forward time jump in the range of hours
1077  * due to the unsigned delta calculation of the time keeping core
1078  * code, which is necessary to support wrapping clocksources like pm
1079  * timer.
1080  *
1081  * This sanity check is now done in the core timekeeping code.
1082  * checking the result of read_tsc() - cycle_last for being negative.
1083  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1084  */
1085 static u64 read_tsc(struct clocksource *cs)
1086 {
1087         return (u64)rdtsc_ordered();
1088 }
1089 
1090 static void tsc_cs_mark_unstable(struct clocksource *cs)
1091 {
1092         if (tsc_unstable)
1093                 return;
1094 
1095         tsc_unstable = 1;
1096         if (using_native_sched_clock())
1097                 clear_sched_clock_stable();
1098         disable_sched_clock_irqtime();
1099         pr_info("Marking TSC unstable due to clocksource watchdog\n");
1100 }
1101 
1102 static void tsc_cs_tick_stable(struct clocksource *cs)
1103 {
1104         if (tsc_unstable)
1105                 return;
1106 
1107         if (using_native_sched_clock())
1108                 sched_clock_tick_stable();
1109 }
1110 
1111 /*
1112  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1113  */
1114 static struct clocksource clocksource_tsc_early = {
1115         .name                   = "tsc-early",
1116         .rating                 = 299,
1117         .read                   = read_tsc,
1118         .mask                   = CLOCKSOURCE_MASK(64),
1119         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1120                                   CLOCK_SOURCE_MUST_VERIFY,
1121         .archdata               = { .vclock_mode = VCLOCK_TSC },
1122         .resume                 = tsc_resume,
1123         .mark_unstable          = tsc_cs_mark_unstable,
1124         .tick_stable            = tsc_cs_tick_stable,
1125         .list                   = LIST_HEAD_INIT(clocksource_tsc_early.list),
1126 };
1127 
1128 /*
1129  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1130  * this one will immediately take over. We will only register if TSC has
1131  * been found good.
1132  */
1133 static struct clocksource clocksource_tsc = {
1134         .name                   = "tsc",
1135         .rating                 = 300,
1136         .read                   = read_tsc,
1137         .mask                   = CLOCKSOURCE_MASK(64),
1138         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1139                                   CLOCK_SOURCE_VALID_FOR_HRES |
1140                                   CLOCK_SOURCE_MUST_VERIFY,
1141         .archdata               = { .vclock_mode = VCLOCK_TSC },
1142         .resume                 = tsc_resume,
1143         .mark_unstable          = tsc_cs_mark_unstable,
1144         .tick_stable            = tsc_cs_tick_stable,
1145         .list                   = LIST_HEAD_INIT(clocksource_tsc.list),
1146 };
1147 
1148 void mark_tsc_unstable(char *reason)
1149 {
1150         if (tsc_unstable)
1151                 return;
1152 
1153         tsc_unstable = 1;
1154         if (using_native_sched_clock())
1155                 clear_sched_clock_stable();
1156         disable_sched_clock_irqtime();
1157         pr_info("Marking TSC unstable due to %s\n", reason);
1158 
1159         clocksource_mark_unstable(&clocksource_tsc_early);
1160         clocksource_mark_unstable(&clocksource_tsc);
1161 }
1162 
1163 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1164 
1165 static void __init check_system_tsc_reliable(void)
1166 {
1167 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1168         if (is_geode_lx()) {
1169                 /* RTSC counts during suspend */
1170 #define RTSC_SUSP 0x100
1171                 unsigned long res_low, res_high;
1172 
1173                 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1174                 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1175                 if (res_low & RTSC_SUSP)
1176                         tsc_clocksource_reliable = 1;
1177         }
1178 #endif
1179         if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1180                 tsc_clocksource_reliable = 1;
1181 }
1182 
1183 /*
1184  * Make an educated guess if the TSC is trustworthy and synchronized
1185  * over all CPUs.
1186  */
1187 int unsynchronized_tsc(void)
1188 {
1189         if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1190                 return 1;
1191 
1192 #ifdef CONFIG_SMP
1193         if (apic_is_clustered_box())
1194                 return 1;
1195 #endif
1196 
1197         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1198                 return 0;
1199 
1200         if (tsc_clocksource_reliable)
1201                 return 0;
1202         /*
1203          * Intel systems are normally all synchronized.
1204          * Exceptions must mark TSC as unstable:
1205          */
1206         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1207                 /* assume multi socket systems are not synchronized: */
1208                 if (num_possible_cpus() > 1)
1209                         return 1;
1210         }
1211 
1212         return 0;
1213 }
1214 
1215 /*
1216  * Convert ART to TSC given numerator/denominator found in detect_art()
1217  */
1218 struct system_counterval_t convert_art_to_tsc(u64 art)
1219 {
1220         u64 tmp, res, rem;
1221 
1222         rem = do_div(art, art_to_tsc_denominator);
1223 
1224         res = art * art_to_tsc_numerator;
1225         tmp = rem * art_to_tsc_numerator;
1226 
1227         do_div(tmp, art_to_tsc_denominator);
1228         res += tmp + art_to_tsc_offset;
1229 
1230         return (struct system_counterval_t) {.cs = art_related_clocksource,
1231                         .cycles = res};
1232 }
1233 EXPORT_SYMBOL(convert_art_to_tsc);
1234 
1235 /**
1236  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1237  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1238  *
1239  * PTM requires all timestamps to be in units of nanoseconds. When user
1240  * software requests a cross-timestamp, this function converts system timestamp
1241  * to TSC.
