root/arch/x86/kernel/setup.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. copy_edd
  2. copy_edd
  3. extend_brk
  4. cleanup_highmap
  5. reserve_brk
  6. get_ramdisk_image
  7. get_ramdisk_size
  8. relocate_initrd
  9. early_reserve_initrd
  10. reserve_initrd
  11. early_reserve_initrd
  12. reserve_initrd
  13. parse_setup_data
  14. memblock_x86_reserve_range_setup_data
  15. reserve_crashkernel_low
  16. reserve_crashkernel
  17. reserve_crashkernel
  18. reserve_standard_io_resources
  19. reserve_ibft_region
  20. snb_gfx_workaround_needed
  21. trim_snb_memory
  22. trim_platform_memory_ranges
  23. trim_bios_range
  24. e820_add_kernel_range
  25. parse_reservelow
  26. trim_low_memory_range
  27. dump_kernel_offset
  28. setup_arch
  29. i386_reserve_resources
  30. register_kernel_offset_dumper

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  Copyright (C) 1995  Linus Torvalds
   4  *
   5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6  *
   7  *  Memory region support
   8  *      David Parsons <orc@pell.chi.il.us>, July-August 1999
   9  *
  10  *  Added E820 sanitization routine (removes overlapping memory regions);
  11  *  Brian Moyle <bmoyle@mvista.com>, February 2001
  12  *
  13  * Moved CPU detection code to cpu/${cpu}.c
  14  *    Patrick Mochel <mochel@osdl.org>, March 2002
  15  *
  16  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  17  *  Alex Achenbach <xela@slit.de>, December 2002.
  18  *
  19  */
  20 
  21 /*
  22  * This file handles the architecture-dependent parts of initialization
  23  */
  24 
  25 #include <linux/sched.h>
  26 #include <linux/mm.h>
  27 #include <linux/mmzone.h>
  28 #include <linux/screen_info.h>
  29 #include <linux/ioport.h>
  30 #include <linux/acpi.h>
  31 #include <linux/sfi.h>
  32 #include <linux/apm_bios.h>
  33 #include <linux/initrd.h>
  34 #include <linux/memblock.h>
  35 #include <linux/seq_file.h>
  36 #include <linux/console.h>
  37 #include <linux/root_dev.h>
  38 #include <linux/highmem.h>
  39 #include <linux/export.h>
  40 #include <linux/efi.h>
  41 #include <linux/init.h>
  42 #include <linux/edd.h>
  43 #include <linux/iscsi_ibft.h>
  44 #include <linux/nodemask.h>
  45 #include <linux/kexec.h>
  46 #include <linux/dmi.h>
  47 #include <linux/pfn.h>
  48 #include <linux/pci.h>
  49 #include <asm/pci-direct.h>
  50 #include <linux/init_ohci1394_dma.h>
  51 #include <linux/kvm_para.h>
  52 #include <linux/dma-contiguous.h>
  53 #include <xen/xen.h>
  54 #include <uapi/linux/mount.h>
  55 
  56 #include <linux/errno.h>
  57 #include <linux/kernel.h>
  58 #include <linux/stddef.h>
  59 #include <linux/unistd.h>
  60 #include <linux/ptrace.h>
  61 #include <linux/user.h>
  62 #include <linux/delay.h>
  63 
  64 #include <linux/kallsyms.h>
  65 #include <linux/cpufreq.h>
  66 #include <linux/dma-mapping.h>
  67 #include <linux/ctype.h>
  68 #include <linux/uaccess.h>
  69 
  70 #include <linux/percpu.h>
  71 #include <linux/crash_dump.h>
  72 #include <linux/tboot.h>
  73 #include <linux/jiffies.h>
  74 #include <linux/mem_encrypt.h>
  75 #include <linux/sizes.h>
  76 
  77 #include <linux/usb/xhci-dbgp.h>
  78 #include <video/edid.h>
  79 
  80 #include <asm/mtrr.h>
  81 #include <asm/apic.h>
  82 #include <asm/realmode.h>
  83 #include <asm/e820/api.h>
  84 #include <asm/mpspec.h>
  85 #include <asm/setup.h>
  86 #include <asm/efi.h>
  87 #include <asm/timer.h>
  88 #include <asm/i8259.h>
  89 #include <asm/sections.h>
  90 #include <asm/io_apic.h>
  91 #include <asm/ist.h>
  92 #include <asm/setup_arch.h>
  93 #include <asm/bios_ebda.h>
  94 #include <asm/cacheflush.h>
  95 #include <asm/processor.h>
  96 #include <asm/bugs.h>
  97 #include <asm/kasan.h>
  98 
  99 #include <asm/vsyscall.h>
 100 #include <asm/cpu.h>
 101 #include <asm/desc.h>
 102 #include <asm/dma.h>
 103 #include <asm/iommu.h>
 104 #include <asm/gart.h>
 105 #include <asm/mmu_context.h>
 106 #include <asm/proto.h>
 107 
 108 #include <asm/paravirt.h>
 109 #include <asm/hypervisor.h>
 110 #include <asm/olpc_ofw.h>
 111 
 112 #include <asm/percpu.h>
 113 #include <asm/topology.h>
 114 #include <asm/apicdef.h>
 115 #include <asm/amd_nb.h>
 116 #include <asm/mce.h>
 117 #include <asm/alternative.h>
 118 #include <asm/prom.h>
 119 #include <asm/microcode.h>
 120 #include <asm/kaslr.h>
 121 #include <asm/unwind.h>
 122 
 123 /*
 124  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 125  * max_pfn_mapped:     highest direct mapped pfn over 4GB
 126  *
 127  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 128  * represented by pfn_mapped
 129  */
 130 unsigned long max_low_pfn_mapped;
 131 unsigned long max_pfn_mapped;
 132 
 133 #ifdef CONFIG_DMI
 134 RESERVE_BRK(dmi_alloc, 65536);
 135 #endif
 136 
 137 
 138 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 139 unsigned long _brk_end = (unsigned long)__brk_base;
 140 
 141 struct boot_params boot_params;
 142 
 143 /*
 144  * Machine setup..
