root/arch/x86/events/intel/core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. intel_pmu_event_map
  2. __intel_pmu_disable_all
  3. intel_pmu_disable_all
  4. __intel_pmu_enable_all
  5. intel_pmu_enable_all
  6. intel_pmu_nhm_workaround
  7. intel_pmu_nhm_enable_all
  8. intel_set_tfa
  9. intel_tfa_commit_scheduling
  10. intel_tfa_pmu_enable_all
  11. enable_counter_freeze
  12. disable_counter_freeze
  13. intel_pmu_get_status
  14. intel_pmu_ack_status
  15. intel_pmu_disable_fixed
  16. event_is_checkpointed
  17. intel_pmu_disable_event
  18. intel_pmu_del_event
  19. intel_pmu_read_event
  20. intel_pmu_enable_fixed
  21. intel_pmu_enable_event
  22. intel_pmu_add_event
  23. intel_pmu_save_and_restart
  24. intel_pmu_reset
  25. handle_pmi_common
  26. intel_perf_counter_freezing_setup
  27. intel_pmu_handle_irq_v4
  28. intel_pmu_handle_irq
  29. intel_bts_constraints
  30. intel_alt_er
  31. intel_fixup_er
  32. __intel_shared_reg_get_constraints
  33. __intel_shared_reg_put_constraints
  34. intel_shared_regs_constraints
  35. x86_get_event_constraints
  36. __intel_get_event_constraints
  37. intel_start_scheduling
  38. intel_commit_scheduling
  39. intel_stop_scheduling
  40. dyn_constraint
  41. intel_get_excl_constraints
  42. intel_get_event_constraints
  43. intel_put_excl_constraints
  44. intel_put_shared_regs_event_constraints
  45. intel_put_event_constraints
  46. intel_pebs_aliases_core2
  47. intel_pebs_aliases_snb
  48. intel_pebs_aliases_precdist
  49. intel_pebs_aliases_ivb
  50. intel_pebs_aliases_skl
  51. intel_pmu_large_pebs_flags
  52. intel_pmu_bts_config
  53. core_pmu_hw_config
  54. intel_pmu_hw_config
  55. perf_guest_get_msrs
  56. intel_guest_get_msrs
  57. core_guest_get_msrs
  58. core_pmu_enable_event
  59. core_pmu_enable_all
  60. hsw_hw_config
  61. hsw_get_event_constraints
  62. icl_get_event_constraints
  63. glp_get_event_constraints
  64. tnt_get_event_constraints
  65. tfa_get_event_constraints
  66. bdw_limit_period
  67. nhm_limit_period
  68. intel_event_sysfs_show
  69. allocate_shared_regs
  70. allocate_excl_cntrs
  71. intel_cpuc_prepare
  72. intel_pmu_cpu_prepare
  73. flip_smm_bit
  74. intel_pmu_cpu_starting
  75. free_excl_cntrs
  76. intel_pmu_cpu_dying
  77. intel_cpuc_finish
  78. intel_pmu_cpu_dead
  79. intel_pmu_sched_task
  80. intel_pmu_check_period
  81. intel_pmu_aux_output_match
  82. intel_clovertown_quirk
  83. intel_check_pebs_isolation
  84. intel_pebs_isolation_quirk
  85. intel_snb_pebs_broken
  86. intel_snb_check_microcode
  87. is_lbr_from
  88. check_msr
  89. intel_sandybridge_quirk
  90. intel_arch_events_quirk
  91. intel_nehalem_quirk
  92. intel_counter_freezing_broken
  93. intel_counter_freezing_quirk
  94. intel_ht_bug
  95. freeze_on_smi_show
  96. freeze_on_smi_store
  97. update_tfa_sched
  98. show_sysctl_tfa
  99. set_sysctl_tfa
  100. branches_show
  101. pmu_name_show
  102. tsx_is_visible
  103. pebs_is_visible
  104. lbr_is_visible
  105. exra_is_visible
  106. default_is_visible
  107. intel_pmu_init
  108. fixup_ht_bug

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Per core/cpu state
   4  *
   5  * Used to coordinate shared registers between HT threads or
   6  * among events on a single PMU.
   7  */
   8 
   9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10 
  11 #include <linux/stddef.h>
  12 #include <linux/types.h>
  13 #include <linux/init.h>
  14 #include <linux/slab.h>
  15 #include <linux/export.h>
  16 #include <linux/nmi.h>
  17 
  18 #include <asm/cpufeature.h>
  19 #include <asm/hardirq.h>
  20 #include <asm/intel-family.h>
  21 #include <asm/intel_pt.h>
  22 #include <asm/apic.h>
  23 #include <asm/cpu_device_id.h>
  24 
  25 #include "../perf_event.h"
  26 
  27 /*
  28  * Intel PerfMon, used on Core and later.
  29  */
  30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  31 {
  32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
  33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
  34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
  35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
  36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
  37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
  38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
  39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
  40 };
  41 
  42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
  43 {
  44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  50         EVENT_CONSTRAINT_END
  51 };
  52 
  53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  54 {
  55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  68         EVENT_CONSTRAINT_END
  69 };
  70 
  71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  72 {
  73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  84         EVENT_CONSTRAINT_END
  85 };
  86 
  87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  88 {
  89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  92         EVENT_EXTRA_END
  93 };
  94 
  95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  96 {
  97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
 101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
 102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
 103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
 104         EVENT_CONSTRAINT_END
 105 };
 106 
 107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
 108 {
 109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
 117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 121 
 122         /*
 123          * When HT is off these events can only run on the bottom 4 counters
 124          * When HT is on, they are impacted by the HT bug and require EXCL access
 125          */
 126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 130 
 131         EVENT_CONSTRAINT_END
 132 };
 133 
 134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
 135 {
 136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
 140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
 141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
 142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
 143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
 146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 149 
 150         /*
 151          * When HT is off these events can only run on the bottom 4 counters
 152          * When HT is on, they are impacted by the HT bug and require EXCL access
 153          */
 154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 158 
 159         EVENT_CONSTRAINT_END
 160 };
 161 
 162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
 163 {
 164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
 167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 168         EVENT_EXTRA_END
 169 };
 170 
 171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
 172 {
 173         EVENT_CONSTRAINT_END
 174 };
 175 
 176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
 177 {
 178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 181         EVENT_CONSTRAINT_END
 182 };
 183 
 184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
 185 {
 186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
 189         EVENT_CONSTRAINT_END
 190 };
 191 
 192 static struct event_constraint intel_skl_event_constraints[] = {
 193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
 197 
 198         /*
 199          * when HT is off, these can only run on the bottom 4 counters
 200          */
 201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
 202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
 203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
 204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
 205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
 206 
 207         EVENT_CONSTRAINT_END
 208 };
 209 
 210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
 211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
 212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
 213         EVENT_EXTRA_END
 214 };
 215 
 216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
 217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
 219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
 220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 221         EVENT_EXTRA_END
 222 };
 223 
 224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
 225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 229         EVENT_EXTRA_END
 230 };
 231 
 232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
 233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 236         /*
 237          * Note the low 8 bits eventsel code is not a continuous field, containing
 238          * some #GPing bits. These are masked out.
 239          */
 240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
 241         EVENT_EXTRA_END
 242 };
 243 
 244 static struct event_constraint intel_icl_event_constraints[] = {
 245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 246         INTEL_UEVENT_CONSTRAINT(0x1c0, 0),      /* INST_RETIRED.PREC_DIST */
 247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
 250         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
 251         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
 252         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
 253         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
 254         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
 255         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
 256         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
 257         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
 258         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
 259         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
 260         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
 261         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
 262         EVENT_CONSTRAINT_END
 263 };
 264 
 265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
 266         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
 267         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
 268         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 269         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
 270         EVENT_EXTRA_END
 271 };
 272 
 273 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
 274 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
 275 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
 276 
 277 static struct attribute *nhm_mem_events_attrs[] = {
 278         EVENT_PTR(mem_ld_nhm),
 279         NULL,
 280 };
 281 
 282 /*
 283  * topdown events for Intel Core CPUs.
 284  *
 285  * The events are all in slots, which is a free slot in a 4 wide
 286  * pipeline. Some events are already reported in slots, for cycle
 287  * events we multiply by the pipeline width (4).
 288  *
 289  * With Hyper Threading on, topdown metrics are either summed or averaged
 290  * between the threads of a core: (count_t0 + count_t1).
 291  *
 292  * For the average case the metric is always scaled to pipeline width,
 293  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 294  */
 295 
 296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
 297         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
 298         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
 299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
 300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
 301         "event=0xe,umask=0x1");                 /* uops_issued.any */
 302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
 303         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
 304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
 305         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
 306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
 307         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
 308         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
 309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
 310         "4", "2");
 311 
 312 static struct attribute *snb_events_attrs[] = {
 313         EVENT_PTR(td_slots_issued),
 314         EVENT_PTR(td_slots_retired),
 315         EVENT_PTR(td_fetch_bubbles),
 316         EVENT_PTR(td_total_slots),
 317         EVENT_PTR(td_total_slots_scale),
 318         EVENT_PTR(td_recovery_bubbles),
 319         EVENT_PTR(td_recovery_bubbles_scale),
 320         NULL,
 321 };
 322 
 323 static struct attribute *snb_mem_events_attrs[] = {
 324         EVENT_PTR(mem_ld_snb),
 325         EVENT_PTR(mem_st_snb),
 326         NULL,
 327 };
 328 
 329 static struct event_constraint intel_hsw_event_constraints[] = {
 330         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 331         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 332         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 333         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
 334         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 335         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 336         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
 338         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 339         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
 340         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 341         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
 342 
 343         /*
 344          * When HT is off these events can only run on the bottom 4 counters
 345          * When HT is on, they are impacted by the HT bug and require EXCL access
 346          */
 347         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 348         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 349         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 350         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 351 
 352         EVENT_CONSTRAINT_END
 353 };
 354 
 355 static struct event_constraint intel_bdw_event_constraints[] = {
 356         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 357         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 358         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 359         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
 360         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
 361         /*
 362          * when HT is off, these can only run on the bottom 4 counters
 363          */
 364         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
 365         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
 366         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
 367         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
 368         EVENT_CONSTRAINT_END
 369 };
 370 
 371 static u64 intel_pmu_event_map(int hw_event)
 372 {
 373         return intel_perfmon_event_map[hw_event];
 374 }
 375 
 376 /*
 377  * Notes on the events:
 378  * - data reads do not include code reads (comparable to earlier tables)
 379  * - data counts include speculative execution (except L1 write, dtlb, bpu)
 380  * - remote node access includes remote memory, remote cache, remote mmio.
 381  * - prefetches are not included in the counts.