1242  *
1243  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1244  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1245  * that this flag is set before conversion to TSC is attempted.
1246  *
1247  * Return:
1248  * struct system_counterval_t - system counter value with the pointer to the
1249  *      corresponding clocksource
1250  *      @cycles:        System counter value
1251  *      @cs:            Clocksource corresponding to system counter value. Used
1252  *                      by timekeeping code to verify comparibility of two cycle
1253  *                      values.
1254  */
1255 
1256 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1257 {
1258         u64 tmp, res, rem;
1259 
1260         rem = do_div(art_ns, USEC_PER_SEC);
1261 
1262         res = art_ns * tsc_khz;
1263         tmp = rem * tsc_khz;
1264 
1265         do_div(tmp, USEC_PER_SEC);
1266         res += tmp;
1267 
1268         return (struct system_counterval_t) { .cs = art_related_clocksource,
1269                                               .cycles = res};
1270 }
1271 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1272 
1273 
1274 static void tsc_refine_calibration_work(struct work_struct *work);
1275 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1276 /**
1277  * tsc_refine_calibration_work - Further refine tsc freq calibration
1278  * @work - ignored.
1279  *
1280  * This functions uses delayed work over a period of a
1281  * second to further refine the TSC freq value. Since this is
1282  * timer based, instead of loop based, we don't block the boot
1283  * process while this longer calibration is done.
1284  *
1285  * If there are any calibration anomalies (too many SMIs, etc),
1286  * or the refined calibration is off by 1% of the fast early
1287  * calibration, we throw out the new calibration and use the
1288  * early calibration.
1289  */
1290 static void tsc_refine_calibration_work(struct work_struct *work)
1291 {
1292         static u64 tsc_start = ULLONG_MAX, ref_start;
1293         static int hpet;
1294         u64 tsc_stop, ref_stop, delta;
1295         unsigned long freq;
1296         int cpu;
1297 
1298         /* Don't bother refining TSC on unstable systems */
1299         if (tsc_unstable)
1300                 goto unreg;
1301 
1302         /*
1303          * Since the work is started early in boot, we may be
1304          * delayed the first time we expire. So set the workqueue
1305          * again once we know timers are working.
1306          */
1307         if (tsc_start == ULLONG_MAX) {
1308 restart:
1309                 /*
1310                  * Only set hpet once, to avoid mixing hardware
1311                  * if the hpet becomes enabled later.
1312                  */
1313                 hpet = is_hpet_enabled();
1314                 tsc_start = tsc_read_refs(&ref_start, hpet);
1315                 schedule_delayed_work(&tsc_irqwork, HZ);
1316                 return;
1317         }
1318 
1319         tsc_stop = tsc_read_refs(&ref_stop, hpet);
1320 
1321         /* hpet or pmtimer available ? */
1322         if (ref_start == ref_stop)
1323                 goto out;
1324 
1325         /* Check, whether the sampling was disturbed */
1326         if (tsc_stop == ULLONG_MAX)
1327                 goto restart;
1328 
1329         delta = tsc_stop - tsc_start;
1330         delta *= 1000000LL;
1331         if (hpet)
1332                 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1333         else
1334                 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1335 
1336         /* Make sure we're within 1% */
1337         if (abs(tsc_khz - freq) > tsc_khz/100)
1338                 goto out;
1339 
1340         tsc_khz = freq;
1341         pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1342                 (unsigned long)tsc_khz / 1000,
1343                 (unsigned long)tsc_khz % 1000);
1344 
1345         /* Inform the TSC deadline clockevent devices about the recalibration */
1346         lapic_update_tsc_freq();
1347 
1348         /* Update the sched_clock() rate to match the clocksource one */
1349         for_each_possible_cpu(cpu)
1350                 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1351 
1352 out:
1353         if (tsc_unstable)
1354                 goto unreg;
1355 
1356         if (boot_cpu_has(X86_FEATURE_ART))
1357                 art_related_clocksource = &clocksource_tsc;
1358         clocksource_register_khz(&clocksource_tsc, tsc_khz);
1359 unreg:
1360         clocksource_unregister(&clocksource_tsc_early);
1361 }
1362 
1363 
1364 static int __init init_tsc_clocksource(void)
1365 {
1366         if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1367                 return 0;
1368 
1369         if (tsc_unstable)
1370                 goto unreg;
1371 
1372         if (tsc_clocksource_reliable || no_tsc_watchdog)
1373                 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1374 
1375         if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1376                 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1377 
1378         /*
1379          * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1380          * the refined calibration and directly register it as a clocksource.