 145  */
 146 static struct resource data_resource = {
 147         .name   = "Kernel data",
 148         .start  = 0,
 149         .end    = 0,
 150         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 151 };
 152 
 153 static struct resource code_resource = {
 154         .name   = "Kernel code",
 155         .start  = 0,
 156         .end    = 0,
 157         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 158 };
 159 
 160 static struct resource bss_resource = {
 161         .name   = "Kernel bss",
 162         .start  = 0,
 163         .end    = 0,
 164         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 165 };
 166 
 167 
 168 #ifdef CONFIG_X86_32
 169 /* cpu data as detected by the assembly code in head_32.S */
 170 struct cpuinfo_x86 new_cpu_data;
 171 
 172 /* common cpu data for all cpus */
 173 struct cpuinfo_x86 boot_cpu_data __read_mostly;
 174 EXPORT_SYMBOL(boot_cpu_data);
 175 
 176 unsigned int def_to_bigsmp;
 177 
 178 /* for MCA, but anyone else can use it if they want */
 179 unsigned int machine_id;
 180 unsigned int machine_submodel_id;
 181 unsigned int BIOS_revision;
 182 
 183 struct apm_info apm_info;
 184 EXPORT_SYMBOL(apm_info);
 185 
 186 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 187         defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 188 struct ist_info ist_info;
 189 EXPORT_SYMBOL(ist_info);
 190 #else
 191 struct ist_info ist_info;
 192 #endif
 193 
 194 #else
 195 struct cpuinfo_x86 boot_cpu_data __read_mostly;
 196 EXPORT_SYMBOL(boot_cpu_data);
 197 #endif
 198 
 199 
 200 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 201 __visible unsigned long mmu_cr4_features __ro_after_init;
 202 #else
 203 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 204 #endif
 205 
 206 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 207 int bootloader_type, bootloader_version;
 208 
 209 /*
 210  * Setup options
 211  */
 212 struct screen_info screen_info;
 213 EXPORT_SYMBOL(screen_info);
 214 struct edid_info edid_info;
 215 EXPORT_SYMBOL_GPL(edid_info);
 216 
 217 extern int root_mountflags;
 218 
 219 unsigned long saved_video_mode;
 220 
 221 #define RAMDISK_IMAGE_START_MASK        0x07FF
 222 #define RAMDISK_PROMPT_FLAG             0x8000
 223 #define RAMDISK_LOAD_FLAG               0x4000
 224 
 225 static char __initdata command_line[COMMAND_LINE_SIZE];
 226 #ifdef CONFIG_CMDLINE_BOOL
 227 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 228 #endif
 229 
 230 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 231 struct edd edd;
 232 #ifdef CONFIG_EDD_MODULE
 233 EXPORT_SYMBOL(edd);
 234 #endif
 235 /**
 236  * copy_edd() - Copy the BIOS EDD information
 237  *              from boot_params into a safe place.
 238  *
 239  */
 240 static inline void __init copy_edd(void)
 241 {
 242      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 243             sizeof(edd.mbr_signature));
 244      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 245      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 246      edd.edd_info_nr = boot_params.eddbuf_entries;
 247 }
 248 #else
 249 static inline void __init copy_edd(void)
 250 {
 251 }
 252 #endif
 253 
 254 void * __init extend_brk(size_t size, size_t align)
 255 {
 256         size_t mask = align - 1;
 257         void *ret;
 258 
 259         BUG_ON(_brk_start == 0);
 260         BUG_ON(align & mask);
 261 
 262         _brk_end = (_brk_end + mask) & ~mask;
 263         BUG_ON((char *)(_brk_end + size) > __brk_limit);
 264 
 265         ret = (void *)_brk_end;
 266         _brk_end += size;
 267 
 268         memset(ret, 0, size);
 269 
 270         return ret;
 271 }
 272 
 273 #ifdef CONFIG_X86_32
 274 static void __init cleanup_highmap(void)
 275 {
 276 }
 277 #endif
 278 
 279 static void __init reserve_brk(void)
 280 {
 281         if (_brk_end > _brk_start)
 282                 memblock_reserve(__pa_symbol(_brk_start),
 283                                  _brk_end - _brk_start);
 284 
 285         /* Mark brk area as locked down and no longer taking any
 286            new allocations */
 287         _brk_start = 0;
 288 }
 289 
 290 u64 relocated_ramdisk;
 291 
 292 #ifdef CONFIG_BLK_DEV_INITRD
 293 
 294 static u64 __init get_ramdisk_image(void)
 295 {
 296         u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 297 
 298         ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 299 
 300         return ramdisk_image;
 301 }
 302 static u64 __init get_ramdisk_size(void)
 303 {
 304         u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 305 
 306         ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 307 
 308         return ramdisk_size;
 309 }
 310 
 311 static void __init relocate_initrd(void)
 312 {
 313         /* Assume only end is not page aligned */
 314         u64 ramdisk_image = get_ramdisk_image();
 315         u64 ramdisk_size  = get_ramdisk_size();
 316         u64 area_size     = PAGE_ALIGN(ramdisk_size);
 317 
 318         /* We need to move the initrd down into directly mapped mem */
 319         relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 320                                                    area_size, PAGE_SIZE);
 321 
 322         if (!relocated_ramdisk)
 323                 panic("Cannot find place for new RAMDISK of size %lld\n",
 324                       ramdisk_size);
 325 
 326         /* Note: this includes all the mem currently occupied by