 382  * - icache miss does not include decoded icache
 383  */
 384 
 385 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
 386 #define SKL_DEMAND_RFO                  BIT_ULL(1)
 387 #define SKL_ANY_RESPONSE                BIT_ULL(16)
 388 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
 389 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
 390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
 391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
 392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
 393 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
 394                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 395                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 396                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 397 #define SKL_SPL_HIT                     BIT_ULL(30)
 398 #define SKL_SNOOP_NONE                  BIT_ULL(31)
 399 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
 400 #define SKL_SNOOP_MISS                  BIT_ULL(33)
 401 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 402 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 403 #define SKL_SNOOP_HITM                  BIT_ULL(36)
 404 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
 405 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
 406                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 407                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 408                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
 409 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
 410 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
 411                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 412                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 413                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
 414 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
 415 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
 416 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 417                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 418                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 419 
 420 static __initconst const u64 skl_hw_cache_event_ids
 421                                 [PERF_COUNT_HW_CACHE_MAX]
 422                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 423                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 424 {
 425  [ C(L1D ) ] = {
 426         [ C(OP_READ) ] = {
 427                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 428                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 429         },
 430         [ C(OP_WRITE) ] = {
 431                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 432                 [ C(RESULT_MISS)   ] = 0x0,
 433         },
 434         [ C(OP_PREFETCH) ] = {
 435                 [ C(RESULT_ACCESS) ] = 0x0,
 436                 [ C(RESULT_MISS)   ] = 0x0,
 437         },
 438  },
 439  [ C(L1I ) ] = {
 440         [ C(OP_READ) ] = {
 441                 [ C(RESULT_ACCESS) ] = 0x0,
 442                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
 443         },
 444         [ C(OP_WRITE) ] = {
 445                 [ C(RESULT_ACCESS) ] = -1,
 446                 [ C(RESULT_MISS)   ] = -1,
 447         },
 448         [ C(OP_PREFETCH) ] = {
 449                 [ C(RESULT_ACCESS) ] = 0x0,
 450                 [ C(RESULT_MISS)   ] = 0x0,
 451         },
 452  },
 453  [ C(LL  ) ] = {
 454         [ C(OP_READ) ] = {
 455                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 456                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 457         },
 458         [ C(OP_WRITE) ] = {
 459                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 460                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 461         },
 462         [ C(OP_PREFETCH) ] = {
 463                 [ C(RESULT_ACCESS) ] = 0x0,
 464                 [ C(RESULT_MISS)   ] = 0x0,
 465         },
 466  },
 467  [ C(DTLB) ] = {
 468         [ C(OP_READ) ] = {
 469                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 470                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
 471         },
 472         [ C(OP_WRITE) ] = {
 473                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 474                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
 475         },
 476         [ C(OP_PREFETCH) ] = {
 477                 [ C(RESULT_ACCESS) ] = 0x0,
 478                 [ C(RESULT_MISS)   ] = 0x0,
 479         },
 480  },
 481  [ C(ITLB) ] = {
 482         [ C(OP_READ) ] = {
 483                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
 484                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
 485         },
 486         [ C(OP_WRITE) ] = {
 487                 [ C(RESULT_ACCESS) ] = -1,
 488                 [ C(RESULT_MISS)   ] = -1,
 489         },
 490         [ C(OP_PREFETCH) ] = {
 491                 [ C(RESULT_ACCESS) ] = -1,
 492                 [ C(RESULT_MISS)   ] = -1,
 493         },
 494  },
 495  [ C(BPU ) ] = {
 496         [ C(OP_READ) ] = {
 497                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 498                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 499         },
 500         [ C(OP_WRITE) ] = {
 501                 [ C(RESULT_ACCESS) ] = -1,
 502                 [ C(RESULT_MISS)   ] = -1,
 503         },
 504         [ C(OP_PREFETCH) ] = {
 505                 [ C(RESULT_ACCESS) ] = -1,
 506                 [ C(RESULT_MISS)   ] = -1,
 507         },
 508  },
 509  [ C(NODE) ] = {
 510         [ C(OP_READ) ] = {
 511                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 512                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 513         },
 514         [ C(OP_WRITE) ] = {
 515                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 516                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 517         },
 518         [ C(OP_PREFETCH) ] = {
 519                 [ C(RESULT_ACCESS) ] = 0x0,
 520                 [ C(RESULT_MISS)   ] = 0x0,
 521         },
 522  },
 523 };
 524 
 525 static __initconst const u64 skl_hw_cache_extra_regs
 526                                 [PERF_COUNT_HW_CACHE_MAX]
 527                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 528                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 529 {
 530  [ C(LL  ) ] = {
 531         [ C(OP_READ) ] = {
 532                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 533                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 534                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 535                                        SKL_L3_MISS|SKL_ANY_SNOOP|
 536                                        SKL_SUPPLIER_NONE,
 537         },
 538         [ C(OP_WRITE) ] = {
 539                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 540                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 541                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 542                                        SKL_L3_MISS|SKL_ANY_SNOOP|
 543                                        SKL_SUPPLIER_NONE,
 544         },
 545         [ C(OP_PREFETCH) ] = {
 546                 [ C(RESULT_ACCESS) ] = 0x0,
 547                 [ C(RESULT_MISS)   ] = 0x0,
 548         },
 549  },
 550  [ C(NODE) ] = {
 551         [ C(OP_READ) ] = {
 552                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 553                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 554                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 555                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 556         },
 557         [ C(OP_WRITE) ] = {
 558                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 559                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 560                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 561                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 562         },
 563         [ C(OP_PREFETCH) ] = {
 564                 [ C(RESULT_ACCESS) ] = 0x0,
 565                 [ C(RESULT_MISS)   ] = 0x0,
 566         },
 567  },
 568 };
 569 
 570 #define SNB_DMND_DATA_RD        (1ULL << 0)
 571 #define SNB_DMND_RFO            (1ULL << 1)
 572 #define SNB_DMND_IFETCH         (1ULL << 2)
 573 #define SNB_DMND_WB             (1ULL << 3)
 574 #define SNB_PF_DATA_RD          (1ULL << 4)
 575 #define SNB_PF_RFO              (1ULL << 5)
 576 #define SNB_PF_IFETCH           (1ULL << 6)
 577 #define SNB_LLC_DATA_RD         (1ULL << 7)
 578 #define SNB_LLC_RFO             (1ULL << 8)
 579 #define SNB_LLC_IFETCH          (1ULL << 9)
 580 #define SNB_BUS_LOCKS           (1ULL << 10)
 581 #define SNB_STRM_ST             (1ULL << 11)
 582 #define SNB_OTHER               (1ULL << 15)
 583 #define SNB_RESP_ANY            (1ULL << 16)
 584 #define SNB_NO_SUPP             (1ULL << 17)
 585 #define SNB_LLC_HITM            (1ULL << 18)
 586 #define SNB_LLC_HITE            (1ULL << 19)
 587 #define SNB_LLC_HITS            (1ULL << 20)
 588 #define SNB_LLC_HITF            (1ULL << 21)
 589 #define SNB_LOCAL               (1ULL << 22)
 590 #define SNB_REMOTE              (0xffULL << 23)
 591 #define SNB_SNP_NONE            (1ULL << 31)
 592 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
 593 #define SNB_SNP_MISS            (1ULL << 33)
 594 #define SNB_NO_FWD              (1ULL << 34)
 595 #define SNB_SNP_FWD             (1ULL << 35)
 596 #define SNB_HITM                (1ULL << 36)
 597 #define SNB_NON_DRAM            (1ULL << 37)
 598 
 599 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
 600 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
 601 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
 602 
 603 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
 604                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
 605                                  SNB_HITM)
 606 
 607 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
 608 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
 609 
 610 #define SNB_L3_ACCESS           SNB_RESP_ANY
 611 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
 612 
 613 static __initconst const u64 snb_hw_cache_extra_regs
 614                                 [PERF_COUNT_HW_CACHE_MAX]
 615                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 616                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 617 {
 618  [ C(LL  ) ] = {
 619         [ C(OP_READ) ] = {
 620                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
 621                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
 622         },
 623         [ C(OP_WRITE) ] = {
 624                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
 625                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
 626         },
 627         [ C(OP_PREFETCH) ] = {
 628                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
 629                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
 630         },
 631  },
 632  [ C(NODE) ] = {
 633         [ C(OP_READ) ] = {
 634                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
 635                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
 636         },
 637         [ C(OP_WRITE) ] = {
 638                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
 639                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
 640         },
 641         [ C(OP_PREFETCH) ] = {
 642                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
 643                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
 644         },
 645  },
 646 };
 647 
 648 static __initconst const u64 snb_hw_cache_event_ids
 649                                 [PERF_COUNT_HW_CACHE_MAX]
 650                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 651                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 652 {
 653  [ C(L1D) ] = {
 654         [ C(OP_READ) ] = {
 655                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
 656                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
 657         },
 658         [ C(OP_WRITE) ] = {
 659                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
 660                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
 661         },
 662         [ C(OP_PREFETCH) ] = {
 663                 [ C(RESULT_ACCESS) ] = 0x0,
 664                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
 665         },
 666  },
 667  [ C(L1I ) ] = {
 668         [ C(OP_READ) ] = {
 669                 [ C(RESULT_ACCESS) ] = 0x0,
 670                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
 671         },
 672         [ C(OP_WRITE) ] = {
 673                 [ C(RESULT_ACCESS) ] = -1,
 674                 [ C(RESULT_MISS)   ] = -1,
 675         },
 676         [ C(OP_PREFETCH) ] = {
 677                 [ C(RESULT_ACCESS) ] = 0x0,
 678                 [ C(RESULT_MISS)   ] = 0x0,
 679         },
 680  },
 681  [ C(LL  ) ] = {
 682         [ C(OP_READ) ] = {
 683                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 684                 [ C(RESULT_ACCESS) ] = 0x01b7,
 685                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 686                 [ C(RESULT_MISS)   ] = 0x01b7,
 687         },
 688         [ C(OP_WRITE) ] = {
 689                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 690                 [ C(RESULT_ACCESS) ] = 0x01b7,
 691                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 692                 [ C(RESULT_MISS)   ] = 0x01b7,
 693         },
 694         [ C(OP_PREFETCH) ] = {
 695                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 696                 [ C(RESULT_ACCESS) ] = 0x01b7,
 697                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 698                 [ C(RESULT_MISS)   ] = 0x01b7,
 699         },
 700  },
 701  [ C(DTLB) ] = {
 702         [ C(OP_READ) ] = {
 703                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
 704                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
 705         },
 706         [ C(OP_WRITE) ] = {
 707                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
 708                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 709         },
 710         [ C(OP_PREFETCH) ] = {
 711                 [ C(RESULT_ACCESS) ] = 0x0,
 712                 [ C(RESULT_MISS)   ] = 0x0,
 713         },
 714  },
 715  [ C(ITLB) ] = {
 716         [ C(OP_READ) ] = {
 717                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
 718                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
 719         },
 720         [ C(OP_WRITE) ] = {
 721                 [ C(RESULT_ACCESS) ] = -1,
 722                 [ C(RESULT_MISS)   ] = -1,
 723         },
 724         [ C(OP_PREFETCH) ] = {
 725                 [ C(RESULT_ACCESS) ] = -1,
 726                 [ C(RESULT_MISS)   ] = -1,
 727         },
 728  },
 729  [ C(BPU ) ] = {
 730         [ C(OP_READ) ] = {
 731                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 732                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
 733         },
 734         [ C(OP_WRITE) ] = {
 735                 [ C(RESULT_ACCESS) ] = -1,
 736                 [ C(RESULT_MISS)   ] = -1,
 737         },
 738         [ C(OP_PREFETCH) ] = {
 739                 [ C(RESULT_ACCESS) ] = -1,
 740                 [ C(RESULT_MISS)   ] = -1,
 741         },
 742  },
 743  [ C(NODE) ] = {
 744         [ C(OP_READ) ] = {
 745                 [ C(RESULT_ACCESS) ] = 0x01b7,
 746                 [ C(RESULT_MISS)   ] = 0x01b7,
 747         },
 748         [ C(OP_WRITE) ] = {
 749                 [ C(RESULT_ACCESS) ] = 0x01b7,
 750                 [ C(RESULT_MISS)   ] = 0x01b7,
 751         },
 752         [ C(OP_PREFETCH) ] = {
 753                 [ C(RESULT_ACCESS) ] = 0x01b7,
 754                 [ C(RESULT_MISS)   ] = 0x01b7,
 755         },
 756  },
 757 
 758 };
 759 
 760 /*
 761  * Notes on the events:
 762  * - data reads do not include code reads (comparable to earlier tables)
 763  * - data counts include speculative execution (except L1 write, dtlb, bpu)
 764  * - remote node access includes remote memory, remote cache, remote mmio.
 765  * - prefetches are not included in the counts because they are not
 766  *   reliably counted.
 767  */
 768 
 769 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
 770 #define HSW_DEMAND_RFO                  BIT_ULL(1)
 771 #define HSW_ANY_RESPONSE                BIT_ULL(16)
 772 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
 773 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
 774 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
 775 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
 776 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
 777 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
 778                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 779                                          HSW_L3_MISS_REMOTE_HOP2P)
 780 #define HSW_SNOOP_NONE                  BIT_ULL(31)
 781 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
 782 #define HSW_SNOOP_MISS                  BIT_ULL(33)
 783 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 784 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 785 #define HSW_SNOOP_HITM                  BIT_ULL(36)
 786 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
 787 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
 788                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
 789                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
 790                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
 791 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
 792 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
 793 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
 794 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
 795                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
 796 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
 797 
 798 #define BDW_L3_MISS_LOCAL               BIT(26)
 799 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
 800                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 801                                          HSW_L3_MISS_REMOTE_HOP2P)
 802 
 803 
 804 static __initconst const u64 hsw_hw_cache_event_ids
 805                                 [PERF_COUNT_HW_CACHE_MAX]
 806                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 807                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 808 {
 809  [ C(L1D ) ] = {
 810         [ C(OP_READ) ] = {
 811                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 812                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 813         },
 814         [ C(OP_WRITE) ] = {
 815                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 816                 [ C(RESULT_MISS)   ] = 0x0,
 817         },
 818         [ C(OP_PREFETCH) ] = {
 819                 [ C(RESULT_ACCESS) ] = 0x0,
 820                 [ C(RESULT_MISS)   ] = 0x0,
 821         },
 822  },
 823  [ C(L1I ) ] = {
 824         [ C(OP_READ) ] = {
 825                 [ C(RESULT_ACCESS) ] = 0x0,
 826                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
 827         },
 828         [ C(OP_WRITE) ] = {
 829                 [ C(RESULT_ACCESS) ] = -1,
 830                 [ C(RESULT_MISS)   ] = -1,
 831         },
 832         [ C(OP_PREFETCH) ] = {
 833                 [ C(RESULT_ACCESS) ] = 0x0,
 834                 [ C(RESULT_MISS)   ] = 0x0,
 835         },
 836  },
 837  [ C(LL  ) ] = {
 838         [ C(OP_READ) ] = {
 839                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 840                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 841         },
 842         [ C(OP_WRITE) ] = {
 843                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 844                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 845         },
 846         [ C(OP_PREFETCH) ] = {
 847                 [ C(RESULT_ACCESS) ] = 0x0,
 848                 [ C(RESULT_MISS)   ] = 0x0,
 849         },
 850  },
 851  [ C(DTLB) ] = {
 852         [ C(OP_READ) ] = {
 853                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 854                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
 855         },
 856         [ C(OP_WRITE) ] = {
 857                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 858                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 859         },
 860         [ C(OP_PREFETCH) ] = {
 861                 [ C(RESULT_ACCESS) ] = 0x0,
 862                 [ C(RESULT_MISS)   ] = 0x0,
 863         },
 864  },
 865  [ C(ITLB) ] = {
 866         [ C(OP_READ) ] = {
 867                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
 868                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
 869         },
 870         [ C(OP_WRITE) ] = {
 871                 [ C(RESULT_ACCESS) ] = -1,
 872                 [ C(RESULT_MISS)   ] = -1,
 873         },
 874         [ C(OP_PREFETCH) ] = {
 875                 [ C(RESULT_ACCESS) ] = -1,
 876                 [ C(RESULT_MISS)   ] = -1,
 877         },
 878  },
 879  [ C(BPU ) ] = {
 880         [ C(OP_READ) ] = {
 881                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 882                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 883         },
 884         [ C(OP_WRITE) ] = {
 885                 [ C(RESULT_ACCESS) ] = -1,
 886                 [ C(RESULT_MISS)   ] = -1,
 887         },
 888         [ C(OP_PREFETCH) ] = {
 889                 [ C(RESULT_ACCESS) ] = -1,
 890                 [ C(RESULT_MISS)   ] = -1,
 891         },
 892  },
 893  [ C(NODE) ] = {
 894         [ C(OP_READ) ] = {
 895                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 896                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 897         },
 898         [ C(OP_WRITE) ] = {
 899                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 900                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 901         },
 902         [ C(OP_PREFETCH) ] = {
 903                 [ C(RESULT_ACCESS) ] = 0x0,
 904                 [ C(RESULT_MISS)   ] = 0x0,
 905         },
 906  },
 907 };
 908 
 909 static __initconst const u64 hsw_hw_cache_extra_regs
 910                                 [PERF_COUNT_HW_CACHE_MAX]
 911                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 912                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 913 {
 914  [ C(LL  ) ] = {
 915         [ C(OP_READ) ] = {
 916                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 917                                        HSW_LLC_ACCESS,
 918                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 919                                        HSW_L3_MISS|HSW_ANY_SNOOP,
 920         },
 921         [ C(OP_WRITE) ] = {
 922                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 923                                        HSW_LLC_ACCESS,
 924                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 925                                        HSW_L3_MISS|HSW_ANY_SNOOP,
 926         },
 927         [ C(OP_PREFETCH) ] = {
 928                 [ C(RESULT_ACCESS) ] = 0x0,
 929                 [ C(RESULT_MISS)   ] = 0x0,
 930         },
 931  },
 932  [ C(NODE) ] = {
 933         [ C(OP_READ) ] = {
 934                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 935                                        HSW_L3_MISS_LOCAL_DRAM|
 936                                        HSW_SNOOP_DRAM,
 937                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 938                                        HSW_L3_MISS_REMOTE|
 939                                        HSW_SNOOP_DRAM,
 940         },
 941         [ C(OP_WRITE) ] = {
 942                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 943                                        HSW_L3_MISS_LOCAL_DRAM|
 944                                        HSW_SNOOP_DRAM,
 945                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 946                                        HSW_L3_MISS_REMOTE|
 947                                        HSW_SNOOP_DRAM,
 948         },
 949         [ C(OP_PREFETCH) ] = {
 950                 [ C(RESULT_ACCESS) ] = 0x0,
 951                 [ C(RESULT_MISS)   ] = 0x0,
 952         },
 953  },
 954 };
 955 
 956 static __initconst const u64 westmere_hw_cache_event_ids
 957                                 [PERF_COUNT_HW_CACHE_MAX]
 958                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 959                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 960 {
 961  [ C(L1D) ] = {
 962         [ C(OP_READ) ] = {
 963                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 964                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 965         },
 966         [ C(OP_WRITE) ] = {
 967                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 968                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 969         },
 970         [ C(OP_PREFETCH) ] = {
 971                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 972                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 973         },
 974  },
 975  [ C(L1I ) ] = {
 976         [ C(OP_READ) ] = {
 977                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 978                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 979         },
 980         [ C(OP_WRITE) ] = {
 981                 [ C(RESULT_ACCESS) ] = -1,
 982                 [ C(RESULT_MISS)   ] = -1,
 983         },
 984         [ C(OP_PREFETCH) ] = {
 985                 [ C(RESULT_ACCESS) ] = 0x0,
 986                 [ C(RESULT_MISS)   ] = 0x0,
 987         },
 988  },
 989  [ C(LL  ) ] = {
 990         [ C(OP_READ) ] = {
 991                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 992                 [ C(RESULT_ACCESS) ] = 0x01b7,
 993                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 994                 [ C(RESULT_MISS)   ] = 0x01b7,
 995         },
 996         /*
 997          * Use RFO, not WRITEBACK, because a write miss would typically occur
 998          * on RFO.