1381          */
1382         if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1383                 if (boot_cpu_has(X86_FEATURE_ART))
1384                         art_related_clocksource = &clocksource_tsc;
1385                 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1386 unreg:
1387                 clocksource_unregister(&clocksource_tsc_early);
1388                 return 0;
1389         }
1390 
1391         schedule_delayed_work(&tsc_irqwork, 0);
1392         return 0;
1393 }
1394 /*
1395  * We use device_initcall here, to ensure we run after the hpet
1396  * is fully initialized, which may occur at fs_initcall time.
1397  */
1398 device_initcall(init_tsc_clocksource);
1399 
1400 static bool __init determine_cpu_tsc_frequencies(bool early)
1401 {
1402         /* Make sure that cpu and tsc are not already calibrated */
1403         WARN_ON(cpu_khz || tsc_khz);
1404 
1405         if (early) {
1406                 cpu_khz = x86_platform.calibrate_cpu();
1407                 tsc_khz = x86_platform.calibrate_tsc();
1408         } else {
1409                 /* We should not be here with non-native cpu calibration */
1410                 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1411                 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1412         }
1413 
1414         /*
1415          * Trust non-zero tsc_khz as authoritative,
1416          * and use it to sanity check cpu_khz,
1417          * which will be off if system timer is off.
1418          */
1419         if (tsc_khz == 0)
1420                 tsc_khz = cpu_khz;
1421         else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1422                 cpu_khz = tsc_khz;
1423 
1424         if (tsc_khz == 0)
1425                 return false;
1426 
1427         pr_info("Detected %lu.%03lu MHz processor\n",
1428                 (unsigned long)cpu_khz / KHZ,
1429                 (unsigned long)cpu_khz % KHZ);
1430 
1431         if (cpu_khz != tsc_khz) {
1432                 pr_info("Detected %lu.%03lu MHz TSC",
1433                         (unsigned long)tsc_khz / KHZ,
1434                         (unsigned long)tsc_khz % KHZ);
1435         }
1436         return true;
1437 }
1438 
1439 static unsigned long __init get_loops_per_jiffy(void)
1440 {
1441         u64 lpj = (u64)tsc_khz * KHZ;
1442 
1443         do_div(lpj, HZ);
1444         return lpj;
1445 }
1446 
1447 static void __init tsc_enable_sched_clock(void)
1448 {
1449         /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1450         tsc_store_and_check_tsc_adjust(true);
1451         cyc2ns_init_boot_cpu();
1452         static_branch_enable(&__use_tsc);
1453 }
1454 
1455 void __init tsc_early_init(void)
1456 {
1457         if (!boot_cpu_has(X86_FEATURE_TSC))
1458                 return;
1459         /* Don't change UV TSC multi-chassis synchronization */
1460         if (is_early_uv_system())
1461                 return;
1462         if (!determine_cpu_tsc_frequencies(true))
1463                 return;
1464         loops_per_jiffy = get_loops_per_jiffy();
1465 
1466         tsc_enable_sched_clock();
1467 }
1468 
1469 void __init tsc_init(void)
1470 {
1471         /*
1472          * native_calibrate_cpu_early can only calibrate using methods that are
1473          * available early in boot.
1474          */
1475         if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1476                 x86_platform.calibrate_cpu = native_calibrate_cpu;
1477 
1478         if (!boot_cpu_has(X86_FEATURE_TSC)) {
1479                 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1480                 return;
1481         }
1482 
1483         if (!tsc_khz) {
1484                 /* We failed to determine frequencies earlier, try again */
1485                 if (!determine_cpu_tsc_frequencies(false)) {
1486                         mark_tsc_unstable("could not calculate TSC khz");
1487                         setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1488                         return;
1489                 }
1490                 tsc_enable_sched_clock();
1491         }
1492 
1493         cyc2ns_init_secondary_cpus();
1494 
1495         if (!no_sched_irq_time)
1496                 enable_sched_clock_irqtime();
1497 
1498         lpj_fine = get_loops_per_jiffy();
1499         use_tsc_delay();
1500 
1501         check_system_tsc_reliable();
1502 
1503         if (unsynchronized_tsc()) {
1504                 mark_tsc_unstable("TSCs unsynchronized");
1505                 return;
1506         }
1507 
1508         if (tsc_clocksource_reliable || no_tsc_watchdog)
1509                 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1510 
1511         clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1512         detect_art();
1513 }
1514 
1515 #ifdef CONFIG_SMP
1516 /*
1517  * If we have a constant TSC and are using the TSC for the delay loop,
1518  * we can skip clock calibration if another cpu in the same socket has already
1519  * been calibrated. This assumes that CONSTANT_TSC applies to all
1520  * cpus in the socket - this should be a safe assumption.
1521  */
1522 unsigned long calibrate_delay_is_known(void)
1523 {
1524         int sibling, cpu = smp_processor_id();
1525         int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1526         const struct cpumask *mask = topology_core_cpumask(cpu);
1527 
1528         if (!constant_tsc || !mask)
1529                 return 0;
1530 
1531         sibling = cpumask_any_but(mask, cpu);
1532         if (sibling < nr_cpu_ids)
1533                 return cpu_data(sibling).loops_per_jiffy;
1534         return 0;
1535 }
1536 #endif

/* [<][>][^][v][top][bottom][index][help] */