 327            the initrd, we rely on that fact to keep the data intact. */
 328         memblock_reserve(relocated_ramdisk, area_size);
 329         initrd_start = relocated_ramdisk + PAGE_OFFSET;
 330         initrd_end   = initrd_start + ramdisk_size;
 331         printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 332                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 333 
 334         copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 335 
 336         printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 337                 " [mem %#010llx-%#010llx]\n",
 338                 ramdisk_image, ramdisk_image + ramdisk_size - 1,
 339                 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 340 }
 341 
 342 static void __init early_reserve_initrd(void)
 343 {
 344         /* Assume only end is not page aligned */
 345         u64 ramdisk_image = get_ramdisk_image();
 346         u64 ramdisk_size  = get_ramdisk_size();
 347         u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 348 
 349         if (!boot_params.hdr.type_of_loader ||
 350             !ramdisk_image || !ramdisk_size)
 351                 return;         /* No initrd provided by bootloader */
 352 
 353         memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 354 }
 355 static void __init reserve_initrd(void)
 356 {
 357         /* Assume only end is not page aligned */
 358         u64 ramdisk_image = get_ramdisk_image();
 359         u64 ramdisk_size  = get_ramdisk_size();
 360         u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 361         u64 mapped_size;
 362 
 363         if (!boot_params.hdr.type_of_loader ||
 364             !ramdisk_image || !ramdisk_size)
 365                 return;         /* No initrd provided by bootloader */
 366 
 367         initrd_start = 0;
 368 
 369         mapped_size = memblock_mem_size(max_pfn_mapped);
 370         if (ramdisk_size >= (mapped_size>>1))
 371                 panic("initrd too large to handle, "
 372                        "disabling initrd (%lld needed, %lld available)\n",
 373                        ramdisk_size, mapped_size>>1);
 374 
 375         printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 376                         ramdisk_end - 1);
 377 
 378         if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 379                                 PFN_DOWN(ramdisk_end))) {
 380                 /* All are mapped, easy case */
 381                 initrd_start = ramdisk_image + PAGE_OFFSET;
 382                 initrd_end = initrd_start + ramdisk_size;
 383                 return;
 384         }
 385 
 386         relocate_initrd();
 387 
 388         memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 389 }
 390 
 391 #else
 392 static void __init early_reserve_initrd(void)
 393 {
 394 }
 395 static void __init reserve_initrd(void)
 396 {
 397 }
 398 #endif /* CONFIG_BLK_DEV_INITRD */
 399 
 400 static void __init parse_setup_data(void)
 401 {
 402         struct setup_data *data;
 403         u64 pa_data, pa_next;
 404 
 405         pa_data = boot_params.hdr.setup_data;
 406         while (pa_data) {
 407                 u32 data_len, data_type;
 408 
 409                 data = early_memremap(pa_data, sizeof(*data));
 410                 data_len = data->len + sizeof(struct setup_data);
 411                 data_type = data->type;
 412                 pa_next = data->next;
 413                 early_memunmap(data, sizeof(*data));
 414 
 415                 switch (data_type) {
 416                 case SETUP_E820_EXT:
 417                         e820__memory_setup_extended(pa_data, data_len);
 418                         break;
 419                 case SETUP_DTB:
 420                         add_dtb(pa_data);
 421                         break;
 422                 case SETUP_EFI:
 423                         parse_efi_setup(pa_data, data_len);
 424                         break;
 425                 default:
 426                         break;
 427                 }
 428                 pa_data = pa_next;
 429         }
 430 }
 431 
 432 static void __init memblock_x86_reserve_range_setup_data(void)
 433 {
 434         struct setup_data *data;
 435         u64 pa_data;
 436 
 437         pa_data = boot_params.hdr.setup_data;
 438         while (pa_data) {
 439                 data = early_memremap(pa_data, sizeof(*data));
 440                 memblock_reserve(pa_data, sizeof(*data) + data->len);
 441                 pa_data = data->next;
 442                 early_memunmap(data, sizeof(*data));
 443         }
 444 }
 445 
 446 /*
 447  * --------- Crashkernel reservation ------------------------------
 448  */
 449 
 450 #ifdef CONFIG_KEXEC_CORE
 451 
 452 /* 16M alignment for crash kernel regions */
 453 #define CRASH_ALIGN             SZ_16M
 454 
 455 /*
 456  * Keep the crash kernel below this limit.
 457  *
 458  * On 32 bits earlier kernels would limit the kernel to the low 512 MiB
 459  * due to mapping restrictions.
 460  *
 461  * On 64bit, kdump kernel need be restricted to be under 64TB, which is
 462  * the upper limit of system RAM in 4-level paing mode. Since the kdump
 463  * jumping could be from 5-level to 4-level, the jumping will fail if
 464  * kernel is put above 64TB, and there's no way to detect the paging mode
 465  * of the kernel which will be loaded for dumping during the 1st kernel
 466  * bootup.