 999          */
1000         [ C(OP_WRITE) ] = {
1001                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1002                 [ C(RESULT_ACCESS) ] = 0x01b7,
1003                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004                 [ C(RESULT_MISS)   ] = 0x01b7,
1005         },
1006         [ C(OP_PREFETCH) ] = {
1007                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008                 [ C(RESULT_ACCESS) ] = 0x01b7,
1009                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1010                 [ C(RESULT_MISS)   ] = 0x01b7,
1011         },
1012  },
1013  [ C(DTLB) ] = {
1014         [ C(OP_READ) ] = {
1015                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1016                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1017         },
1018         [ C(OP_WRITE) ] = {
1019                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1020                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1021         },
1022         [ C(OP_PREFETCH) ] = {
1023                 [ C(RESULT_ACCESS) ] = 0x0,
1024                 [ C(RESULT_MISS)   ] = 0x0,
1025         },
1026  },
1027  [ C(ITLB) ] = {
1028         [ C(OP_READ) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1030                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1031         },
1032         [ C(OP_WRITE) ] = {
1033                 [ C(RESULT_ACCESS) ] = -1,
1034                 [ C(RESULT_MISS)   ] = -1,
1035         },
1036         [ C(OP_PREFETCH) ] = {
1037                 [ C(RESULT_ACCESS) ] = -1,
1038                 [ C(RESULT_MISS)   ] = -1,
1039         },
1040  },
1041  [ C(BPU ) ] = {
1042         [ C(OP_READ) ] = {
1043                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1044                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1045         },
1046         [ C(OP_WRITE) ] = {
1047                 [ C(RESULT_ACCESS) ] = -1,
1048                 [ C(RESULT_MISS)   ] = -1,
1049         },
1050         [ C(OP_PREFETCH) ] = {
1051                 [ C(RESULT_ACCESS) ] = -1,
1052                 [ C(RESULT_MISS)   ] = -1,
1053         },
1054  },
1055  [ C(NODE) ] = {
1056         [ C(OP_READ) ] = {
1057                 [ C(RESULT_ACCESS) ] = 0x01b7,
1058                 [ C(RESULT_MISS)   ] = 0x01b7,
1059         },
1060         [ C(OP_WRITE) ] = {
1061                 [ C(RESULT_ACCESS) ] = 0x01b7,
1062                 [ C(RESULT_MISS)   ] = 0x01b7,
1063         },
1064         [ C(OP_PREFETCH) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0x01b7,
1066                 [ C(RESULT_MISS)   ] = 0x01b7,
1067         },
1068  },
1069 };
1070 
1071 /*
1072  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1073  * See IA32 SDM Vol 3B 30.6.1.3
1074  */
1075 
1076 #define NHM_DMND_DATA_RD        (1 << 0)
1077 #define NHM_DMND_RFO            (1 << 1)
1078 #define NHM_DMND_IFETCH         (1 << 2)
1079 #define NHM_DMND_WB             (1 << 3)
1080 #define NHM_PF_DATA_RD          (1 << 4)
1081 #define NHM_PF_DATA_RFO         (1 << 5)
1082 #define NHM_PF_IFETCH           (1 << 6)
1083 #define NHM_OFFCORE_OTHER       (1 << 7)
1084 #define NHM_UNCORE_HIT          (1 << 8)
1085 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1086 #define NHM_OTHER_CORE_HITM     (1 << 10)
1087                                 /* reserved */
1088 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1089 #define NHM_REMOTE_DRAM         (1 << 13)
1090 #define NHM_LOCAL_DRAM          (1 << 14)
1091 #define NHM_NON_DRAM            (1 << 15)
1092 
1093 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1094 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1095 
1096 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1097 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1098 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1099 
1100 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1103 
1104 static __initconst const u64 nehalem_hw_cache_extra_regs
1105                                 [PERF_COUNT_HW_CACHE_MAX]
1106                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1107                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1108 {
1109  [ C(LL  ) ] = {
1110         [ C(OP_READ) ] = {
1111                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1112                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1113         },
1114         [ C(OP_WRITE) ] = {
1115                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1116                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1120                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1121         },
1122  },
1123  [ C(NODE) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1126                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1127         },
1128         [ C(OP_WRITE) ] = {
1129                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1130                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1131         },
1132         [ C(OP_PREFETCH) ] = {
1133                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1134                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1135         },
1136  },
1137 };
1138 
1139 static __initconst const u64 nehalem_hw_cache_event_ids
1140                                 [PERF_COUNT_HW_CACHE_MAX]
1141                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1142                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1143 {
1144  [ C(L1D) ] = {
1145         [ C(OP_READ) ] = {
1146                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1147                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1148         },
1149         [ C(OP_WRITE) ] = {
1150                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1151                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1155                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1156         },
1157  },
1158  [ C(L1I ) ] = {
1159         [ C(OP_READ) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1161                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1162         },
1163         [ C(OP_WRITE) ] = {
1164                 [ C(RESULT_ACCESS) ] = -1,
1165                 [ C(RESULT_MISS)   ] = -1,
1166         },
1167         [ C(OP_PREFETCH) ] = {
1168                 [ C(RESULT_ACCESS) ] = 0x0,
1169                 [ C(RESULT_MISS)   ] = 0x0,
1170         },
1171  },
1172  [ C(LL  ) ] = {
1173         [ C(OP_READ) ] = {
1174                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1175                 [ C(RESULT_ACCESS) ] = 0x01b7,
1176                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1177                 [ C(RESULT_MISS)   ] = 0x01b7,
1178         },
1179         /*
1180          * Use RFO, not WRITEBACK, because a write miss would typically occur
1181          * on RFO.
1182          */
1183         [ C(OP_WRITE) ] = {
1184                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1185                 [ C(RESULT_ACCESS) ] = 0x01b7,
1186                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1187                 [ C(RESULT_MISS)   ] = 0x01b7,
1188         },
1189         [ C(OP_PREFETCH) ] = {
1190                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1191                 [ C(RESULT_ACCESS) ] = 0x01b7,
1192                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1193                 [ C(RESULT_MISS)   ] = 0x01b7,
1194         },
1195  },
1196  [ C(DTLB) ] = {
1197         [ C(OP_READ) ] = {
1198                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1199                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1200         },
1201         [ C(OP_WRITE) ] = {
1202                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1203                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1204         },
1205         [ C(OP_PREFETCH) ] = {
1206                 [ C(RESULT_ACCESS) ] = 0x0,
1207                 [ C(RESULT_MISS)   ] = 0x0,
1208         },
1209  },
1210  [ C(ITLB) ] = {
1211         [ C(OP_READ) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1213                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1214         },
1215         [ C(OP_WRITE) ] = {
1216                 [ C(RESULT_ACCESS) ] = -1,
1217                 [ C(RESULT_MISS)   ] = -1,
1218         },
1219         [ C(OP_PREFETCH) ] = {
1220                 [ C(RESULT_ACCESS) ] = -1,
1221                 [ C(RESULT_MISS)   ] = -1,
1222         },
1223  },
1224  [ C(BPU ) ] = {
1225         [ C(OP_READ) ] = {
1226                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1227                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1228         },
1229         [ C(OP_WRITE) ] = {
1230                 [ C(RESULT_ACCESS) ] = -1,
1231                 [ C(RESULT_MISS)   ] = -1,
1232         },
1233         [ C(OP_PREFETCH) ] = {
1234                 [ C(RESULT_ACCESS) ] = -1,
1235                 [ C(RESULT_MISS)   ] = -1,
1236         },
1237  },
1238  [ C(NODE) ] = {
1239         [ C(OP_READ) ] = {
1240                 [ C(RESULT_ACCESS) ] = 0x01b7,
1241                 [ C(RESULT_MISS)   ] = 0x01b7,
1242         },
1243         [ C(OP_WRITE) ] = {
1244                 [ C(RESULT_ACCESS) ] = 0x01b7,
1245                 [ C(RESULT_MISS)   ] = 0x01b7,
1246         },
1247         [ C(OP_PREFETCH) ] = {
1248                 [ C(RESULT_ACCESS) ] = 0x01b7,
1249                 [ C(RESULT_MISS)   ] = 0x01b7,
1250         },
1251  },
1252 };
1253 
1254 static __initconst const u64 core2_hw_cache_event_ids
1255                                 [PERF_COUNT_HW_CACHE_MAX]
1256                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1257                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1258 {
1259  [ C(L1D) ] = {
1260         [ C(OP_READ) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1262                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1263         },
1264         [ C(OP_WRITE) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1266                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1267         },
1268         [ C(OP_PREFETCH) ] = {
1269                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1270                 [ C(RESULT_MISS)   ] = 0,
1271         },
1272  },
1273  [ C(L1I ) ] = {
1274         [ C(OP_READ) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1276                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1277         },
1278         [ C(OP_WRITE) ] = {
1279                 [ C(RESULT_ACCESS) ] = -1,
1280                 [ C(RESULT_MISS)   ] = -1,
1281         },
1282         [ C(OP_PREFETCH) ] = {
1283                 [ C(RESULT_ACCESS) ] = 0,
1284                 [ C(RESULT_MISS)   ] = 0,
1285         },
1286  },
1287  [ C(LL  ) ] = {
1288         [ C(OP_READ) ] = {
1289                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1290                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1291         },
1292         [ C(OP_WRITE) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1294                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1295         },
1296         [ C(OP_PREFETCH) ] = {
1297                 [ C(RESULT_ACCESS) ] = 0,
1298                 [ C(RESULT_MISS)   ] = 0,
1299         },
1300  },
1301  [ C(DTLB) ] = {
1302         [ C(OP_READ) ] = {
1303                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1304                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1305         },
1306         [ C(OP_WRITE) ] = {
1307                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1308                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1309         },
1310         [ C(OP_PREFETCH) ] = {
1311                 [ C(RESULT_ACCESS) ] = 0,
1312                 [ C(RESULT_MISS)   ] = 0,
1313         },
1314  },
1315  [ C(ITLB) ] = {
1316         [ C(OP_READ) ] = {
1317                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1318                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1319         },
1320         [ C(OP_WRITE) ] = {
1321                 [ C(RESULT_ACCESS) ] = -1,
1322                 [ C(RESULT_MISS)   ] = -1,
1323         },
1324         [ C(OP_PREFETCH) ] = {
1325                 [ C(RESULT_ACCESS) ] = -1,
1326                 [ C(RESULT_MISS)   ] = -1,
1327         },
1328  },
1329  [ C(BPU ) ] = {
1330         [ C(OP_READ) ] = {
1331                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1332                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1333         },
1334         [ C(OP_WRITE) ] = {
1335                 [ C(RESULT_ACCESS) ] = -1,
1336                 [ C(RESULT_MISS)   ] = -1,
1337         },
1338         [ C(OP_PREFETCH) ] = {
1339                 [ C(RESULT_ACCESS) ] = -1,
1340                 [ C(RESULT_MISS)   ] = -1,
1341         },
1342  },
1343 };
1344 
1345 static __initconst const u64 atom_hw_cache_event_ids
1346                                 [PERF_COUNT_HW_CACHE_MAX]
1347                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1348                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1349 {
1350  [ C(L1D) ] = {
1351         [ C(OP_READ) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355         [ C(OP_WRITE) ] = {
1356                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1357                 [ C(RESULT_MISS)   ] = 0,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 [ C(RESULT_ACCESS) ] = 0x0,
1361                 [ C(RESULT_MISS)   ] = 0,
1362         },
1363  },
1364  [ C(L1I ) ] = {
1365         [ C(OP_READ) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1367                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1368         },
1369         [ C(OP_WRITE) ] = {
1370                 [ C(RESULT_ACCESS) ] = -1,
1371                 [ C(RESULT_MISS)   ] = -1,
1372         },
1373         [ C(OP_PREFETCH) ] = {
1374                 [ C(RESULT_ACCESS) ] = 0,
1375                 [ C(RESULT_MISS)   ] = 0,
1376         },
1377  },
1378  [ C(LL  ) ] = {
1379         [ C(OP_READ) ] = {
1380                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1381                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1382         },
1383         [ C(OP_WRITE) ] = {
1384                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1385                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1386         },
1387         [ C(OP_PREFETCH) ] = {
1388                 [ C(RESULT_ACCESS) ] = 0,
1389                 [ C(RESULT_MISS)   ] = 0,
1390         },
1391  },
1392  [ C(DTLB) ] = {
1393         [ C(OP_READ) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1395                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1396         },
1397         [ C(OP_WRITE) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1399                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1400         },
1401         [ C(OP_PREFETCH) ] = {
1402                 [ C(RESULT_ACCESS) ] = 0,
1403                 [ C(RESULT_MISS)   ] = 0,
1404         },
1405  },
1406  [ C(ITLB) ] = {
1407         [ C(OP_READ) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1409                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 [ C(RESULT_ACCESS) ] = -1,
1413                 [ C(RESULT_MISS)   ] = -1,
1414         },
1415         [ C(OP_PREFETCH) ] = {
1416                 [ C(RESULT_ACCESS) ] = -1,
1417                 [ C(RESULT_MISS)   ] = -1,
1418         },
1419  },
1420  [ C(BPU ) ] = {
1421         [ C(OP_READ) ] = {
1422                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1423                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1424         },
1425         [ C(OP_WRITE) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429         [ C(OP_PREFETCH) ] = {
1430                 [ C(RESULT_ACCESS) ] = -1,
1431                 [ C(RESULT_MISS)   ] = -1,
1432         },
1433  },
1434 };
1435 
1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1438 /* no_alloc_cycles.not_delivered */
1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1440                "event=0xca,umask=0x50");
1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1442 /* uops_retired.all */
1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1444                "event=0xc2,umask=0x10");
1445 /* uops_retired.all */
1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1447                "event=0xc2,umask=0x10");
1448 
1449 static struct attribute *slm_events_attrs[] = {
1450         EVENT_PTR(td_total_slots_slm),
1451         EVENT_PTR(td_total_slots_scale_slm),
1452         EVENT_PTR(td_fetch_bubbles_slm),
1453         EVENT_PTR(td_fetch_bubbles_scale_slm),
1454         EVENT_PTR(td_slots_issued_slm),
1455         EVENT_PTR(td_slots_retired_slm),
1456         NULL
1457 };
1458 
1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1460 {
1461         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1463         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1464         EVENT_EXTRA_END
1465 };
1466 
1467 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1468 #define SLM_DMND_WRITE          SNB_DMND_RFO
1469 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1470 
1471 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1472 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1473 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1474 
1475 static __initconst const u64 slm_hw_cache_extra_regs
1476                                 [PERF_COUNT_HW_CACHE_MAX]
1477                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1478                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1479 {
1480  [ C(LL  ) ] = {
1481         [ C(OP_READ) ] = {
1482                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1483                 [ C(RESULT_MISS)   ] = 0,
1484         },
1485         [ C(OP_WRITE) ] = {
1486                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1487                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1488         },
1489         [ C(OP_PREFETCH) ] = {
1490                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1491                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1492         },
1493  },
1494 };
1495 
1496 static __initconst const u64 slm_hw_cache_event_ids
1497                                 [PERF_COUNT_HW_CACHE_MAX]
1498                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1499                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1500 {
1501  [ C(L1D) ] = {
1502         [ C(OP_READ) ] = {
1503                 [ C(RESULT_ACCESS) ] = 0,
1504                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1505         },
1506         [ C(OP_WRITE) ] = {
1507                 [ C(RESULT_ACCESS) ] = 0,
1508                 [ C(RESULT_MISS)   ] = 0,
1509         },
1510         [ C(OP_PREFETCH) ] = {
1511                 [ C(RESULT_ACCESS) ] = 0,
1512                 [ C(RESULT_MISS)   ] = 0,
1513         },
1514  },
1515  [ C(L1I ) ] = {
1516         [ C(OP_READ) ] = {
1517                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1518                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1519         },
1520         [ C(OP_WRITE) ] = {
1521                 [ C(RESULT_ACCESS) ] = -1,
1522                 [ C(RESULT_MISS)   ] = -1,
1523         },
1524         [ C(OP_PREFETCH) ] = {
1525                 [ C(RESULT_ACCESS) ] = 0,
1526                 [ C(RESULT_MISS)   ] = 0,
1527         },
1528  },
1529  [ C(LL  ) ] = {
1530         [ C(OP_READ) ] = {
1531                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1532                 [ C(RESULT_ACCESS) ] = 0x01b7,
