root/arch/x86/kernel/tsc_msr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cpu_khz_from_msr

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * TSC frequency enumeration via MSR
   4  *
   5  * Copyright (C) 2013, 2018 Intel Corporation
   6  * Author: Bin Gao <bin.gao@intel.com>
   7  */
   8 
   9 #include <linux/kernel.h>
  10 
  11 #include <asm/apic.h>
  12 #include <asm/cpu_device_id.h>
  13 #include <asm/intel-family.h>
  14 #include <asm/msr.h>
  15 #include <asm/param.h>
  16 #include <asm/tsc.h>
  17 
  18 #define MAX_NUM_FREQS   16 /* 4 bits to select the frequency */
  19 
  20 /*
  21  * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
  22  * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
  23  * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
  24  * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
  25  * unclear if the root PLL outputs are used directly by the CPU clock PLL or
  26  * if there is another PLL in between.
  27  * This does not matter though, we can model the chain of PLLs as a single PLL
  28  * with a quotient equal to the quotients of all PLLs in the chain multiplied.
  29  * So we can create a simplified model of the CPU clock setup using a reference
  30  * clock of 100 MHz plus a quotient which gets us as close to the frequency
  31  * from the SDM as possible.
  32  * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
  33  * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
  34  */
  35 #define TSC_REFERENCE_KHZ 100000
  36 
  37 struct muldiv {
  38         u32 multiplier;
  39         u32 divider;
  40 };
  41 
  42 /*
  43  * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
  44  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
  45  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
  46  * so we need manually differentiate SoC families. This is what the
  47  * field use_msr_plat does.
  48  */
  49 struct freq_desc {
  50         bool use_msr_plat;
  51         struct muldiv muldiv[MAX_NUM_FREQS];
  52         /*
  53          * Some CPU frequencies in the SDM do not map to known PLL freqs, in
  54          * that case the muldiv array is empty and the freqs array is used.
  55          */
  56         u32 freqs[MAX_NUM_FREQS];
  57         u32 mask;
  58 };
  59 
  60 /*
  61  * Penwell and Clovertrail use spread spectrum clock,
  62  * so the freq number is not exactly the same as reported
  63  * by MSR based on SDM.
  64  */
  65 static const struct freq_desc freq_desc_pnw = {
  66         .use_msr_plat = false,
  67         .freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
  68         .mask = 0x07,
  69 };
  70 
  71 static const struct freq_desc freq_desc_clv = {
  72         .use_msr_plat = false,
  73         .freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
  74         .mask = 0x07,
  75 };
  76 
  77 /*
  78  * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
  79  *  000:   100 *  5 /  6  =  83.3333 MHz
  80  *  001:   100 *  1 /  1  = 100.0000 MHz
  81  *  010:   100 *  4 /  3  = 133.3333 MHz
  82  *  011:   100 *  7 /  6  = 116.6667 MHz
  83  *  100:   100 *  4 /  5  =  80.0000 MHz
  84  */
  85 static const struct freq_desc freq_desc_byt = {
  86         .use_msr_plat = true,
  87         .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
  88                     { 4, 5 } },
  89         .mask = 0x07,
  90 };
  91 
  92 /*
  93  * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
  94  * 0000:   100 *  5 /  6  =  83.3333 MHz
  95  * 0001:   100 *  1 /  1  = 100.0000 MHz
  96  * 0010:   100 *  4 /  3  = 133.3333 MHz
  97  * 0011:   100 *  7 /  6  = 116.6667 MHz
  98  * 0100:   100 *  4 /  5  =  80.0000 MHz
  99  * 0101:   100 * 14 / 15  =  93.3333 MHz
 100  * 0110:   100 *  9 / 10  =  90.0000 MHz
 101  * 0111:   100 *  8 /  9  =  88.8889 MHz
 102  * 1000:   100 *  7 /  8  =  87.5000 MHz
 103  */
 104 static const struct freq_desc freq_desc_cht = {
 105         .use_msr_plat = true,
 106         .muldiv = { { 5, 6 }, {  1,  1 }, { 4,  3 }, { 7, 6 },
 107                     { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
 108                     { 7, 8 } },
 109         .mask = 0x0f,
 110 };
 111 
 112 /*
 113  * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
 114  * 0001:   100 *  1 /  1  = 100.0000 MHz
 115  * 0010:   100 *  4 /  3  = 133.3333 MHz
 116  */
 117 static const struct freq_desc freq_desc_tng = {
 118         .use_msr_plat = true,
 119         .muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