 467  */
 468 #ifdef CONFIG_X86_32
 469 # define CRASH_ADDR_LOW_MAX     SZ_512M
 470 # define CRASH_ADDR_HIGH_MAX    SZ_512M
 471 #else
 472 # define CRASH_ADDR_LOW_MAX     SZ_4G
 473 # define CRASH_ADDR_HIGH_MAX    SZ_64T
 474 #endif
 475 
 476 static int __init reserve_crashkernel_low(void)
 477 {
 478 #ifdef CONFIG_X86_64
 479         unsigned long long base, low_base = 0, low_size = 0;
 480         unsigned long total_low_mem;
 481         int ret;
 482 
 483         total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 484 
 485         /* crashkernel=Y,low */
 486         ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 487         if (ret) {
 488                 /*
 489                  * two parts from kernel/dma/swiotlb.c:
 490                  * -swiotlb size: user-specified with swiotlb= or default.
 491                  *
 492                  * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 493                  * to 8M for other buffers that may need to stay low too. Also
 494                  * make sure we allocate enough extra low memory so that we
 495                  * don't run out of DMA buffers for 32-bit devices.
 496                  */
 497                 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 498         } else {
 499                 /* passed with crashkernel=0,low ? */
 500                 if (!low_size)
 501                         return 0;
 502         }
 503 
 504         low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 505         if (!low_base) {
 506                 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 507                        (unsigned long)(low_size >> 20));
 508                 return -ENOMEM;
 509         }
 510 
 511         ret = memblock_reserve(low_base, low_size);
 512         if (ret) {
 513                 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 514                 return ret;
 515         }
 516 
 517         pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 518                 (unsigned long)(low_size >> 20),
 519                 (unsigned long)(low_base >> 20),
 520                 (unsigned long)(total_low_mem >> 20));
 521 
 522         crashk_low_res.start = low_base;
 523         crashk_low_res.end   = low_base + low_size - 1;
 524         insert_resource(&iomem_resource, &crashk_low_res);
 525 #endif
 526         return 0;
 527 }
 528 
 529 static void __init reserve_crashkernel(void)
 530 {
 531         unsigned long long crash_size, crash_base, total_mem;
 532         bool high = false;
 533         int ret;
 534 
 535         total_mem = memblock_phys_mem_size();
 536 
 537         /* crashkernel=XM */
 538         ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 539         if (ret != 0 || crash_size <= 0) {
 540                 /* crashkernel=X,high */
 541                 ret = parse_crashkernel_high(boot_command_line, total_mem,
 542                                              &crash_size, &crash_base);
 543                 if (ret != 0 || crash_size <= 0)
 544                         return;
 545                 high = true;
 546         }
 547 
 548         if (xen_pv_domain()) {
 549                 pr_info("Ignoring crashkernel for a Xen PV domain\n");
 550                 return;
 551         }
 552 
 553         /* 0 means: find the address automatically */
 554         if (!crash_base) {
 555                 /*
 556                  * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 557                  * crashkernel=x,high reserves memory over 4G, also allocates
 558                  * 256M extra low memory for DMA buffers and swiotlb.
 559                  * But the extra memory is not required for all machines.
 560                  * So try low memory first and fall back to high memory
 561                  * unless "crashkernel=size[KMG],high" is specified.
 562                  */
 563                 if (!high)
 564                         crash_base = memblock_find_in_range(CRASH_ALIGN,
 565                                                 CRASH_ADDR_LOW_MAX,
 566                                                 crash_size, CRASH_ALIGN);
 567                 if (!crash_base)
 568                         crash_base = memblock_find_in_range(CRASH_ALIGN,
 569                                                 CRASH_ADDR_HIGH_MAX,
 570                                                 crash_size, CRASH_ALIGN);
 571                 if (!crash_base) {
 572                         pr_info("crashkernel reservation failed - No suitable area found.\n");
 573                         return;
 574                 }
 575         } else {
 576                 unsigned long long start;
 577 
 578                 start = memblock_find_in_range(crash_base,
 579                                                crash_base + crash_size,
 580                                                crash_size, 1 << 20);
 581                 if (start != crash_base) {
 582                         pr_info("crashkernel reservation failed - memory is in use.\n");
 583                         return;
 584                 }
 585         }
 586         ret = memblock_reserve(crash_base, crash_size);
 587         if (ret) {
 588                 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 589                 return;
 590         }
 591 
 592         if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 593                 memblock_free(crash_base, crash_size);
 594                 return;
 595         }
 596 
 597         pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 598                 (unsigned long)(crash_size >> 20),
 599                 (unsigned long)(crash_base >> 20),
 600                 (unsigned long)(total_mem >> 20));
 601 
 602         crashk_res.start = crash_base;
 603         crashk_res.end   = crash_base + crash_size - 1;
 604         insert_resource(&iomem_resource, &crashk_res);
 605 }
 606 #else
 607 static void __init reserve_crashkernel(void)
 608 {
 609 }
 610 #endif
 611 
 612 static struct resource standard_io_resources[] = {
 613         { .name = "dma1", .start = 0x00, .end = 0x1f,
 614                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615         { .name = "pic1", .start = 0x20, .end = 0x21,
 616                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 617         { .name = "timer0", .start = 0x40, .end = 0x43,
 618                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 619         { .name = "timer1", .start = 0x50, .end = 0x53,
 620                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 621         { .name = "keyboard", .start = 0x60, .end = 0x60,
 622                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 623         { .name = "keyboard", .start = 0x64, .end = 0x64,
 624                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 625         { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 626                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 627         { .name = "pic2", .start = 0xa0, .end = 0xa1,