1533                 [ C(RESULT_MISS)   ] = 0,
1534         },
1535         [ C(OP_WRITE) ] = {
1536                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1537                 [ C(RESULT_ACCESS) ] = 0x01b7,
1538                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1539                 [ C(RESULT_MISS)   ] = 0x01b7,
1540         },
1541         [ C(OP_PREFETCH) ] = {
1542                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1543                 [ C(RESULT_ACCESS) ] = 0x01b7,
1544                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1545                 [ C(RESULT_MISS)   ] = 0x01b7,
1546         },
1547  },
1548  [ C(DTLB) ] = {
1549         [ C(OP_READ) ] = {
1550                 [ C(RESULT_ACCESS) ] = 0,
1551                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1552         },
1553         [ C(OP_WRITE) ] = {
1554                 [ C(RESULT_ACCESS) ] = 0,
1555                 [ C(RESULT_MISS)   ] = 0,
1556         },
1557         [ C(OP_PREFETCH) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0,
1559                 [ C(RESULT_MISS)   ] = 0,
1560         },
1561  },
1562  [ C(ITLB) ] = {
1563         [ C(OP_READ) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1566         },
1567         [ C(OP_WRITE) ] = {
1568                 [ C(RESULT_ACCESS) ] = -1,
1569                 [ C(RESULT_MISS)   ] = -1,
1570         },
1571         [ C(OP_PREFETCH) ] = {
1572                 [ C(RESULT_ACCESS) ] = -1,
1573                 [ C(RESULT_MISS)   ] = -1,
1574         },
1575  },
1576  [ C(BPU ) ] = {
1577         [ C(OP_READ) ] = {
1578                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1579                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1580         },
1581         [ C(OP_WRITE) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585         [ C(OP_PREFETCH) ] = {
1586                 [ C(RESULT_ACCESS) ] = -1,
1587                 [ C(RESULT_MISS)   ] = -1,
1588         },
1589  },
1590 };
1591 
1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1594 /* UOPS_NOT_DELIVERED.ANY */
1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1598 /* UOPS_RETIRED.ANY */
1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1600 /* UOPS_ISSUED.ANY */
1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1602 
1603 static struct attribute *glm_events_attrs[] = {
1604         EVENT_PTR(td_total_slots_glm),
1605         EVENT_PTR(td_total_slots_scale_glm),
1606         EVENT_PTR(td_fetch_bubbles_glm),
1607         EVENT_PTR(td_recovery_bubbles_glm),
1608         EVENT_PTR(td_slots_issued_glm),
1609         EVENT_PTR(td_slots_retired_glm),
1610         NULL
1611 };
1612 
1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1614         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1615         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1616         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1617         EVENT_EXTRA_END
1618 };
1619 
1620 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1621 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1622 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1623 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1624 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1625 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1626 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1627 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1628 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1629 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1630 
1631 static __initconst const u64 glm_hw_cache_event_ids
1632                                 [PERF_COUNT_HW_CACHE_MAX]
1633                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1634                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1635         [C(L1D)] = {
1636                 [C(OP_READ)] = {
1637                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1638                         [C(RESULT_MISS)]        = 0x0,
1639                 },
1640                 [C(OP_WRITE)] = {
1641                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1642                         [C(RESULT_MISS)]        = 0x0,
1643                 },
1644                 [C(OP_PREFETCH)] = {
1645                         [C(RESULT_ACCESS)]      = 0x0,
1646                         [C(RESULT_MISS)]        = 0x0,
1647                 },
1648         },
1649         [C(L1I)] = {
1650                 [C(OP_READ)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1652                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1653                 },
1654                 [C(OP_WRITE)] = {
1655                         [C(RESULT_ACCESS)]      = -1,
1656                         [C(RESULT_MISS)]        = -1,
1657                 },
1658                 [C(OP_PREFETCH)] = {
1659                         [C(RESULT_ACCESS)]      = 0x0,
1660                         [C(RESULT_MISS)]        = 0x0,
1661                 },
1662         },
1663         [C(LL)] = {
1664                 [C(OP_READ)] = {
1665                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1666                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1667                 },
1668                 [C(OP_WRITE)] = {
1669                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1670                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1671                 },
1672                 [C(OP_PREFETCH)] = {
1673                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1674                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1675                 },
1676         },
1677         [C(DTLB)] = {
1678                 [C(OP_READ)] = {
1679                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1680                         [C(RESULT_MISS)]        = 0x0,
1681                 },
1682                 [C(OP_WRITE)] = {
1683                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1684                         [C(RESULT_MISS)]        = 0x0,
1685                 },
1686                 [C(OP_PREFETCH)] = {
1687                         [C(RESULT_ACCESS)]      = 0x0,
1688                         [C(RESULT_MISS)]        = 0x0,
1689                 },
1690         },
1691         [C(ITLB)] = {
1692                 [C(OP_READ)] = {
1693                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1694                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = -1,
1698                         [C(RESULT_MISS)]        = -1,
1699                 },
1700                 [C(OP_PREFETCH)] = {
1701                         [C(RESULT_ACCESS)]      = -1,
1702                         [C(RESULT_MISS)]        = -1,
1703                 },
1704         },
1705         [C(BPU)] = {
1706                 [C(OP_READ)] = {
1707                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1708                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1709                 },
1710                 [C(OP_WRITE)] = {
1711                         [C(RESULT_ACCESS)]      = -1,
1712                         [C(RESULT_MISS)]        = -1,
1713                 },
1714                 [C(OP_PREFETCH)] = {
1715                         [C(RESULT_ACCESS)]      = -1,
1716                         [C(RESULT_MISS)]        = -1,
1717                 },
1718         },
1719 };
1720 
1721 static __initconst const u64 glm_hw_cache_extra_regs
1722                                 [PERF_COUNT_HW_CACHE_MAX]
1723                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1724                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1725         [C(LL)] = {
1726                 [C(OP_READ)] = {
1727                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1728                                                   GLM_LLC_ACCESS,
1729                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1730                                                   GLM_LLC_MISS,
1731                 },
1732                 [C(OP_WRITE)] = {
1733                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1734                                                   GLM_LLC_ACCESS,
1735                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1736                                                   GLM_LLC_MISS,
1737                 },
1738                 [C(OP_PREFETCH)] = {
1739                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1740                                                   GLM_LLC_ACCESS,
1741                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1742                                                   GLM_LLC_MISS,
1743                 },
1744         },
1745 };
1746 
1747 static __initconst const u64 glp_hw_cache_event_ids
1748                                 [PERF_COUNT_HW_CACHE_MAX]
1749                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1750                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1751         [C(L1D)] = {
1752                 [C(OP_READ)] = {
1753                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1754                         [C(RESULT_MISS)]        = 0x0,
1755                 },
1756                 [C(OP_WRITE)] = {
1757                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1758                         [C(RESULT_MISS)]        = 0x0,
1759                 },
1760                 [C(OP_PREFETCH)] = {
1761                         [C(RESULT_ACCESS)]      = 0x0,
1762                         [C(RESULT_MISS)]        = 0x0,
1763                 },
1764         },
1765         [C(L1I)] = {
1766                 [C(OP_READ)] = {
1767                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1768                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1769                 },
1770                 [C(OP_WRITE)] = {
1771                         [C(RESULT_ACCESS)]      = -1,
1772                         [C(RESULT_MISS)]        = -1,
1773                 },
1774                 [C(OP_PREFETCH)] = {
1775                         [C(RESULT_ACCESS)]      = 0x0,
1776                         [C(RESULT_MISS)]        = 0x0,
1777                 },
1778         },
1779         [C(LL)] = {
1780                 [C(OP_READ)] = {
1781                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1782                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1783                 },
1784                 [C(OP_WRITE)] = {
1785                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1786                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1787                 },
1788                 [C(OP_PREFETCH)] = {
1789                         [C(RESULT_ACCESS)]      = 0x0,
1790                         [C(RESULT_MISS)]        = 0x0,
1791                 },
1792         },
1793         [C(DTLB)] = {
1794                 [C(OP_READ)] = {
1795                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1796                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1797                 },
1798                 [C(OP_WRITE)] = {
1799                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1800                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1801                 },
1802                 [C(OP_PREFETCH)] = {
1803                         [C(RESULT_ACCESS)]      = 0x0,
1804                         [C(RESULT_MISS)]        = 0x0,
1805                 },
1806         },
1807         [C(ITLB)] = {
1808                 [C(OP_READ)] = {
1809                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1810                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1811                 },
1812                 [C(OP_WRITE)] = {
1813                         [C(RESULT_ACCESS)]      = -1,
1814                         [C(RESULT_MISS)]        = -1,
1815                 },
1816                 [C(OP_PREFETCH)] = {
1817                         [C(RESULT_ACCESS)]      = -1,
1818                         [C(RESULT_MISS)]        = -1,
1819                 },
1820         },
1821         [C(BPU)] = {
1822                 [C(OP_READ)] = {
1823                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1824                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1825                 },
1826                 [C(OP_WRITE)] = {
1827                         [C(RESULT_ACCESS)]      = -1,
1828                         [C(RESULT_MISS)]        = -1,
1829                 },
1830                 [C(OP_PREFETCH)] = {
1831                         [C(RESULT_ACCESS)]      = -1,
1832                         [C(RESULT_MISS)]        = -1,
1833                 },
1834         },
1835 };
1836 
1837 static __initconst const u64 glp_hw_cache_extra_regs
1838                                 [PERF_COUNT_HW_CACHE_MAX]
1839                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1840                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1841         [C(LL)] = {
1842                 [C(OP_READ)] = {
1843                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1844                                                   GLM_LLC_ACCESS,
1845                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1846                                                   GLM_LLC_MISS,
1847                 },
1848                 [C(OP_WRITE)] = {
1849                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1850                                                   GLM_LLC_ACCESS,
1851                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1852                                                   GLM_LLC_MISS,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)]      = 0x0,
1856                         [C(RESULT_MISS)]        = 0x0,
1857                 },
1858         },
1859 };
1860 
1861 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
1862 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
1863 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
1864 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
1865 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1866                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1867 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1868 
1869 static __initconst const u64 tnt_hw_cache_extra_regs
1870                                 [PERF_COUNT_HW_CACHE_MAX]
1871                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1872                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1873         [C(LL)] = {
1874                 [C(OP_READ)] = {
1875                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
1876                                                   TNT_LLC_ACCESS,
1877                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
1878                                                   TNT_LLC_MISS,
1879                 },
1880                 [C(OP_WRITE)] = {
1881                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
1882                                                   TNT_LLC_ACCESS,
1883                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
1884                                                   TNT_LLC_MISS,
1885                 },
1886                 [C(OP_PREFETCH)] = {
1887                         [C(RESULT_ACCESS)]      = 0x0,
1888                         [C(RESULT_MISS)]        = 0x0,
1889                 },
1890         },
1891 };
1892 
1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1894         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1896         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1897         EVENT_EXTRA_END
1898 };
1899 
1900 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1901 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1902 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1903 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1904 #define KNL_DDR_LOCAL           BIT_ULL(23)
1905 #define KNL_DDR_FAR             BIT_ULL(24)
1906 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1907                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1908 #define KNL_L2_READ             SLM_DMND_READ
1909 #define KNL_L2_WRITE            SLM_DMND_WRITE
1910 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1911 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1912 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1913                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1914                                                   SNB_NON_DRAM)
1915 
1916 static __initconst const u64 knl_hw_cache_extra_regs
1917                                 [PERF_COUNT_HW_CACHE_MAX]
1918                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1919                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920         [C(LL)] = {
1921                 [C(OP_READ)] = {
1922                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1923                         [C(RESULT_MISS)]   = 0,
1924                 },
1925                 [C(OP_WRITE)] = {
1926                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1927                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1928                 },
1929                 [C(OP_PREFETCH)] = {
1930                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1931                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1932                 },
1933         },
1934 };
1935 
1936 /*
1937  * Used from PMIs where the LBRs are already disabled.
1938  *
1939  * This function could be called consecutively. It is required to remain in
1940  * disabled state if called consecutively.
1941  *
1942  * During consecutive calls, the same disable value will be written to related
1943  * registers, so the PMU state remains unchanged.
1944  *
1945  * intel_bts events don't coexist with intel PMU's BTS events because of
1946  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1947  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1948  */
1949 static void __intel_pmu_disable_all(void)
1950 {
1951         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1952 
1953         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1954 
1955         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1956                 intel_pmu_disable_bts();
1957 
1958         intel_pmu_pebs_disable_all();
1959 }
1960 
1961 static void intel_pmu_disable_all(void)
1962 {
1963         __intel_pmu_disable_all();
1964         intel_pmu_lbr_disable_all();
1965 }
1966 
1967 static void __intel_pmu_enable_all(int added, bool pmi)
1968 {
1969         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1970 
1971         intel_pmu_pebs_enable_all();
1972         intel_pmu_lbr_enable_all(pmi);
1973         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1974                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1975 
1976         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1977                 struct perf_event *event =
1978                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1979 
1980                 if (WARN_ON_ONCE(!event))
1981                         return;
1982 
1983                 intel_pmu_enable_bts(event->hw.config);
1984         }
1985 }
1986 
1987 static void intel_pmu_enable_all(int added)
1988 {
1989         __intel_pmu_enable_all(added, false);
1990 }
1991 
1992 /*
1993  * Workaround for:
1994  *   Intel Errata AAK100 (model 26)
1995  *   Intel Errata AAP53  (model 30)
1996  *   Intel Errata BD53   (model 44)
1997  *
1998  * The official story:
1999  *   These chips need to be 'reset' when adding counters by programming the
2000  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2001  *   in sequence on the same PMC or on different PMCs.