 120         .mask = 0x07,
 121 };
 122 
 123 /*
 124  * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
 125  * 0000:   100 *  5 /  6  =  83.3333 MHz
 126  * 0001:   100 *  1 /  1  = 100.0000 MHz
 127  * 0010:   100 *  4 /  3  = 133.3333 MHz
 128  * 0011:   100 *  1 /  1  = 100.0000 MHz
 129  */
 130 static const struct freq_desc freq_desc_ann = {
 131         .use_msr_plat = true,
 132         .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
 133         .mask = 0x0f,
 134 };
 135 
 136 /* 24 MHz crystal? : 24 * 13 / 4 = 78 MHz */
 137 static const struct freq_desc freq_desc_lgm = {
 138         .use_msr_plat = true,
 139         .freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
 140         .mask = 0x0f,
 141 };
 142 
 143 static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
 144         INTEL_CPU_FAM6(ATOM_SALTWELL_MID,       freq_desc_pnw),
 145         INTEL_CPU_FAM6(ATOM_SALTWELL_TABLET,    freq_desc_clv),
 146         INTEL_CPU_FAM6(ATOM_SILVERMONT,         freq_desc_byt),
 147         INTEL_CPU_FAM6(ATOM_SILVERMONT_MID,     freq_desc_tng),
 148         INTEL_CPU_FAM6(ATOM_AIRMONT,            freq_desc_cht),
 149         INTEL_CPU_FAM6(ATOM_AIRMONT_MID,        freq_desc_ann),
 150         INTEL_CPU_FAM6(ATOM_AIRMONT_NP,         freq_desc_lgm),
 151         {}
 152 };
 153 
 154 /*
 155  * MSR-based CPU/TSC frequency discovery for certain CPUs.
 156  *
 157  * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
 158  * Return processor base frequency in KHz, or 0 on failure.
 159  */
 160 unsigned long cpu_khz_from_msr(void)
 161 {
 162         u32 lo, hi, ratio, freq, tscref;
 163         const struct freq_desc *freq_desc;
 164         const struct x86_cpu_id *id;
 165         const struct muldiv *md;
 166         unsigned long res;
 167         int index;
 168 
 169         id = x86_match_cpu(tsc_msr_cpu_ids);
 170         if (!id)
 171                 return 0;
 172 
 173         freq_desc = (struct freq_desc *)id->driver_data;
 174         if (freq_desc->use_msr_plat) {
 175                 rdmsr(MSR_PLATFORM_INFO, lo, hi);
 176                 ratio = (lo >> 8) & 0xff;
 177         } else {
 178                 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 179                 ratio = (hi >> 8) & 0x1f;
 180         }
 181 
 182         /* Get FSB FREQ ID */
 183         rdmsr(MSR_FSB_FREQ, lo, hi);
 184         index = lo & freq_desc->mask;
 185         md = &freq_desc->muldiv[index];
 186 
 187         /*
 188          * Note this also catches cases where the index points to an unpopulated
 189          * part of muldiv, in that case the else will set freq and res to 0.
 190          */
 191         if (md->divider) {
 192                 tscref = TSC_REFERENCE_KHZ * md->multiplier;
 193                 freq = DIV_ROUND_CLOSEST(tscref, md->divider);
 194                 /*
 195                  * Multiplying by ratio before the division has better
 196                  * accuracy than just calculating freq * ratio.
 197                  */
 198                 res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
 199         } else {
 200                 freq = freq_desc->freqs[index];
 201                 res = freq * ratio;
 202         }
 203 
 204         if (freq == 0)
 205                 pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
 206 
 207 #ifdef CONFIG_X86_LOCAL_APIC
 208         lapic_timer_period = (freq * 1000) / HZ;
 209 #endif
 210 
 211         /*
 212          * TSC frequency determined by MSR is always considered "known"
 213          * because it is reported by HW.
 214          * Another fact is that on MSR capable platforms, PIT/HPET is
 215          * generally not available so calibration won't work at all.
 216          */
 217         setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 218 
 219         /*
 220          * Unfortunately there is no way for hardware to tell whether the
 221          * TSC is reliable.  We were told by silicon design team that TSC
 222          * on Atom SoCs are always "reliable". TSC is also the only
 223          * reliable clocksource on these SoCs (HPET is either not present
 224          * or not functional) so mark TSC reliable which removes the
 225          * requirement for a watchdog clocksource.
 226          */
 227         setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 228 
 229         return res;
 230 }

/* [<][>][^][v][top][bottom][index][help] */