 628                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 629         { .name = "dma2", .start = 0xc0, .end = 0xdf,
 630                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 631         { .name = "fpu", .start = 0xf0, .end = 0xff,
 632                 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 633 };
 634 
 635 void __init reserve_standard_io_resources(void)
 636 {
 637         int i;
 638 
 639         /* request I/O space for devices used on all i[345]86 PCs */
 640         for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 641                 request_resource(&ioport_resource, &standard_io_resources[i]);
 642 
 643 }
 644 
 645 static __init void reserve_ibft_region(void)
 646 {
 647         unsigned long addr, size = 0;
 648 
 649         addr = find_ibft_region(&size);
 650 
 651         if (size)
 652                 memblock_reserve(addr, size);
 653 }
 654 
 655 static bool __init snb_gfx_workaround_needed(void)
 656 {
 657 #ifdef CONFIG_PCI
 658         int i;
 659         u16 vendor, devid;
 660         static const __initconst u16 snb_ids[] = {
 661                 0x0102,
 662                 0x0112,
 663                 0x0122,
 664                 0x0106,
 665                 0x0116,
 666                 0x0126,
 667                 0x010a,
 668         };
 669 
 670         /* Assume no if something weird is going on with PCI */
 671         if (!early_pci_allowed())
 672                 return false;
 673 
 674         vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 675         if (vendor != 0x8086)
 676                 return false;
 677 
 678         devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 679         for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 680                 if (devid == snb_ids[i])
 681                         return true;
 682 #endif
 683 
 684         return false;
 685 }
 686 
 687 /*
 688  * Sandy Bridge graphics has trouble with certain ranges, exclude
 689  * them from allocation.
 690  */
 691 static void __init trim_snb_memory(void)
 692 {
 693         static const __initconst unsigned long bad_pages[] = {
 694                 0x20050000,
 695                 0x20110000,
 696                 0x20130000,
 697                 0x20138000,
 698                 0x40004000,
 699         };
 700         int i;
 701 
 702         if (!snb_gfx_workaround_needed())
 703                 return;
 704 
 705         printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 706 
 707         /*
 708          * Reserve all memory below the 1 MB mark that has not
 709          * already been reserved.
 710          */
 711         memblock_reserve(0, 1<<20);
 712         
 713         for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 714                 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 715                         printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 716                                bad_pages[i]);
 717         }
 718 }
 719 
 720 /*
 721  * Here we put platform-specific memory range workarounds, i.e.
 722  * memory known to be corrupt or otherwise in need to be reserved on
 723  * specific platforms.
 724  *
 725  * If this gets used more widely it could use a real dispatch mechanism.
 726  */
 727 static void __init trim_platform_memory_ranges(void)
 728 {
 729         trim_snb_memory();
 730 }
 731 
 732 static void __init trim_bios_range(void)
 733 {
 734         /*
 735          * A special case is the first 4Kb of memory;
 736          * This is a BIOS owned area, not kernel ram, but generally
 737          * not listed as such in the E820 table.
 738          *
 739          * This typically reserves additional memory (64KiB by default)
 740          * since some BIOSes are known to corrupt low memory.  See the
 741          * Kconfig help text for X86_RESERVE_LOW.
 742          */
 743         e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 744 
 745         /*
 746          * special case: Some BIOSen report the PC BIOS
 747          * area (640->1Mb) as ram even though it is not.
 748          * take them out.
 749          */
 750         e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 751 
 752         e820__update_table(e820_table);
 753 }
 754 
 755 /* called before trim_bios_range() to spare extra sanitize */
 756 static void __init e820_add_kernel_range(void)
 757 {
 758         u64 start = __pa_symbol(_text);
 759         u64 size = __pa_symbol(_end) - start;
 760 
 761         /*
 762          * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 763          * attempt to fix it by adding the range. We may have a confused BIOS,
 764          * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 765          * exclude kernel range. If we really are running on top non-RAM,
 766          * we will crash later anyways.
 767          */
 768         if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 769                 return;
 770 
 771         pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 772         e820__range_remove(start, size, E820_TYPE_RAM, 0);
 773         e820__range_add(start, size, E820_TYPE_RAM);
 774 }
 775 
 776 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 777 
 778 static int __init parse_reservelow(char *p)
 779 {
 780         unsigned long long size;
 781 
 782         if (!p)
 783                 return -EINVAL;
 784 
 785         size = memparse(p, &p);
 786 
 787         if (size < 4096)
 788                 size = 4096;
 789 
 790         if (size > 640*1024)
 791                 size = 640*1024;
 792 
 793         reserve_low = size;
 794 
 795         return 0;
 796 }
 797 
 798 early_param("reservelow", parse_reservelow);
 799 
 800 static void __init trim_low_memory_range(void)
 801 {
 802         memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 803 }
 804         
 805 /*
 806  * Dump out kernel offset information on panic.
 807  */
 808 static int
 809 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 810 {
 811         if (kaslr_enabled()) {
 812                 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 813                          kaslr_offset(),
 814                          __START_KERNEL,
 815                          __START_KERNEL_map,
 816                          MODULES_VADDR-1);
 817         } else {
 818                 pr_emerg("Kernel Offset: disabled\n");
 819         }
 820 
 821         return 0;
 822 }
 823 
 824 /*
 825  * Determine if we were loaded by an EFI loader.  If so, then we have also been
 826  * passed the efi memmap, systab, etc., so we should use these data structures
 827  * for initialization.  Note, the efi init code path is determined by the
 828  * global efi_enabled. This allows the same kernel image to be used on existing
 829  * systems (with a traditional BIOS) as well as on EFI systems.