2002  *
2003  * In practise it appears some of these events do in fact count, and
2004  * we need to program all 4 events.
2005  */
2006 static void intel_pmu_nhm_workaround(void)
2007 {
2008         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2009         static const unsigned long nhm_magic[4] = {
2010                 0x4300B5,
2011                 0x4300D2,
2012                 0x4300B1,
2013                 0x4300B1
2014         };
2015         struct perf_event *event;
2016         int i;
2017 
2018         /*
2019          * The Errata requires below steps:
2020          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2021          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2022          *    the corresponding PMCx;
2023          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2024          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2025          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2026          */
2027 
2028         /*
2029          * The real steps we choose are a little different from above.
2030          * A) To reduce MSR operations, we don't run step 1) as they
2031          *    are already cleared before this function is called;
2032          * B) Call x86_perf_event_update to save PMCx before configuring
2033          *    PERFEVTSELx with magic number;
2034          * C) With step 5), we do clear only when the PERFEVTSELx is
2035          *    not used currently.
2036          * D) Call x86_perf_event_set_period to restore PMCx;
2037          */
2038 
2039         /* We always operate 4 pairs of PERF Counters */
2040         for (i = 0; i < 4; i++) {
2041                 event = cpuc->events[i];
2042                 if (event)
2043                         x86_perf_event_update(event);
2044         }
2045 
2046         for (i = 0; i < 4; i++) {
2047                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2048                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2049         }
2050 
2051         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2052         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2053 
2054         for (i = 0; i < 4; i++) {
2055                 event = cpuc->events[i];
2056 
2057                 if (event) {
2058                         x86_perf_event_set_period(event);
2059                         __x86_pmu_enable_event(&event->hw,
2060                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2061                 } else
2062                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2063         }
2064 }
2065 
2066 static void intel_pmu_nhm_enable_all(int added)
2067 {
2068         if (added)
2069                 intel_pmu_nhm_workaround();
2070         intel_pmu_enable_all(added);
2071 }
2072 
2073 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2074 {
2075         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2076 
2077         if (cpuc->tfa_shadow != val) {
2078                 cpuc->tfa_shadow = val;
2079                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2080         }
2081 }
2082 
2083 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2084 {
2085         /*
2086          * We're going to use PMC3, make sure TFA is set before we touch it.
2087          */
2088         if (cntr == 3)
2089                 intel_set_tfa(cpuc, true);
2090 }
2091 
2092 static void intel_tfa_pmu_enable_all(int added)
2093 {
2094         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2095 
2096         /*
2097          * If we find PMC3 is no longer used when we enable the PMU, we can
2098          * clear TFA.
2099          */
2100         if (!test_bit(3, cpuc->active_mask))
2101                 intel_set_tfa(cpuc, false);
2102 
2103         intel_pmu_enable_all(added);
2104 }
2105 
2106 static void enable_counter_freeze(void)
2107 {
2108         update_debugctlmsr(get_debugctlmsr() |
2109                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2110 }
2111 
2112 static void disable_counter_freeze(void)
2113 {
2114         update_debugctlmsr(get_debugctlmsr() &
2115                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2116 }
2117 
2118 static inline u64 intel_pmu_get_status(void)
2119 {
2120         u64 status;
2121 
2122         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2123 
2124         return status;
2125 }
2126 
2127 static inline void intel_pmu_ack_status(u64 ack)
2128 {
2129         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2130 }
2131 
2132 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2133 {
2134         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2135         u64 ctrl_val, mask;
2136 
2137         mask = 0xfULL << (idx * 4);
2138 
2139         rdmsrl(hwc->config_base, ctrl_val);
2140         ctrl_val &= ~mask;
2141         wrmsrl(hwc->config_base, ctrl_val);
2142 }
2143 
2144 static inline bool event_is_checkpointed(struct perf_event *event)
2145 {
2146         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2147 }
2148 
2149 static void intel_pmu_disable_event(struct perf_event *event)
2150 {
2151         struct hw_perf_event *hwc = &event->hw;
2152         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2153 
2154         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2155                 intel_pmu_disable_bts();
2156                 intel_pmu_drain_bts_buffer();
2157                 return;
2158         }
2159 
2160         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2161         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2162         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2163 
2164         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL))
2165                 intel_pmu_disable_fixed(hwc);
2166         else
2167                 x86_pmu_disable_event(event);
2168 
2169         /*
2170          * Needs to be called after x86_pmu_disable_event,
2171          * so we don't trigger the event without PEBS bit set.
2172          */
2173         if (unlikely(event->attr.precise_ip))
2174                 intel_pmu_pebs_disable(event);
2175 }
2176 
2177 static void intel_pmu_del_event(struct perf_event *event)
2178 {
2179         if (needs_branch_stack(event))
2180                 intel_pmu_lbr_del(event);
2181         if (event->attr.precise_ip)
2182                 intel_pmu_pebs_del(event);
2183 }
2184 
2185 static void intel_pmu_read_event(struct perf_event *event)
2186 {
2187         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2188                 intel_pmu_auto_reload_read(event);
2189         else
2190                 x86_perf_event_update(event);
2191 }
2192 
2193 static void intel_pmu_enable_fixed(struct perf_event *event)
2194 {
2195         struct hw_perf_event *hwc = &event->hw;
2196         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2197         u64 ctrl_val, mask, bits = 0;
2198 
2199         /*
2200          * Enable IRQ generation (0x8), if not PEBS,
2201          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2202          * if requested:
2203          */
2204         if (!event->attr.precise_ip)
2205                 bits |= 0x8;
2206         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2207                 bits |= 0x2;
2208         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2209                 bits |= 0x1;
2210 
2211         /*
2212          * ANY bit is supported in v3 and up
2213          */
2214         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2215                 bits |= 0x4;
2216 
2217         bits <<= (idx * 4);
2218         mask = 0xfULL << (idx * 4);
2219 
2220         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2221                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2222                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2223         }
2224 
2225         rdmsrl(hwc->config_base, ctrl_val);
2226         ctrl_val &= ~mask;
2227         ctrl_val |= bits;
2228         wrmsrl(hwc->config_base, ctrl_val);
2229 }
2230 
2231 static void intel_pmu_enable_event(struct perf_event *event)
2232 {
2233         struct hw_perf_event *hwc = &event->hw;
2234         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2235 
2236         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2237                 if (!__this_cpu_read(cpu_hw_events.enabled))
2238                         return;
2239 
2240                 intel_pmu_enable_bts(hwc->config);
2241                 return;
2242         }
2243 
2244         if (event->attr.exclude_host)
2245                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2246         if (event->attr.exclude_guest)
2247                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2248 
2249         if (unlikely(event_is_checkpointed(event)))
2250                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2251 
2252         if (unlikely(event->attr.precise_ip))
2253                 intel_pmu_pebs_enable(event);
2254 
2255         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2256                 intel_pmu_enable_fixed(event);
2257                 return;
2258         }
2259 
2260         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2261 }
2262 
2263 static void intel_pmu_add_event(struct perf_event *event)
2264 {
2265         if (event->attr.precise_ip)
2266                 intel_pmu_pebs_add(event);
2267         if (needs_branch_stack(event))
2268                 intel_pmu_lbr_add(event);
2269 }
2270 
2271 /*
2272  * Save and restart an expired event. Called by NMI contexts,
2273  * so it has to be careful about preempting normal event ops:
2274  */
2275 int intel_pmu_save_and_restart(struct perf_event *event)
2276 {
2277         x86_perf_event_update(event);
2278         /*
2279          * For a checkpointed counter always reset back to 0.  This
2280          * avoids a situation where the counter overflows, aborts the
2281          * transaction and is then set back to shortly before the
2282          * overflow, and overflows and aborts again.
2283          */
2284         if (unlikely(event_is_checkpointed(event))) {
2285                 /* No race with NMIs because the counter should not be armed */
2286                 wrmsrl(event->hw.event_base, 0);
2287                 local64_set(&event->hw.prev_count, 0);
2288         }
2289         return x86_perf_event_set_period(event);
2290 }
2291 
2292 static void intel_pmu_reset(void)
2293 {
2294         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2295         unsigned long flags;
2296         int idx;
2297 
2298         if (!x86_pmu.num_counters)
2299                 return;
2300 
2301         local_irq_save(flags);
2302 
2303         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2304 
2305         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2306                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2307                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2308         }
2309         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2310                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2311 
2312         if (ds)
2313                 ds->bts_index = ds->bts_buffer_base;
2314 
2315         /* Ack all overflows and disable fixed counters */
2316         if (x86_pmu.version >= 2) {
2317                 intel_pmu_ack_status(intel_pmu_get_status());
2318                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2319         }
2320 
2321         /* Reset LBRs and LBR freezing */
2322         if (x86_pmu.lbr_nr) {
2323                 update_debugctlmsr(get_debugctlmsr() &
2324                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2325         }
2326 
2327         local_irq_restore(flags);
2328 }
2329 
2330 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2331 {
2332         struct perf_sample_data data;
2333         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2334         int bit;
2335         int handled = 0;
2336 
2337         inc_irq_stat(apic_perf_irqs);
2338 
2339         /*
2340          * Ignore a range of extra bits in status that do not indicate
2341          * overflow by themselves.
2342          */
2343         status &= ~(GLOBAL_STATUS_COND_CHG |
2344                     GLOBAL_STATUS_ASIF |
2345                     GLOBAL_STATUS_LBRS_FROZEN);
2346         if (!status)
2347                 return 0;
2348         /*
2349          * In case multiple PEBS events are sampled at the same time,
2350          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2351          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2352          * having their bits set in the status register. This is a sign
2353          * that there was at least one PEBS record pending at the time
2354          * of the PMU interrupt. PEBS counters must only be processed
2355          * via the drain_pebs() calls and not via the regular sample
2356          * processing loop coming after that the function, otherwise
2357          * phony regular samples may be generated in the sampling buffer
2358          * not marked with the EXACT tag. Another possibility is to have
2359          * one PEBS event and at least one non-PEBS event whic hoverflows
2360          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2361          * not be set, yet the overflow status bit for the PEBS counter will
2362          * be on Skylake.
2363          *
2364          * To avoid this problem, we systematically ignore the PEBS-enabled
2365          * counters from the GLOBAL_STATUS mask and we always process PEBS
2366          * events via drain_pebs().
2367          */
2368         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2369                 status &= ~cpuc->pebs_enabled;
2370         else
2371                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2372 
2373         /*
2374          * PEBS overflow sets bit 62 in the global status register
2375          */
2376         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2377                 handled++;
2378                 x86_pmu.drain_pebs(regs);
2379                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2380         }
2381 
2382         /*
2383          * Intel PT
2384          */
2385         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2386                 handled++;
2387                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2388                         perf_guest_cbs->handle_intel_pt_intr))
2389                         perf_guest_cbs->handle_intel_pt_intr();
2390                 else
2391                         intel_pt_interrupt();
2392         }
2393 
2394         /*
2395          * Checkpointed counters can lead to 'spurious' PMIs because the
2396          * rollback caused by the PMI will have cleared the overflow status
2397          * bit. Therefore always force probe these counters.
2398          */
2399         status |= cpuc->intel_cp_status;
2400 
2401         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2402                 struct perf_event *event = cpuc->events[bit];
2403 
2404                 handled++;
2405 
2406                 if (!test_bit(bit, cpuc->active_mask))
2407                         continue;
2408 
2409                 if (!intel_pmu_save_and_restart(event))
2410                         continue;
2411 
2412                 perf_sample_data_init(&data, 0, event->hw.last_period);
2413 
2414                 if (has_branch_stack(event))
2415                         data.br_stack = &cpuc->lbr_stack;
2416 
2417                 if (perf_event_overflow(event, &data, regs))
2418                         x86_pmu_stop(event, 0);
2419         }
2420 
2421         return handled;
2422 }
2423 
2424 static bool disable_counter_freezing = true;
2425 static int __init intel_perf_counter_freezing_setup(char *s)
2426 {
2427         bool res;
2428 
2429         if (kstrtobool(s, &res))
2430                 return -EINVAL;
2431 
2432         disable_counter_freezing = !res;
2433         return 1;
2434 }
2435 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2436 
2437 /*
2438  * Simplified handler for Arch Perfmon v4:
2439  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2440  * This is done automatically on PMU ack.
2441  * - Ack the PMU only after the APIC.
2442  */
2443 
2444 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2445 {
2446         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2447         int handled = 0;
2448         bool bts = false;
2449         u64 status;
2450         int pmu_enabled = cpuc->enabled;
2451         int loops = 0;
2452 
2453         /* PMU has been disabled because of counter freezing */
2454         cpuc->enabled = 0;
2455         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2456                 bts = true;
2457                 intel_bts_disable_local();
2458                 handled = intel_pmu_drain_bts_buffer();
2459                 handled += intel_bts_interrupt();
2460         }
2461         status = intel_pmu_get_status();
2462         if (!status)
2463                 goto done;
2464 again:
2465         intel_pmu_lbr_read();
2466         if (++loops > 100) {
2467                 static bool warned;
2468 
2469                 if (!warned) {
2470                         WARN(1, "perfevents: irq loop stuck!\n");
2471                         perf_event_print_debug();
2472                         warned = true;
2473                 }
2474                 intel_pmu_reset();
2475                 goto done;
2476         }
2477 
2478 
2479         handled += handle_pmi_common(regs, status);
2480 done:
2481         /* Ack the PMI in the APIC */
2482         apic_write(APIC_LVTPC, APIC_DM_NMI);
2483 
2484         /*
2485          * The counters start counting immediately while ack the status.
2486          * Make it as close as possible to IRET. This avoids bogus
2487          * freezing on Skylake CPUs.
2488          */
2489         if (status) {
2490                 intel_pmu_ack_status(status);
2491         } else {
2492                 /*
2493                  * CPU may issues two PMIs very close to each other.
2494                  * When the PMI handler services the first one, the
2495                  * GLOBAL_STATUS is already updated to reflect both.
2496                  * When it IRETs, the second PMI is immediately
2497                  * handled and it sees clear status. At the meantime,
2498                  * there may be a third PMI, because the freezing bit
2499                  * isn't set since the ack in first PMI handlers.
2500                  * Double check if there is more work to be done.
