root/arch/x86/kernel/espfix_64.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. espfix_base_addr
  2. init_espfix_random
  3. init_espfix_bsp
  4. init_espfix_ap

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* ----------------------------------------------------------------------- *
   3  *
   4  *   Copyright 2014 Intel Corporation; author: H. Peter Anvin
   5  *
   6  * ----------------------------------------------------------------------- */
   7 
   8 /*
   9  * The IRET instruction, when returning to a 16-bit segment, only
  10  * restores the bottom 16 bits of the user space stack pointer.  This
  11  * causes some 16-bit software to break, but it also leaks kernel state
  12  * to user space.
  13  *
  14  * This works around this by creating percpu "ministacks", each of which
  15  * is mapped 2^16 times 64K apart.  When we detect that the return SS is
  16  * on the LDT, we copy the IRET frame to the ministack and use the
  17  * relevant alias to return to userspace.  The ministacks are mapped
  18  * readonly, so if the IRET fault we promote #GP to #DF which is an IST
  19  * vector and thus has its own stack; we then do the fixup in the #DF
  20  * handler.
  21  *
  22  * This file sets up the ministacks and the related page tables.  The
  23  * actual ministack invocation is in entry_64.S.
  24  */
  25 
  26 #include <linux/init.h>
  27 #include <linux/init_task.h>
  28 #include <linux/kernel.h>
  29 #include <linux/percpu.h>
  30 #include <linux/gfp.h>
  31 #include <linux/random.h>
  32 #include <asm/pgtable.h>
  33 #include <asm/pgalloc.h>
  34 #include <asm/setup.h>
  35 #include <asm/espfix.h>
  36 
  37 /*
  38  * Note: we only need 6*8 = 48 bytes for the espfix stack, but round
  39  * it up to a cache line to avoid unnecessary sharing.
  40  */
  41 #define ESPFIX_STACK_SIZE       (8*8UL)
  42 #define ESPFIX_STACKS_PER_PAGE  (PAGE_SIZE/ESPFIX_STACK_SIZE)
  43 
  44 /* There is address space for how many espfix pages? */
  45 #define ESPFIX_PAGE_SPACE       (1UL << (P4D_SHIFT-PAGE_SHIFT-16))
  46 
  47 #define ESPFIX_MAX_CPUS         (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
  48 #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
  49 # error "Need more virtual address space for the ESPFIX hack"
  50 #endif
  51 
  52 #define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO)
  53 
  54 /* This contains the *bottom* address of the espfix stack */
  55 DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
  56 DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);
  57 
  58 /* Initialization mutex - should this be a spinlock? */
  59 static DEFINE_MUTEX(espfix_init_mutex);
  60 
  61 /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
  62 #define ESPFIX_MAX_PAGES  DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
  63 static void *espfix_pages[ESPFIX_MAX_PAGES];
  64 
  65 static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
  66         __aligned(PAGE_SIZE);
  67 
  68 static unsigned int page_random, slot_random;
  69 
  70 /*
  71  * This returns the bottom address of the espfix stack for a specific CPU.
  72  * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
  73  * we have to account for some amount of padding at the end of each page.
  74  */
  75 static inline unsigned long espfix_base_addr(unsigned int cpu)
  76 {
  77         unsigned long page, slot;
  78         unsigned long addr;
  79 
  80         page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random;
  81         slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE;
  82         addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE);
  83         addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16);
  84         addr += ESPFIX_BASE_ADDR;
  85         return addr;
  86 }
  87 
  88 #define PTE_STRIDE        (65536/PAGE_SIZE)
  89 #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
  90 #define ESPFIX_PMD_CLONES PTRS_PER_PMD
  91 #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
  92 
  93 #define PGTABLE_PROT      ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
  94 
  95 static void init_espfix_random(void)
  96 {
  97         unsigned long rand;
  98 
  99         /*
 100          * This is run before the entropy pools are initialized,
 101          * but this is hopefully better than nothing.