 830  */
 831 /*
 832  * setup_arch - architecture-specific boot-time initializations
 833  *
 834  * Note: On x86_64, fixmaps are ready for use even before this is called.
 835  */
 836 
 837 void __init setup_arch(char **cmdline_p)
 838 {
 839         /*
 840          * Reserve the memory occupied by the kernel between _text and
 841          * __end_of_kernel_reserve symbols. Any kernel sections after the
 842          * __end_of_kernel_reserve symbol must be explicitly reserved with a
 843          * separate memblock_reserve() or they will be discarded.
 844          */
 845         memblock_reserve(__pa_symbol(_text),
 846                          (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 847 
 848         /*
 849          * Make sure page 0 is always reserved because on systems with
 850          * L1TF its contents can be leaked to user processes.
 851          */
 852         memblock_reserve(0, PAGE_SIZE);
 853 
 854         early_reserve_initrd();
 855 
 856         /*
 857          * At this point everything still needed from the boot loader
 858          * or BIOS or kernel text should be early reserved or marked not
 859          * RAM in e820. All other memory is free game.
 860          */
 861 
 862 #ifdef CONFIG_X86_32
 863         memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 864 
 865         /*
 866          * copy kernel address range established so far and switch
 867          * to the proper swapper page table
 868          */
 869         clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 870                         initial_page_table + KERNEL_PGD_BOUNDARY,
 871                         KERNEL_PGD_PTRS);
 872 
 873         load_cr3(swapper_pg_dir);
 874         /*
 875          * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 876          * a cr3 based tlb flush, so the following __flush_tlb_all()
 877          * will not flush anything because the cpu quirk which clears
 878          * X86_FEATURE_PGE has not been invoked yet. Though due to the
 879          * load_cr3() above the TLB has been flushed already. The
 880          * quirk is invoked before subsequent calls to __flush_tlb_all()
 881          * so proper operation is guaranteed.
 882          */
 883         __flush_tlb_all();
 884 #else
 885         printk(KERN_INFO "Command line: %s\n", boot_command_line);
 886         boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 887 #endif
 888 
 889         /*
 890          * If we have OLPC OFW, we might end up relocating the fixmap due to
 891          * reserve_top(), so do this before touching the ioremap area.
 892          */
 893         olpc_ofw_detect();
 894 
 895         idt_setup_early_traps();
 896         early_cpu_init();
 897         arch_init_ideal_nops();
 898         jump_label_init();
 899         early_ioremap_init();
 900 
 901         setup_olpc_ofw_pgd();
 902 
 903         ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 904         screen_info = boot_params.screen_info;
 905         edid_info = boot_params.edid_info;
 906 #ifdef CONFIG_X86_32
 907         apm_info.bios = boot_params.apm_bios_info;
 908         ist_info = boot_params.ist_info;
 909 #endif
 910         saved_video_mode = boot_params.hdr.vid_mode;
 911         bootloader_type = boot_params.hdr.type_of_loader;
 912         if ((bootloader_type >> 4) == 0xe) {
 913                 bootloader_type &= 0xf;
 914                 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 915         }
 916         bootloader_version  = bootloader_type & 0xf;
 917         bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 918 
 919 #ifdef CONFIG_BLK_DEV_RAM
 920         rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 921         rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 922         rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 923 #endif
 924 #ifdef CONFIG_EFI
 925         if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 926                      EFI32_LOADER_SIGNATURE, 4)) {
 927                 set_bit(EFI_BOOT, &efi.flags);
 928         } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 929                      EFI64_LOADER_SIGNATURE, 4)) {
 930                 set_bit(EFI_BOOT, &efi.flags);
 931                 set_bit(EFI_64BIT, &efi.flags);
 932         }
 933 #endif
 934 
 935         x86_init.oem.arch_setup();
 936 
 937         iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 938         e820__memory_setup();
 939         parse_setup_data();
 940 
 941         copy_edd();
 942 
 943         if (!boot_params.hdr.root_flags)
 944                 root_mountflags &= ~MS_RDONLY;
 945         init_mm.start_code = (unsigned long) _text;
 946         init_mm.end_code = (unsigned long) _etext;
 947         init_mm.end_data = (unsigned long) _edata;
 948         init_mm.brk = _brk_end;
 949 
 950         mpx_mm_init(&init_mm);
 951 
 952         code_resource.start = __pa_symbol(_text);
 953         code_resource.end = __pa_symbol(_etext)-1;
 954         data_resource.start = __pa_symbol(_etext);
 955         data_resource.end = __pa_symbol(_edata)-1;
 956         bss_resource.start = __pa_symbol(__bss_start);
 957         bss_resource.end = __pa_symbol(__bss_stop)-1;
 958 
 959 #ifdef CONFIG_CMDLINE_BOOL
 960 #ifdef CONFIG_CMDLINE_OVERRIDE
 961         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 962 #else
 963         if (builtin_cmdline[0]) {
 964                 /* append boot loader cmdline to builtin */
 965                 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 966                 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 967                 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 968         }
 969 #endif
 970 #endif
 971 
 972         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 973         *cmdline_p = command_line;
 974 
 975         /*
 976          * x86_configure_nx() is called before parse_early_param() to detect
 977          * whether hardware doesn't support NX (so that the early EHCI debug
 978          * console setup can safely call set_fixmap()). It may then be called
 979          * again from within noexec_setup() during parsing early parameters
 980          * to honor the respective command line option.