2501                  */
2502                 status = intel_pmu_get_status();
2503                 if (status)
2504                         goto again;
2505         }
2506 
2507         if (bts)
2508                 intel_bts_enable_local();
2509         cpuc->enabled = pmu_enabled;
2510         return handled;
2511 }
2512 
2513 /*
2514  * This handler is triggered by the local APIC, so the APIC IRQ handling
2515  * rules apply:
2516  */
2517 static int intel_pmu_handle_irq(struct pt_regs *regs)
2518 {
2519         struct cpu_hw_events *cpuc;
2520         int loops;
2521         u64 status;
2522         int handled;
2523         int pmu_enabled;
2524 
2525         cpuc = this_cpu_ptr(&cpu_hw_events);
2526 
2527         /*
2528          * Save the PMU state.
2529          * It needs to be restored when leaving the handler.
2530          */
2531         pmu_enabled = cpuc->enabled;
2532         /*
2533          * No known reason to not always do late ACK,
2534          * but just in case do it opt-in.
2535          */
2536         if (!x86_pmu.late_ack)
2537                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2538         intel_bts_disable_local();
2539         cpuc->enabled = 0;
2540         __intel_pmu_disable_all();
2541         handled = intel_pmu_drain_bts_buffer();
2542         handled += intel_bts_interrupt();
2543         status = intel_pmu_get_status();
2544         if (!status)
2545                 goto done;
2546 
2547         loops = 0;
2548 again:
2549         intel_pmu_lbr_read();
2550         intel_pmu_ack_status(status);
2551         if (++loops > 100) {
2552                 static bool warned;
2553 
2554                 if (!warned) {
2555                         WARN(1, "perfevents: irq loop stuck!\n");
2556                         perf_event_print_debug();
2557                         warned = true;
2558                 }
2559                 intel_pmu_reset();
2560                 goto done;
2561         }
2562 
2563         handled += handle_pmi_common(regs, status);
2564 
2565         /*
2566          * Repeat if there is more work to be done:
2567          */
2568         status = intel_pmu_get_status();
2569         if (status)
2570                 goto again;
2571 
2572 done:
2573         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2574         cpuc->enabled = pmu_enabled;
2575         if (pmu_enabled)
2576                 __intel_pmu_enable_all(0, true);
2577         intel_bts_enable_local();
2578 
2579         /*
2580          * Only unmask the NMI after the overflow counters
2581          * have been reset. This avoids spurious NMIs on
2582          * Haswell CPUs.
2583          */
2584         if (x86_pmu.late_ack)
2585                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2586         return handled;
2587 }
2588 
2589 static struct event_constraint *
2590 intel_bts_constraints(struct perf_event *event)
2591 {
2592         if (unlikely(intel_pmu_has_bts(event)))
2593                 return &bts_constraint;
2594 
2595         return NULL;
2596 }
2597 
2598 static int intel_alt_er(int idx, u64 config)
2599 {
2600         int alt_idx = idx;
2601 
2602         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2603                 return idx;
2604 
2605         if (idx == EXTRA_REG_RSP_0)
2606                 alt_idx = EXTRA_REG_RSP_1;
2607 
2608         if (idx == EXTRA_REG_RSP_1)
2609                 alt_idx = EXTRA_REG_RSP_0;
2610 
2611         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2612                 return idx;
2613 
2614         return alt_idx;
2615 }
2616 
2617 static void intel_fixup_er(struct perf_event *event, int idx)
2618 {
2619         event->hw.extra_reg.idx = idx;
2620 
2621         if (idx == EXTRA_REG_RSP_0) {
2622                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2623                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2624                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2625         } else if (idx == EXTRA_REG_RSP_1) {
2626                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2627                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2628                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2629         }
2630 }
2631 
2632 /*
2633  * manage allocation of shared extra msr for certain events
2634  *
2635  * sharing can be:
2636  * per-cpu: to be shared between the various events on a single PMU
2637  * per-core: per-cpu + shared by HT threads
2638  */
2639 static struct event_constraint *
2640 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2641                                    struct perf_event *event,
2642                                    struct hw_perf_event_extra *reg)
2643 {
2644         struct event_constraint *c = &emptyconstraint;
2645         struct er_account *era;
2646         unsigned long flags;
2647         int idx = reg->idx;
2648 
2649         /*
2650          * reg->alloc can be set due to existing state, so for fake cpuc we
2651          * need to ignore this, otherwise we might fail to allocate proper fake
2652          * state for this extra reg constraint. Also see the comment below.
2653          */
2654         if (reg->alloc && !cpuc->is_fake)
2655                 return NULL; /* call x86_get_event_constraint() */
2656 
2657 again:
2658         era = &cpuc->shared_regs->regs[idx];
2659         /*
2660          * we use spin_lock_irqsave() to avoid lockdep issues when
2661          * passing a fake cpuc
2662          */
2663         raw_spin_lock_irqsave(&era->lock, flags);
2664 
2665         if (!atomic_read(&era->ref) || era->config == reg->config) {
2666 
2667                 /*
2668                  * If its a fake cpuc -- as per validate_{group,event}() we
2669                  * shouldn't touch event state and we can avoid doing so
2670                  * since both will only call get_event_constraints() once
2671                  * on each event, this avoids the need for reg->alloc.
2672                  *
2673                  * Not doing the ER fixup will only result in era->reg being
2674                  * wrong, but since we won't actually try and program hardware
2675                  * this isn't a problem either.
2676                  */
2677                 if (!cpuc->is_fake) {
2678                         if (idx != reg->idx)
2679                                 intel_fixup_er(event, idx);
2680 
2681                         /*
2682                          * x86_schedule_events() can call get_event_constraints()
2683                          * multiple times on events in the case of incremental
2684                          * scheduling(). reg->alloc ensures we only do the ER
2685                          * allocation once.
2686                          */
2687                         reg->alloc = 1;
2688                 }
2689 
2690                 /* lock in msr value */
2691                 era->config = reg->config;
2692                 era->reg = reg->reg;
2693 
2694                 /* one more user */
2695                 atomic_inc(&era->ref);
2696 
2697                 /*
2698                  * need to call x86_get_event_constraint()
2699                  * to check if associated event has constraints
2700                  */
2701                 c = NULL;
2702         } else {
2703                 idx = intel_alt_er(idx, reg->config);
2704                 if (idx != reg->idx) {
2705                         raw_spin_unlock_irqrestore(&era->lock, flags);
2706                         goto again;
2707                 }
2708         }
2709         raw_spin_unlock_irqrestore(&era->lock, flags);
2710 
2711         return c;
2712 }
2713 
2714 static void
2715 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2716                                    struct hw_perf_event_extra *reg)
2717 {
2718         struct er_account *era;
2719 
2720         /*
2721          * Only put constraint if extra reg was actually allocated. Also takes
2722          * care of event which do not use an extra shared reg.
2723          *
2724          * Also, if this is a fake cpuc we shouldn't touch any event state
2725          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2726          * either since it'll be thrown out.
2727          */
2728         if (!reg->alloc || cpuc->is_fake)
2729                 return;
2730 
2731         era = &cpuc->shared_regs->regs[reg->idx];
2732 
2733         /* one fewer user */
2734         atomic_dec(&era->ref);
2735 
2736         /* allocate again next time */
2737         reg->alloc = 0;
2738 }
2739 
2740 static struct event_constraint *
2741 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2742                               struct perf_event *event)
2743 {
2744         struct event_constraint *c = NULL, *d;
2745         struct hw_perf_event_extra *xreg, *breg;
2746 
2747         xreg = &event->hw.extra_reg;
2748         if (xreg->idx != EXTRA_REG_NONE) {
2749                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2750                 if (c == &emptyconstraint)
2751                         return c;
2752         }
2753         breg = &event->hw.branch_reg;
2754         if (breg->idx != EXTRA_REG_NONE) {
2755                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2756                 if (d == &emptyconstraint) {
2757                         __intel_shared_reg_put_constraints(cpuc, xreg);
2758                         c = d;
2759                 }
2760         }
2761         return c;
2762 }
2763 
2764 struct event_constraint *
2765 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2766                           struct perf_event *event)
2767 {
2768         struct event_constraint *c;
2769 
2770         if (x86_pmu.event_constraints) {
2771                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2772                         if (constraint_match(c, event->hw.config)) {
2773                                 event->hw.flags |= c->flags;
2774                                 return c;
2775                         }
2776                 }
2777         }
2778 
2779         return &unconstrained;
2780 }
2781 
2782 static struct event_constraint *
2783 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2784                             struct perf_event *event)
2785 {
2786         struct event_constraint *c;
2787 
2788         c = intel_bts_constraints(event);
2789         if (c)
2790                 return c;
2791 
2792         c = intel_shared_regs_constraints(cpuc, event);
2793         if (c)
2794                 return c;
2795 
2796         c = intel_pebs_constraints(event);
2797         if (c)
2798                 return c;
2799 
2800         return x86_get_event_constraints(cpuc, idx, event);
2801 }
2802 
2803 static void
2804 intel_start_scheduling(struct cpu_hw_events *cpuc)
2805 {
2806         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2807         struct intel_excl_states *xl;
2808         int tid = cpuc->excl_thread_id;
2809 
2810         /*
2811          * nothing needed if in group validation mode
2812          */
2813         if (cpuc->is_fake || !is_ht_workaround_enabled())
2814                 return;
2815 
2816         /*
2817          * no exclusion needed
2818          */
2819         if (WARN_ON_ONCE(!excl_cntrs))
2820                 return;
2821 
2822         xl = &excl_cntrs->states[tid];
2823 
2824         xl->sched_started = true;
2825         /*
2826          * lock shared state until we are done scheduling
2827          * in stop_event_scheduling()
2828          * makes scheduling appear as a transaction
2829          */
2830         raw_spin_lock(&excl_cntrs->lock);
2831 }
2832 
2833 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2834 {
2835         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2836         struct event_constraint *c = cpuc->event_constraint[idx];
2837         struct intel_excl_states *xl;
2838         int tid = cpuc->excl_thread_id;
2839 
2840         if (cpuc->is_fake || !is_ht_workaround_enabled())
2841                 return;
2842 
2843         if (WARN_ON_ONCE(!excl_cntrs))
2844                 return;
2845 
2846         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2847                 return;
2848 
2849         xl = &excl_cntrs->states[tid];
2850 
2851         lockdep_assert_held(&excl_cntrs->lock);
2852 
2853         if (c->flags & PERF_X86_EVENT_EXCL)
2854                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2855         else
2856                 xl->state[cntr] = INTEL_EXCL_SHARED;
2857 }
2858 
2859 static void
2860 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2861 {
2862         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2863         struct intel_excl_states *xl;
2864         int tid = cpuc->excl_thread_id;
2865 
2866         /*
2867          * nothing needed if in group validation mode
2868          */
2869         if (cpuc->is_fake || !is_ht_workaround_enabled())
2870                 return;
2871         /*
2872          * no exclusion needed
2873          */
2874         if (WARN_ON_ONCE(!excl_cntrs))
2875                 return;
2876 
2877         xl = &excl_cntrs->states[tid];
2878 
2879         xl->sched_started = false;
2880         /*
2881          * release shared state lock (acquired in intel_start_scheduling())
2882          */
2883         raw_spin_unlock(&excl_cntrs->lock);
2884 }
2885 
2886 static struct event_constraint *
2887 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2888 {
2889         WARN_ON_ONCE(!cpuc->constraint_list);
2890 
2891         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2892                 struct event_constraint *cx;
2893 
2894                 /*
2895                  * grab pre-allocated constraint entry
2896                  */
2897                 cx = &cpuc->constraint_list[idx];
2898 
2899                 /*
2900                  * initialize dynamic constraint
2901                  * with static constraint
2902                  */
2903                 *cx = *c;
2904 
2905                 /*
2906                  * mark constraint as dynamic
2907                  */
2908                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2909                 c = cx;
2910         }
2911 
2912         return c;
2913 }
2914 
2915 static struct event_constraint *
2916 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2917                            int idx, struct event_constraint *c)
2918 {
2919         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2920         struct intel_excl_states *xlo;
2921         int tid = cpuc->excl_thread_id;
2922         int is_excl, i, w;
2923 
2924         /*
2925          * validating a group does not require
2926          * enforcing cross-thread  exclusion
2927          */
2928         if (cpuc->is_fake || !is_ht_workaround_enabled())
2929                 return c;
2930 
2931         /*
2932          * no exclusion needed
2933          */
2934         if (WARN_ON_ONCE(!excl_cntrs))
2935                 return c;
2936 
2937         /*
2938          * because we modify the constraint, we need
2939          * to make a copy. Static constraints come
2940          * from static const tables.
2941          *
2942          * only needed when constraint has not yet
2943          * been cloned (marked dynamic)
2944          */
2945         c = dyn_constraint(cpuc, c, idx);
2946 
2947         /*
2948          * From here on, the constraint is dynamic.
2949          * Either it was just allocated above, or it
2950          * was allocated during a earlier invocation
2951          * of this function
2952          */
2953 
2954         /*
2955          * state of sibling HT
2956          */
2957         xlo = &excl_cntrs->states[tid ^ 1];
2958 
2959         /*
2960          * event requires exclusive counter access
2961          * across HT threads
2962          */
2963         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2964         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2965                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2966                 if (!cpuc->n_excl++)
2967                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2968         }
2969 
2970         /*
2971          * Modify static constraint with current dynamic
2972          * state of thread
2973          *
2974          * EXCLUSIVE: sibling counter measuring exclusive event
2975          * SHARED   : sibling counter measuring non-exclusive event
2976          * UNUSED   : sibling counter unused
2977          */
2978         w = c->weight;
2979         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2980                 /*
2981                  * exclusive event in sibling counter
2982                  * our corresponding counter cannot be used
2983                  * regardless of our event
2984                  */
2985                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
2986                         __clear_bit(i, c->idxmsk);
2987                         w--;
2988                         continue;
2989                 }
2990                 /*
2991                  * if measuring an exclusive event, sibling
2992                  * measuring non-exclusive, then counter cannot
2993                  * be used
2994                  */
2995                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
2996                         __clear_bit(i, c->idxmsk);
2997                         w--;
2998                         continue;
2999                 }
3000         }
3001 
3002         /*
3003          * if we return an empty mask, then switch
3004          * back to static empty constraint to avoid
3005          * the cost of freeing later on
3006          */
3007         if (!w)
3008                 c = &emptyconstraint;
3009 
3010         c->weight = w;
3011 
3012         return c;
3013 }
3014 
3015 static struct event_constraint *
3016 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3017                             struct perf_event *event)
3018 {
3019         struct event_constraint *c1, *c2;
3020 
3021         c1 = cpuc->event_constraint[idx];
3022 
3023         /*
3024          * first time only
3025          * - static constraint: no change across incremental scheduling calls
3026          * - dynamic constraint: handled by intel_get_excl_constraints()
3027          */
3028         c2 = __intel_get_event_constraints(cpuc, idx, event);
3029         if (c1) {
3030                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3031                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3032                 c1->weight = c2->weight;
3033                 c2 = c1;
3034         }
3035 
3036         if (cpuc->excl_cntrs)
3037                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3038 
3039         return c2;
3040 }
3041 
3042 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3043                 struct perf_event *event)
3044 {
3045         struct hw_perf_event *hwc = &event->hw;
3046         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3047         int tid = cpuc->excl_thread_id;
3048         struct intel_excl_states *xl;
3049 
3050         /*
3051          * nothing needed if in group validation mode
3052          */
3053         if (cpuc->is_fake)
3054                 return;
3055 
3056         if (WARN_ON_ONCE(!excl_cntrs))
3057                 return;
3058 
3059         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3060                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3061                 if (!--cpuc->n_excl)
3062                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3063         }
3064 
3065         /*
3066          * If event was actually assigned, then mark the counter state as
3067          * unused now.