 102          */
 103         if (!arch_get_random_long(&rand)) {
 104                 /* The constant is an arbitrary large prime */
 105                 rand = rdtsc();
 106                 rand *= 0xc345c6b72fd16123UL;
 107         }
 108 
 109         slot_random = rand % ESPFIX_STACKS_PER_PAGE;
 110         page_random = (rand / ESPFIX_STACKS_PER_PAGE)
 111                 & (ESPFIX_PAGE_SPACE - 1);
 112 }
 113 
 114 void __init init_espfix_bsp(void)
 115 {
 116         pgd_t *pgd;
 117         p4d_t *p4d;
 118 
 119         /* Install the espfix pud into the kernel page directory */
 120         pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)];
 121         p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR);
 122         p4d_populate(&init_mm, p4d, espfix_pud_page);
 123 
 124         /* Randomize the locations */
 125         init_espfix_random();
 126 
 127         /* The rest is the same as for any other processor */
 128         init_espfix_ap(0);
 129 }
 130 
 131 void init_espfix_ap(int cpu)
 132 {
 133         unsigned int page;
 134         unsigned long addr;
 135         pud_t pud, *pud_p;
 136         pmd_t pmd, *pmd_p;
 137         pte_t pte, *pte_p;
 138         int n, node;
 139         void *stack_page;
 140         pteval_t ptemask;
 141 
 142         /* We only have to do this once... */
 143         if (likely(per_cpu(espfix_stack, cpu)))
 144                 return;         /* Already initialized */
 145 
 146         addr = espfix_base_addr(cpu);
 147         page = cpu/ESPFIX_STACKS_PER_PAGE;
 148 
 149         /* Did another CPU already set this up? */
 150         stack_page = READ_ONCE(espfix_pages[page]);
 151         if (likely(stack_page))
 152                 goto done;
 153 
 154         mutex_lock(&espfix_init_mutex);
 155 
 156         /* Did we race on the lock? */
 157         stack_page = READ_ONCE(espfix_pages[page]);
 158         if (stack_page)
 159                 goto unlock_done;
 160 
 161         node = cpu_to_node(cpu);
 162         ptemask = __supported_pte_mask;
 163 
 164         pud_p = &espfix_pud_page[pud_index(addr)];
 165         pud = *pud_p;
 166         if (!pud_present(pud)) {
 167                 struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
 168 
 169                 pmd_p = (pmd_t *)page_address(page);
 170                 pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask));
 171                 paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT);
 172                 for (n = 0; n < ESPFIX_PUD_CLONES; n++)
 173                         set_pud(&pud_p[n], pud);
 174         }
 175 
 176         pmd_p = pmd_offset(&pud, addr);
 177         pmd = *pmd_p;
 178         if (!pmd_present(pmd)) {
 179                 struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
 180 
 181                 pte_p = (pte_t *)page_address(page);
 182                 pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask));
 183                 paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT);
 184                 for (n = 0; n < ESPFIX_PMD_CLONES; n++)
 185                         set_pmd(&pmd_p[n], pmd);
 186         }
 187 
 188         pte_p = pte_offset_kernel(&pmd, addr);
 189         stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0));
 190         /*
 191          * __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since
 192          * this is mapped to userspace.
 193          */
 194         pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask));
 195         for (n = 0; n < ESPFIX_PTE_CLONES; n++)
 196                 set_pte(&pte_p[n*PTE_STRIDE], pte);
 197 
 198         /* Job is done for this CPU and any CPU which shares this page */
 199         WRITE_ONCE(espfix_pages[page], stack_page);
 200 
 201 unlock_done:
 202         mutex_unlock(&espfix_init_mutex);
 203 done:
 204         per_cpu(espfix_stack, cpu) = addr;
 205         per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page
 206                                       + (addr & ~PAGE_MASK);
 207 }

/* [<][>][^][v][top][bottom][index][help] */