 981          */
 982         x86_configure_nx();
 983 
 984         parse_early_param();
 985 
 986         if (efi_enabled(EFI_BOOT))
 987                 efi_memblock_x86_reserve_range();
 988 #ifdef CONFIG_MEMORY_HOTPLUG
 989         /*
 990          * Memory used by the kernel cannot be hot-removed because Linux
 991          * cannot migrate the kernel pages. When memory hotplug is
 992          * enabled, we should prevent memblock from allocating memory
 993          * for the kernel.
 994          *
 995          * ACPI SRAT records all hotpluggable memory ranges. But before
 996          * SRAT is parsed, we don't know about it.
 997          *
 998          * The kernel image is loaded into memory at very early time. We
 999          * cannot prevent this anyway. So on NUMA system, we set any
1000          * node the kernel resides in as un-hotpluggable.
1001          *
1002          * Since on modern servers, one node could have double-digit
1003          * gigabytes memory, we can assume the memory around the kernel
1004          * image is also un-hotpluggable. So before SRAT is parsed, just
1005          * allocate memory near the kernel image to try the best to keep
1006          * the kernel away from hotpluggable memory.
1007          */
1008         if (movable_node_is_enabled())
1009                 memblock_set_bottom_up(true);
1010 #endif
1011 
1012         x86_report_nx();
1013 
1014         /* after early param, so could get panic from serial */
1015         memblock_x86_reserve_range_setup_data();
1016 
1017         if (acpi_mps_check()) {
1018 #ifdef CONFIG_X86_LOCAL_APIC
1019                 disable_apic = 1;
1020 #endif
1021                 setup_clear_cpu_cap(X86_FEATURE_APIC);
1022         }
1023 
1024         e820__reserve_setup_data();
1025         e820__finish_early_params();
1026 
1027         if (efi_enabled(EFI_BOOT))
1028                 efi_init();
1029 
1030         dmi_setup();
1031 
1032         /*
1033          * VMware detection requires dmi to be available, so this
1034          * needs to be done after dmi_setup(), for the boot CPU.
1035          */
1036         init_hypervisor_platform();
1037 
1038         tsc_early_init();
1039         x86_init.resources.probe_roms();
1040 
1041         /* after parse_early_param, so could debug it */
1042         insert_resource(&iomem_resource, &code_resource);
1043         insert_resource(&iomem_resource, &data_resource);
1044         insert_resource(&iomem_resource, &bss_resource);
1045 
1046         e820_add_kernel_range();
1047         trim_bios_range();
1048 #ifdef CONFIG_X86_32
1049         if (ppro_with_ram_bug()) {
1050                 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1051                                   E820_TYPE_RESERVED);
1052                 e820__update_table(e820_table);
1053                 printk(KERN_INFO "fixed physical RAM map:\n");
1054                 e820__print_table("bad_ppro");
1055         }
1056 #else
1057         early_gart_iommu_check();
1058 #endif
1059 
1060         /*
1061          * partially used pages are not usable - thus
1062          * we are rounding upwards:
1063          */
1064         max_pfn = e820__end_of_ram_pfn();
1065 
1066         /* update e820 for memory not covered by WB MTRRs */
1067         mtrr_bp_init();
1068         if (mtrr_trim_uncached_memory(max_pfn))
1069                 max_pfn = e820__end_of_ram_pfn();
1070 
1071         max_possible_pfn = max_pfn;
1072 
1073         /*
1074          * This call is required when the CPU does not support PAT. If
1075          * mtrr_bp_init() invoked it already via pat_init() the call has no
1076          * effect.
1077          */
1078         init_cache_modes();
1079 
1080         /*
1081          * Define random base addresses for memory sections after max_pfn is
1082          * defined and before each memory section base is used.
1083          */
1084         kernel_randomize_memory();
1085 
1086 #ifdef CONFIG_X86_32
1087         /* max_low_pfn get updated here */
1088         find_low_pfn_range();
1089 #else
1090         check_x2apic();
1091 
1092         /* How many end-of-memory variables you have, grandma! */
1093         /* need this before calling reserve_initrd */
1094         if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095                 max_low_pfn = e820__end_of_low_ram_pfn();
1096         else
1097                 max_low_pfn = max_pfn;
1098 
1099         high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100 #endif
1101 
1102         /*
1103          * Find and reserve possible boot-time SMP configuration:
1104          */
1105         find_smp_config();
1106 
1107         reserve_ibft_region();
1108 
1109         early_alloc_pgt_buf();
1110 
1111         /*
1112          * Need to conclude brk, before e820__memblock_setup()
1113          *  it could use memblock_find_in_range, could overlap with
1114          *  brk area.
1115          */
1116         reserve_brk();
1117 
1118         cleanup_highmap();
1119 
1120         memblock_set_current_limit(ISA_END_ADDRESS);
1121         e820__memblock_setup();
1122 
1123         reserve_bios_regions();
1124 
1125         if (efi_enabled(EFI_MEMMAP)) {
1126                 efi_fake_memmap();
1127                 efi_find_mirror();
1128                 efi_esrt_init();
1129 
1130                 /*
1131                  * The EFI specification says that boot service code won't be
1132                  * called after ExitBootServices(). This is, in fact, a lie.