3068          */
3069         if (hwc->idx >= 0) {
3070                 xl = &excl_cntrs->states[tid];
3071 
3072                 /*
3073                  * put_constraint may be called from x86_schedule_events()
3074                  * which already has the lock held so here make locking
3075                  * conditional.
3076                  */
3077                 if (!xl->sched_started)
3078                         raw_spin_lock(&excl_cntrs->lock);
3079 
3080                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3081 
3082                 if (!xl->sched_started)
3083                         raw_spin_unlock(&excl_cntrs->lock);
3084         }
3085 }
3086 
3087 static void
3088 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3089                                         struct perf_event *event)
3090 {
3091         struct hw_perf_event_extra *reg;
3092 
3093         reg = &event->hw.extra_reg;
3094         if (reg->idx != EXTRA_REG_NONE)
3095                 __intel_shared_reg_put_constraints(cpuc, reg);
3096 
3097         reg = &event->hw.branch_reg;
3098         if (reg->idx != EXTRA_REG_NONE)
3099                 __intel_shared_reg_put_constraints(cpuc, reg);
3100 }
3101 
3102 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3103                                         struct perf_event *event)
3104 {
3105         intel_put_shared_regs_event_constraints(cpuc, event);
3106 
3107         /*
3108          * is PMU has exclusive counter restrictions, then
3109          * all events are subject to and must call the
3110          * put_excl_constraints() routine
3111          */
3112         if (cpuc->excl_cntrs)
3113                 intel_put_excl_constraints(cpuc, event);
3114 }
3115 
3116 static void intel_pebs_aliases_core2(struct perf_event *event)
3117 {
3118         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3119                 /*
3120                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3121                  * (0x003c) so that we can use it with PEBS.
3122                  *
3123                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3124                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3125                  * (0x00c0), which is a PEBS capable event, to get the same
3126                  * count.
3127                  *
3128                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3129                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3130                  * larger than the maximum number of instructions that can be
3131                  * retired per cycle (4) and then inverting the condition, we
3132                  * count all cycles that retire 16 or less instructions, which
3133                  * is every cycle.
3134                  *
3135                  * Thereby we gain a PEBS capable cycle counter.
3136                  */
3137                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3138 
3139                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3140                 event->hw.config = alt_config;
3141         }
3142 }
3143 
3144 static void intel_pebs_aliases_snb(struct perf_event *event)
3145 {
3146         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3147                 /*
3148                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3149                  * (0x003c) so that we can use it with PEBS.
3150                  *
3151                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3152                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3153                  * (0x01c2), which is a PEBS capable event, to get the same
3154                  * count.
3155                  *
3156                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3157                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3158                  * larger than the maximum number of micro-ops that can be
3159                  * retired per cycle (4) and then inverting the condition, we
3160                  * count all cycles that retire 16 or less micro-ops, which
3161                  * is every cycle.
3162                  *
3163                  * Thereby we gain a PEBS capable cycle counter.
3164                  */
3165                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3166 
3167                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3168                 event->hw.config = alt_config;
3169         }
3170 }
3171 
3172 static void intel_pebs_aliases_precdist(struct perf_event *event)
3173 {
3174         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3175                 /*
3176                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3177                  * (0x003c) so that we can use it with PEBS.
3178                  *
3179                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3180                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3181                  * (0x01c0), which is a PEBS capable event, to get the same
3182                  * count.
3183                  *
3184                  * The PREC_DIST event has special support to minimize sample
3185                  * shadowing effects. One drawback is that it can be
3186                  * only programmed on counter 1, but that seems like an
3187                  * acceptable trade off.
3188                  */
3189                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3190 
3191                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3192                 event->hw.config = alt_config;
3193         }
3194 }
3195 
3196 static void intel_pebs_aliases_ivb(struct perf_event *event)
3197 {
3198         if (event->attr.precise_ip < 3)
3199                 return intel_pebs_aliases_snb(event);
3200         return intel_pebs_aliases_precdist(event);
3201 }
3202 
3203 static void intel_pebs_aliases_skl(struct perf_event *event)
3204 {
3205         if (event->attr.precise_ip < 3)
3206                 return intel_pebs_aliases_core2(event);
3207         return intel_pebs_aliases_precdist(event);
3208 }
3209 
3210 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3211 {
3212         unsigned long flags = x86_pmu.large_pebs_flags;
3213 
3214         if (event->attr.use_clockid)
3215                 flags &= ~PERF_SAMPLE_TIME;
3216         if (!event->attr.exclude_kernel)
3217                 flags &= ~PERF_SAMPLE_REGS_USER;
3218         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3219                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3220         return flags;
3221 }
3222 
3223 static int intel_pmu_bts_config(struct perf_event *event)
3224 {
3225         struct perf_event_attr *attr = &event->attr;
3226 
3227         if (unlikely(intel_pmu_has_bts(event))) {
3228                 /* BTS is not supported by this architecture. */
3229                 if (!x86_pmu.bts_active)
3230                         return -EOPNOTSUPP;
3231 
3232                 /* BTS is currently only allowed for user-mode. */
3233                 if (!attr->exclude_kernel)
3234                         return -EOPNOTSUPP;
3235 
3236                 /* BTS is not allowed for precise events. */
3237                 if (attr->precise_ip)
3238                         return -EOPNOTSUPP;
3239 
3240                 /* disallow bts if conflicting events are present */
3241                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3242                         return -EBUSY;
3243 
3244                 event->destroy = hw_perf_lbr_event_destroy;
3245         }
3246 
3247         return 0;
3248 }
3249 
3250 static int core_pmu_hw_config(struct perf_event *event)
3251 {
3252         int ret = x86_pmu_hw_config(event);
3253 
3254         if (ret)
3255                 return ret;
3256 
3257         return intel_pmu_bts_config(event);
3258 }
3259 
3260 static int intel_pmu_hw_config(struct perf_event *event)
3261 {
3262         int ret = x86_pmu_hw_config(event);
3263 
3264         if (ret)
3265                 return ret;
3266 
3267         ret = intel_pmu_bts_config(event);
3268         if (ret)
3269                 return ret;
3270 
3271         if (event->attr.precise_ip) {
3272                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3273                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3274                         if (!(event->attr.sample_type &
3275                               ~intel_pmu_large_pebs_flags(event)))
3276                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3277                 }
3278                 if (x86_pmu.pebs_aliases)
3279                         x86_pmu.pebs_aliases(event);
3280 
3281                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3282                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3283         }
3284 
3285         if (needs_branch_stack(event)) {
3286                 ret = intel_pmu_setup_lbr_filter(event);
3287                 if (ret)
3288                         return ret;
3289 
3290                 /*
3291                  * BTS is set up earlier in this path, so don't account twice
3292                  */
3293                 if (!unlikely(intel_pmu_has_bts(event))) {
3294                         /* disallow lbr if conflicting events are present */
3295                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3296                                 return -EBUSY;
3297 
3298                         event->destroy = hw_perf_lbr_event_destroy;
3299                 }
3300         }
3301 
3302         if (event->attr.aux_output) {
3303                 if (!event->attr.precise_ip)
3304                         return -EINVAL;
3305 
3306                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3307         }
3308 
3309         if (event->attr.type != PERF_TYPE_RAW)
3310                 return 0;
3311 
3312         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3313                 return 0;
3314 
3315         if (x86_pmu.version < 3)
3316                 return -EINVAL;
3317 
3318         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3319                 return -EACCES;
3320 
3321         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3322 
3323         return 0;
3324 }
3325 
3326 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3327 {
3328         if (x86_pmu.guest_get_msrs)
3329                 return x86_pmu.guest_get_msrs(nr);
3330         *nr = 0;
3331         return NULL;
3332 }
3333 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3334 
3335 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3336 {
3337         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3338         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3339 
3340         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3341         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3342         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3343         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3344                 arr[0].guest &= ~cpuc->pebs_enabled;
3345         else
3346                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3347         *nr = 1;
3348 
3349         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3350                 /*
3351                  * If PMU counter has PEBS enabled it is not enough to
3352                  * disable counter on a guest entry since PEBS memory
3353                  * write can overshoot guest entry and corrupt guest
3354                  * memory. Disabling PEBS solves the problem.
3355                  *
3356                  * Don't do this if the CPU already enforces it.
3357                  */
3358                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3359                 arr[1].host = cpuc->pebs_enabled;
3360                 arr[1].guest = 0;
3361                 *nr = 2;
3362         }
3363 
3364         return arr;
3365 }
3366 
3367 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3368 {
3369         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3370         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3371         int idx;
3372 
3373         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3374                 struct perf_event *event = cpuc->events[idx];
3375 
3376                 arr[idx].msr = x86_pmu_config_addr(idx);
3377                 arr[idx].host = arr[idx].guest = 0;
3378 
3379                 if (!test_bit(idx, cpuc->active_mask))
3380                         continue;
3381 
3382                 arr[idx].host = arr[idx].guest =
3383                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3384 
3385                 if (event->attr.exclude_host)
3386                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3387                 else if (event->attr.exclude_guest)
3388                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3389         }
3390 
3391         *nr = x86_pmu.num_counters;
3392         return arr;
3393 }
3394 
3395 static void core_pmu_enable_event(struct perf_event *event)
3396 {
3397         if (!event->attr.exclude_host)
3398                 x86_pmu_enable_event(event);
3399 }
3400 
3401 static void core_pmu_enable_all(int added)
3402 {
3403         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3404         int idx;
3405 
3406         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3407                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3408 
3409                 if (!test_bit(idx, cpuc->active_mask) ||
3410                                 cpuc->events[idx]->attr.exclude_host)
3411                         continue;
3412 
3413                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3414         }
3415 }
3416 
3417 static int hsw_hw_config(struct perf_event *event)
3418 {
3419         int ret = intel_pmu_hw_config(event);
3420 
3421         if (ret)
3422                 return ret;
3423         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3424                 return 0;
3425         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3426 
3427         /*
3428          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3429          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3430          * this combination.
3431          */
3432         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3433              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3434               event->attr.precise_ip > 0))
3435                 return -EOPNOTSUPP;
3436 
3437         if (event_is_checkpointed(event)) {
3438                 /*
3439                  * Sampling of checkpointed events can cause situations where
3440                  * the CPU constantly aborts because of a overflow, which is
3441                  * then checkpointed back and ignored. Forbid checkpointing
3442                  * for sampling.
3443                  *
3444                  * But still allow a long sampling period, so that perf stat
3445                  * from KVM works.
3446                  */
3447                 if (event->attr.sample_period > 0 &&
3448                     event->attr.sample_period < 0x7fffffff)
3449                         return -EOPNOTSUPP;
3450         }
3451         return 0;
3452 }
3453 
3454 static struct event_constraint counter0_constraint =
3455                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3456 
3457 static struct event_constraint counter2_constraint =
3458                         EVENT_CONSTRAINT(0, 0x4, 0);
3459 
3460 static struct event_constraint fixed0_constraint =
3461                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3462 
3463 static struct event_constraint fixed0_counter0_constraint =
3464                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3465 
3466 static struct event_constraint *
3467 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3468                           struct perf_event *event)
3469 {
3470         struct event_constraint *c;
3471 
3472         c = intel_get_event_constraints(cpuc, idx, event);
3473 
3474         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3475         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3476                 if (c->idxmsk64 & (1U << 2))
3477                         return &counter2_constraint;
3478                 return &emptyconstraint;
3479         }
3480 
3481         return c;
3482 }
3483 
3484 static struct event_constraint *
3485 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3486                           struct perf_event *event)
3487 {
3488         /*
3489          * Fixed counter 0 has less skid.
3490          * Force instruction:ppp in Fixed counter 0
3491          */
3492         if ((event->attr.precise_ip == 3) &&
3493             constraint_match(&fixed0_constraint, event->hw.config))
3494                 return &fixed0_constraint;
3495 
3496         return hsw_get_event_constraints(cpuc, idx, event);
3497 }
3498 
3499 static struct event_constraint *
3500 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3501                           struct perf_event *event)
3502 {
3503         struct event_constraint *c;
3504 
3505         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3506         if (event->attr.precise_ip == 3)
3507                 return &counter0_constraint;
3508 
3509         c = intel_get_event_constraints(cpuc, idx, event);
3510 
3511         return c;
3512 }
3513 
3514 static struct event_constraint *
3515 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3516                           struct perf_event *event)
3517 {
3518         struct event_constraint *c;
3519 
3520         /*
3521          * :ppp means to do reduced skid PEBS,
3522          * which is available on PMC0 and fixed counter 0.
3523          */
3524         if (event->attr.precise_ip == 3) {
3525                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3526                 if (constraint_match(&fixed0_constraint, event->hw.config))
3527                         return &fixed0_counter0_constraint;
3528 
3529                 return &counter0_constraint;
3530         }
3531 
3532         c = intel_get_event_constraints(cpuc, idx, event);
3533 
3534         return c;
3535 }
3536 
3537 static bool allow_tsx_force_abort = true;
3538 
3539 static struct event_constraint *
3540 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3541                           struct perf_event *event)
3542 {
3543         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3544 
3545         /*
3546          * Without TFA we must not use PMC3.
3547          */
3548         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3549                 c = dyn_constraint(cpuc, c, idx);
3550                 c->idxmsk64 &= ~(1ULL << 3);
3551                 c->weight--;
3552         }
3553 
3554         return c;
3555 }
3556 
3557 /*
3558  * Broadwell:
3559  *
3560  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3561  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3562  * the two to enforce a minimum period of 128 (the smallest value that has bits
3563  * 0-5 cleared and >= 100).
3564  *
3565  * Because of how the code in x86_perf_event_set_period() works, the truncation
3566  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3567  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3568  *
3569  * Therefore the effective (average) period matches the requested period,
3570  * despite coarser hardware granularity.
