root/arch/x86/kvm/mmu.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. rsvd_bits
  2. kvm_mmu_available_pages
  3. kvm_mmu_reload
  4. kvm_get_pcid
  5. kvm_get_active_pcid
  6. kvm_mmu_load_cr3
  7. is_writable_pte
  8. is_write_protection
  9. permission_fault

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef __KVM_X86_MMU_H
   3 #define __KVM_X86_MMU_H
   4 
   5 #include <linux/kvm_host.h>
   6 #include "kvm_cache_regs.h"
   7 
   8 #define PT64_PT_BITS 9
   9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  10 #define PT32_PT_BITS 10
  11 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  12 
  13 #define PT_WRITABLE_SHIFT 1
  14 #define PT_USER_SHIFT 2
  15 
  16 #define PT_PRESENT_MASK (1ULL << 0)
  17 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  18 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  19 #define PT_PWT_MASK (1ULL << 3)
  20 #define PT_PCD_MASK (1ULL << 4)
  21 #define PT_ACCESSED_SHIFT 5
  22 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  23 #define PT_DIRTY_SHIFT 6
  24 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  25 #define PT_PAGE_SIZE_SHIFT 7
  26 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  27 #define PT_PAT_MASK (1ULL << 7)
  28 #define PT_GLOBAL_MASK (1ULL << 8)
  29 #define PT64_NX_SHIFT 63
  30 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  31 
  32 #define PT_PAT_SHIFT 7
  33 #define PT_DIR_PAT_SHIFT 12
  34 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  35 
  36 #define PT32_DIR_PSE36_SIZE 4
  37 #define PT32_DIR_PSE36_SHIFT 13
  38 #define PT32_DIR_PSE36_MASK \
  39         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  40 
  41 #define PT64_ROOT_5LEVEL 5
  42 #define PT64_ROOT_4LEVEL 4
  43 #define PT32_ROOT_LEVEL 2
  44 #define PT32E_ROOT_LEVEL 3
  45 
  46 static inline u64 rsvd_bits(int s, int e)
  47 {
  48         if (e < s)
  49                 return 0;
  50 
  51         return ((1ULL << (e - s + 1)) - 1) << s;
  52 }
  53 
  54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask);
  55 
  56 void
  57 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
  58 
  59 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
  60 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
  61 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
  62                              bool accessed_dirty, gpa_t new_eptp);
  63 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  64 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
  65                                 u64 fault_address, char *insn, int insn_len);
  66 
  67 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
  68 {
  69         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
  70                 return kvm->arch.n_max_mmu_pages -
  71                         kvm->arch.n_used_mmu_pages;
  72 
  73         return 0;
  74 }
  75 
  76 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  77 {
  78         if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
  79                 return 0;
  80 
  81         return kvm_mmu_load(vcpu);
  82 }
  83 
  84 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
  85 {
  86         BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
  87 
  88         return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
  89                ? cr3 & X86_CR3_PCID_MASK
  90                : 0;
  91 }
  92 
  93 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
  94 {
  95         return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
  96 }
  97 
  98 static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
  99 {
 100         if (VALID_PAGE(vcpu->arch.mmu->root_hpa))
 101                 vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa |
 102                                               kvm_get_active_pcid(vcpu));
 103 }
 104 
 105 /*
 106  * Currently, we have two sorts of write-protection, a) the first one
 107  * write-protects guest page to sync the guest modification, b) another one is
 108  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 109  * between these two sorts are:
 110  * 1) the first case clears SPTE_MMU_WRITEABLE bit.
 111  * 2) the first case requires flushing tlb immediately avoiding corrupting
 112  *    shadow page table between all vcpus so it should be in the protection of
 113  *    mmu-lock. And the another case does not need to flush tlb until returning
 114  *    the dirty bitmap to userspace since it only write-protects the page
 115  *    logged in the bitmap, that means the page in the dirty bitmap is not
 116  *    missed, so it can flush tlb out of mmu-lock.
 117  *
 118  * So, there is the problem: the first case can meet the corrupted tlb caused
 119  * by another case which write-protects pages but without flush tlb
 120  * immediately. In order to making the first case be aware this problem we let
 121  * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
 122  * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
 123  *
 124  * Anyway, whenever a spte is updated (only permission and status bits are
 125  * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
 126  * readonly, if that happens, we need to flush tlb. Fortunately,
 127  * mmu_spte_update() has already handled it perfectly.
 128  *
 129  * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
 130  * - if we want to see if it has writable tlb entry or if the spte can be
 131  *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
 132  *   case, otherwise
 133  * - if we fix page fault on the spte or do write-protection by dirty logging,
 134  *   check PT_WRITABLE_MASK.
 135  *
 136  * TODO: introduce APIs to split these two cases.
 137  */
 138 static inline int is_writable_pte(unsigned long pte)
 139 {
 140         return pte & PT_WRITABLE_MASK;
 141 }
 142 
 143 static inline bool is_write_protection(struct kvm_vcpu *vcpu)
 144 {
 145         return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 146 }
 147 
 148 /*
 149  * Check if a given access (described through the I/D, W/R and U/S bits of a
 150  * page fault error code pfec) causes a permission fault with the given PTE
 151  * access rights (in ACC_* format).
 152  *
 153  * Return zero if the access does not fault; return the page fault error code
 154  * if the access faults.
 155  */
 156 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 157                                   unsigned pte_access, unsigned pte_pkey,
 158                                   unsigned pfec)
 159 {
 160         int cpl = kvm_x86_ops->get_cpl(vcpu);
 161         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
 162 
 163         /*
 164          * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 165          *
 166          * If CPL = 3, SMAP applies to all supervisor-mode data accesses
 167          * (these are implicit supervisor accesses) regardless of the value
 168          * of EFLAGS.AC.
 169          *
 170          * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
 171          * the result in X86_EFLAGS_AC. We then insert it in place of
 172          * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
 173          * but it will be one in index if SMAP checks are being overridden.
 174          * It is important to keep this branchless.
 175          */
 176         unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
 177         int index = (pfec >> 1) +
 178                     (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 179         bool fault = (mmu->permissions[index] >> pte_access) & 1;
 180         u32 errcode = PFERR_PRESENT_MASK;
 181 
 182         WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
 183         if (unlikely(mmu->pkru_mask)) {
 184                 u32 pkru_bits, offset;
 185 
 186                 /*
 187                 * PKRU defines 32 bits, there are 16 domains and 2
 188                 * attribute bits per domain in pkru.  pte_pkey is the
 189                 * index of the protection domain, so pte_pkey * 2 is
 190                 * is the index of the first bit for the domain.
 191                 */
 192                 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
 193 
 194                 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
 195                 offset = (pfec & ~1) +
 196                         ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
 197 
 198                 pkru_bits &= mmu->pkru_mask >> offset;
 199                 errcode |= -pkru_bits & PFERR_PK_MASK;
 200                 fault |= (pkru_bits != 0);
 201         }
 202 
 203         return -(u32)fault & errcode;
 204 }
 205 
 206 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
 207 
 208 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
 209 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
 210 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
 211                                     struct kvm_memory_slot *slot, u64 gfn);
 212 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
 213 
 214 int kvm_mmu_post_init_vm(struct kvm *kvm);
 215 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
 216 
 217 #endif

/* [<][>][^][v][top][bottom][index][help] */