1133                  */
1134                 efi_reserve_boot_services();
1135         }
1136 
1137         /* preallocate 4k for mptable mpc */
1138         e820__memblock_alloc_reserved_mpc_new();
1139 
1140 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141         setup_bios_corruption_check();
1142 #endif
1143 
1144 #ifdef CONFIG_X86_32
1145         printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146                         (max_pfn_mapped<<PAGE_SHIFT) - 1);
1147 #endif
1148 
1149         reserve_real_mode();
1150 
1151         trim_platform_memory_ranges();
1152         trim_low_memory_range();
1153 
1154         init_mem_mapping();
1155 
1156         idt_setup_early_pf();
1157 
1158         /*
1159          * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160          * with the current CR4 value.  This may not be necessary, but
1161          * auditing all the early-boot CR4 manipulation would be needed to
1162          * rule it out.
1163          *
1164          * Mask off features that don't work outside long mode (just
1165          * PCIDE for now).
1166          */
1167         mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1168 
1169         memblock_set_current_limit(get_max_mapped());
1170 
1171         /*
1172          * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1173          */
1174 
1175 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1176         if (init_ohci1394_dma_early)
1177                 init_ohci1394_dma_on_all_controllers();
1178 #endif
1179         /* Allocate bigger log buffer */
1180         setup_log_buf(1);
1181 
1182         if (efi_enabled(EFI_BOOT)) {
1183                 switch (boot_params.secure_boot) {
1184                 case efi_secureboot_mode_disabled:
1185                         pr_info("Secure boot disabled\n");
1186                         break;
1187                 case efi_secureboot_mode_enabled:
1188                         pr_info("Secure boot enabled\n");
1189                         break;
1190                 default:
1191                         pr_info("Secure boot could not be determined\n");
1192                         break;
1193                 }
1194         }
1195 
1196         reserve_initrd();
1197 
1198         acpi_table_upgrade();
1199 
1200         vsmp_init();
1201 
1202         io_delay_init();
1203 
1204         early_platform_quirks();
1205 
1206         /*
1207          * Parse the ACPI tables for possible boot-time SMP configuration.
1208          */
1209         acpi_boot_table_init();
1210 
1211         early_acpi_boot_init();
1212 
1213         initmem_init();
1214         dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1215 
1216         /*
1217          * Reserve memory for crash kernel after SRAT is parsed so that it
1218          * won't consume hotpluggable memory.
1219          */
1220         reserve_crashkernel();
1221 
1222         memblock_find_dma_reserve();
1223 
1224         if (!early_xdbc_setup_hardware())
1225                 early_xdbc_register_console();
1226 
1227         x86_init.paging.pagetable_init();
1228 
1229         kasan_init();
1230 
1231         /*
1232          * Sync back kernel address range.
1233          *
1234          * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1235          * this call?
1236          */
1237         sync_initial_page_table();
1238 
1239         tboot_probe();
1240 
1241         map_vsyscall();
1242 
1243         generic_apic_probe();
1244 
1245         early_quirks();
1246 
1247         /*
1248          * Read APIC and some other early information from ACPI tables.
1249          */
1250         acpi_boot_init();
1251         sfi_init();
1252         x86_dtb_init();
1253 
1254         /*
1255          * get boot-time SMP configuration:
1256          */
1257         get_smp_config();
1258 
1259         /*
1260          * Systems w/o ACPI and mptables might not have it mapped the local
1261          * APIC yet, but prefill_possible_map() might need to access it.
1262          */
1263         init_apic_mappings();
1264 
1265         prefill_possible_map();
1266 
1267         init_cpu_to_node();
1268 
1269         io_apic_init_mappings();
1270 
1271         x86_init.hyper.guest_late_init();
1272 
1273         e820__reserve_resources();
1274         e820__register_nosave_regions(max_pfn);
1275 
1276         x86_init.resources.reserve_resources();
1277 
1278         e820__setup_pci_gap();
1279 
1280 #ifdef CONFIG_VT
1281 #if defined(CONFIG_VGA_CONSOLE)
1282         if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1283                 conswitchp = &vga_con;
1284 #elif defined(CONFIG_DUMMY_CONSOLE)
1285         conswitchp = &dummy_con;
1286 #endif
1287 #endif
1288         x86_init.oem.banner();
1289 
1290         x86_init.timers.wallclock_init();
1291 
1292         mcheck_init();
1293 
1294         register_refined_jiffies(CLOCK_TICK_RATE);
1295 
1296 #ifdef CONFIG_EFI
1297         if (efi_enabled(EFI_BOOT))
1298                 efi_apply_memmap_quirks();
1299 #endif
1300 
1301         unwind_init();
1302 }
1303 
1304 #ifdef CONFIG_X86_32
1305 
1306 static struct resource video_ram_resource = {
1307         .name   = "Video RAM area",
1308         .start  = 0xa0000,
1309         .end    = 0xbffff,
1310         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1311 };
1312 
1313 void __init i386_reserve_resources(void)
1314 {
1315         request_resource(&iomem_resource, &video_ram_resource);
1316         reserve_standard_io_resources();
1317 }
1318 
1319 #endif /* CONFIG_X86_32 */
1320 
1321 static struct notifier_block kernel_offset_notifier = {
1322         .notifier_call = dump_kernel_offset
1323 };
1324 
1325 static int __init register_kernel_offset_dumper(void)
1326 {
1327         atomic_notifier_chain_register(&panic_notifier_list,
1328                                         &kernel_offset_notifier);
1329         return 0;
1330 }
1331 __initcall(register_kernel_offset_dumper);

/* [<][>][^][v][top][bottom][index][help] */