3571  */
3572 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3573 {
3574         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3575                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3576                 if (left < 128)
3577                         left = 128;
3578                 left &= ~0x3fULL;
3579         }
3580         return left;
3581 }
3582 
3583 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3584 {
3585         return max(left, 32ULL);
3586 }
3587 
3588 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3589 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3590 PMU_FORMAT_ATTR(edge,   "config:18"     );
3591 PMU_FORMAT_ATTR(pc,     "config:19"     );
3592 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3593 PMU_FORMAT_ATTR(inv,    "config:23"     );
3594 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3595 PMU_FORMAT_ATTR(in_tx,  "config:32");
3596 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3597 
3598 static struct attribute *intel_arch_formats_attr[] = {
3599         &format_attr_event.attr,
3600         &format_attr_umask.attr,
3601         &format_attr_edge.attr,
3602         &format_attr_pc.attr,
3603         &format_attr_inv.attr,
3604         &format_attr_cmask.attr,
3605         NULL,
3606 };
3607 
3608 ssize_t intel_event_sysfs_show(char *page, u64 config)
3609 {
3610         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3611 
3612         return x86_event_sysfs_show(page, config, event);
3613 }
3614 
3615 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3616 {
3617         struct intel_shared_regs *regs;
3618         int i;
3619 
3620         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3621                             GFP_KERNEL, cpu_to_node(cpu));
3622         if (regs) {
3623                 /*
3624                  * initialize the locks to keep lockdep happy
3625                  */
3626                 for (i = 0; i < EXTRA_REG_MAX; i++)
3627                         raw_spin_lock_init(&regs->regs[i].lock);
3628 
3629                 regs->core_id = -1;
3630         }
3631         return regs;
3632 }
3633 
3634 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3635 {
3636         struct intel_excl_cntrs *c;
3637 
3638         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3639                          GFP_KERNEL, cpu_to_node(cpu));
3640         if (c) {
3641                 raw_spin_lock_init(&c->lock);
3642                 c->core_id = -1;
3643         }
3644         return c;
3645 }
3646 
3647 
3648 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3649 {
3650         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3651 
3652         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3653                 cpuc->shared_regs = allocate_shared_regs(cpu);
3654                 if (!cpuc->shared_regs)
3655                         goto err;
3656         }
3657 
3658         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3659                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3660 
3661                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3662                 if (!cpuc->constraint_list)
3663                         goto err_shared_regs;
3664         }
3665 
3666         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3667                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3668                 if (!cpuc->excl_cntrs)
3669                         goto err_constraint_list;
3670 
3671                 cpuc->excl_thread_id = 0;
3672         }
3673 
3674         return 0;
3675 
3676 err_constraint_list:
3677         kfree(cpuc->constraint_list);
3678         cpuc->constraint_list = NULL;
3679 
3680 err_shared_regs:
3681         kfree(cpuc->shared_regs);
3682         cpuc->shared_regs = NULL;
3683 
3684 err:
3685         return -ENOMEM;
3686 }
3687 
3688 static int intel_pmu_cpu_prepare(int cpu)
3689 {
3690         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3691 }
3692 
3693 static void flip_smm_bit(void *data)
3694 {
3695         unsigned long set = *(unsigned long *)data;
3696 
3697         if (set > 0) {
3698                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3699                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3700         } else {
3701                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3702                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3703         }
3704 }
3705 
3706 static void intel_pmu_cpu_starting(int cpu)
3707 {
3708         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3709         int core_id = topology_core_id(cpu);
3710         int i;
3711 
3712         init_debug_store_on_cpu(cpu);
3713         /*
3714          * Deal with CPUs that don't clear their LBRs on power-up.
3715          */
3716         intel_pmu_lbr_reset();
3717 
3718         cpuc->lbr_sel = NULL;
3719 
3720         if (x86_pmu.flags & PMU_FL_TFA) {
3721                 WARN_ON_ONCE(cpuc->tfa_shadow);
3722                 cpuc->tfa_shadow = ~0ULL;
3723                 intel_set_tfa(cpuc, false);
3724         }
3725 
3726         if (x86_pmu.version > 1)
3727                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3728 
3729         if (x86_pmu.counter_freezing)
3730                 enable_counter_freeze();
3731 
3732         if (!cpuc->shared_regs)
3733                 return;
3734 
3735         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3736                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3737                         struct intel_shared_regs *pc;
3738 
3739                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3740                         if (pc && pc->core_id == core_id) {
3741                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3742                                 cpuc->shared_regs = pc;
3743                                 break;
3744                         }
3745                 }
3746                 cpuc->shared_regs->core_id = core_id;
3747                 cpuc->shared_regs->refcnt++;
3748         }
3749 
3750         if (x86_pmu.lbr_sel_map)
3751                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3752 
3753         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3754                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3755                         struct cpu_hw_events *sibling;
3756                         struct intel_excl_cntrs *c;
3757 
3758                         sibling = &per_cpu(cpu_hw_events, i);
3759                         c = sibling->excl_cntrs;
3760                         if (c && c->core_id == core_id) {
3761                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3762                                 cpuc->excl_cntrs = c;
3763                                 if (!sibling->excl_thread_id)
3764                                         cpuc->excl_thread_id = 1;
3765                                 break;
3766                         }
3767                 }
3768                 cpuc->excl_cntrs->core_id = core_id;
3769                 cpuc->excl_cntrs->refcnt++;
3770         }
3771 }
3772 
3773 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3774 {
3775         struct intel_excl_cntrs *c;
3776 
3777         c = cpuc->excl_cntrs;
3778         if (c) {
3779                 if (c->core_id == -1 || --c->refcnt == 0)
3780                         kfree(c);
3781                 cpuc->excl_cntrs = NULL;
3782         }
3783 
3784         kfree(cpuc->constraint_list);
3785         cpuc->constraint_list = NULL;
3786 }
3787 
3788 static void intel_pmu_cpu_dying(int cpu)
3789 {
3790         fini_debug_store_on_cpu(cpu);
3791 
3792         if (x86_pmu.counter_freezing)
3793                 disable_counter_freeze();
3794 }
3795 
3796 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3797 {
3798         struct intel_shared_regs *pc;
3799 
3800         pc = cpuc->shared_regs;
3801         if (pc) {
3802                 if (pc->core_id == -1 || --pc->refcnt == 0)
3803                         kfree(pc);
3804                 cpuc->shared_regs = NULL;
3805         }
3806 
3807         free_excl_cntrs(cpuc);
3808 }
3809 
3810 static void intel_pmu_cpu_dead(int cpu)
3811 {
3812         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3813 }
3814 
3815 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3816                                  bool sched_in)
3817 {
3818         intel_pmu_pebs_sched_task(ctx, sched_in);
3819         intel_pmu_lbr_sched_task(ctx, sched_in);
3820 }
3821 
3822 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3823 {
3824         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3825 }
3826 
3827 static int intel_pmu_aux_output_match(struct perf_event *event)
3828 {
3829         if (!x86_pmu.intel_cap.pebs_output_pt_available)
3830                 return 0;
3831 
3832         return is_intel_pt_event(event);
3833 }
3834 
3835 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3836 
3837 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3838 
3839 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3840 
3841 static struct attribute *intel_arch3_formats_attr[] = {
3842         &format_attr_event.attr,
3843         &format_attr_umask.attr,
3844         &format_attr_edge.attr,
3845         &format_attr_pc.attr,
3846         &format_attr_any.attr,
3847         &format_attr_inv.attr,
3848         &format_attr_cmask.attr,
3849         NULL,
3850 };
3851 
3852 static struct attribute *hsw_format_attr[] = {
3853         &format_attr_in_tx.attr,
3854         &format_attr_in_tx_cp.attr,
3855         &format_attr_offcore_rsp.attr,
3856         &format_attr_ldlat.attr,
3857         NULL
3858 };
3859 
3860 static struct attribute *nhm_format_attr[] = {
3861         &format_attr_offcore_rsp.attr,
3862         &format_attr_ldlat.attr,
3863         NULL
3864 };
3865 
3866 static struct attribute *slm_format_attr[] = {
3867         &format_attr_offcore_rsp.attr,
3868         NULL
3869 };
3870 
3871 static struct attribute *skl_format_attr[] = {
3872         &format_attr_frontend.attr,
3873         NULL,
3874 };
3875 
3876 static __initconst const struct x86_pmu core_pmu = {
3877         .name                   = "core",
3878         .handle_irq             = x86_pmu_handle_irq,
3879         .disable_all            = x86_pmu_disable_all,
3880         .enable_all             = core_pmu_enable_all,
3881         .enable                 = core_pmu_enable_event,
3882         .disable                = x86_pmu_disable_event,
3883         .hw_config              = core_pmu_hw_config,
3884         .schedule_events        = x86_schedule_events,
3885         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3886         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3887         .event_map              = intel_pmu_event_map,
3888         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3889         .apic                   = 1,
3890         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3891 
3892         /*
3893          * Intel PMCs cannot be accessed sanely above 32-bit width,
3894          * so we install an artificial 1<<31 period regardless of
3895          * the generic event period:
3896          */
3897         .max_period             = (1ULL<<31) - 1,
3898         .get_event_constraints  = intel_get_event_constraints,
3899         .put_event_constraints  = intel_put_event_constraints,
3900         .event_constraints      = intel_core_event_constraints,
3901         .guest_get_msrs         = core_guest_get_msrs,
3902         .format_attrs           = intel_arch_formats_attr,
3903         .events_sysfs_show      = intel_event_sysfs_show,
3904 
3905         /*
3906          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3907          * together with PMU version 1 and thus be using core_pmu with
3908          * shared_regs. We need following callbacks here to allocate
3909          * it properly.
3910          */
3911         .cpu_prepare            = intel_pmu_cpu_prepare,
3912         .cpu_starting           = intel_pmu_cpu_starting,
3913         .cpu_dying              = intel_pmu_cpu_dying,
3914         .cpu_dead               = intel_pmu_cpu_dead,
3915 
3916         .check_period           = intel_pmu_check_period,
3917 };
3918 
3919 static __initconst const struct x86_pmu intel_pmu = {
3920         .name                   = "Intel",
3921         .handle_irq             = intel_pmu_handle_irq,
3922         .disable_all            = intel_pmu_disable_all,
3923         .enable_all             = intel_pmu_enable_all,
3924         .enable                 = intel_pmu_enable_event,
3925         .disable                = intel_pmu_disable_event,
3926         .add                    = intel_pmu_add_event,
3927         .del                    = intel_pmu_del_event,
3928         .read                   = intel_pmu_read_event,
3929         .hw_config              = intel_pmu_hw_config,
3930         .schedule_events        = x86_schedule_events,
3931         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3932         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3933         .event_map              = intel_pmu_event_map,
3934         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3935         .apic                   = 1,
3936         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3937         /*
3938          * Intel PMCs cannot be accessed sanely above 32 bit width,
3939          * so we install an artificial 1<<31 period regardless of
3940          * the generic event period:
3941          */
3942         .max_period             = (1ULL << 31) - 1,
3943         .get_event_constraints  = intel_get_event_constraints,
3944         .put_event_constraints  = intel_put_event_constraints,
3945         .pebs_aliases           = intel_pebs_aliases_core2,
3946 
3947         .format_attrs           = intel_arch3_formats_attr,
3948         .events_sysfs_show      = intel_event_sysfs_show,
3949 
3950         .cpu_prepare            = intel_pmu_cpu_prepare,
3951         .cpu_starting           = intel_pmu_cpu_starting,
3952         .cpu_dying              = intel_pmu_cpu_dying,
3953         .cpu_dead               = intel_pmu_cpu_dead,
3954 
3955         .guest_get_msrs         = intel_guest_get_msrs,
3956         .sched_task             = intel_pmu_sched_task,
3957 
3958         .check_period           = intel_pmu_check_period,
3959 
3960         .aux_output_match       = intel_pmu_aux_output_match,
3961 };
3962 
3963 static __init void intel_clovertown_quirk(void)
3964 {
3965         /*
3966          * PEBS is unreliable due to:
3967          *
3968          *   AJ67  - PEBS may experience CPL leaks
3969          *   AJ68  - PEBS PMI may be delayed by one event
3970          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3971          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3972          *
3973          * AJ67 could be worked around by restricting the OS/USR flags.
3974          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3975          *
3976          * AJ106 could possibly be worked around by not allowing LBR
3977          *       usage from PEBS, including the fixup.
3978          * AJ68  could possibly be worked around by always programming
3979          *       a pebs_event_reset[0] value and coping with the lost events.
3980          *
3981          * But taken together it might just make sense to not enable PEBS on
3982          * these chips.
3983          */
3984         pr_warn("PEBS disabled due to CPU errata\n");
3985         x86_pmu.pebs = 0;
3986         x86_pmu.pebs_constraints = NULL;
3987 }
3988 
3989 static const struct x86_cpu_desc isolation_ucodes[] = {
3990         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
3991         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
3992         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
3993         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
3994         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
3995         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
3996         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
3997         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
3998         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
3999         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4000         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4001         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           2, 0x0b000014),
4002         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4003         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4004         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4005         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4006         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4007         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4008         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4009         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4010         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4011         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4012         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4013         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4014         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4015         {}
4016 };
4017 
4018 static void intel_check_pebs_isolation(void)
4019 {
4020         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4021 }
4022 
4023 static __init void intel_pebs_isolation_quirk(void)
4024 {
4025         WARN_ON_ONCE(x86_pmu.check_microcode);
4026         x86_pmu.check_microcode = intel_check_pebs_isolation;
4027         intel_check_pebs_isolation();
4028 }
4029 
4030 static const struct x86_cpu_desc pebs_ucodes[] = {
4031         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4032         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4033         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4034         {}
4035 };
4036 
4037 static bool intel_snb_pebs_broken(void)
4038 {
4039         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4040 }
4041 
4042 static void intel_snb_check_microcode(void)
4043 {
4044         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4045                 return;
4046 
4047         /*
4048          * Serialized by the microcode lock..
4049          */
4050         if (x86_pmu.pebs_broken) {
4051                 pr_info("PEBS enabled due to microcode update\n");
4052                 x86_pmu.pebs_broken = 0;
4053         } else {
4054                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4055                 x86_pmu.pebs_broken = 1;
4056         }
4057 }
4058 
4059 static bool is_lbr_from(unsigned long msr)
4060 {
4061         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4062 
4063         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4064 }
4065 
4066 /*
4067  * Under certain circumstances, access certain MSR may cause #GP.
4068  * The function tests if the input MSR can be safely accessed.
4069  */
4070 static bool check_msr(unsigned long msr, u64 mask)
4071 {
4072         u64 val_old, val_new, val_tmp;
4073 
4074         /*
4075          * Disable the check for real HW, so we don't
4076          * mess with potentionaly enabled registers:
4077          */
4078         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4079                 return true;
4080 
4081         /*
4082          * Read the current value, change it and read it back to see if it
4083          * matches, this is needed to detect certain hardware emulators
4084          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4085          */
4086         if (rdmsrl_safe(msr, &val_old))
4087                 return false;
4088 
4089         /*
4090          * Only change the bits which can be updated by wrmsrl.
4091          */
4092         val_tmp = val_old ^ mask;
4093 
4094         if (is_lbr_from(msr))
4095                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4096 
4097         if (wrmsrl_safe(msr, val_tmp) ||
4098             rdmsrl_safe(msr, &val_new))
4099                 return false;
4100 
4101         /*
4102          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4103          * should equal rdmsrl()'s even with the quirk.
4104          */
4105         if (val_new != val_tmp)
4106                 return false;
4107 
4108         if (is_lbr_from(msr))
4109                 val_old = lbr_from_signext_quirk_wr(val_old);
4110 
4111         /* Here it's sure that the MSR can be safely accessed.
4112          * Restore the old value and return.
4113          */
4114         wrmsrl(msr, val_old);
4115 
4116         return true;
4117 }
4118 
4119 static __init void intel_sandybridge_quirk(void)
4120 {
4121         x86_pmu.check_microcode = intel_snb_check_microcode;
4122         cpus_read_lock();
4123         intel_snb_check_microcode();
4124         cpus_read_unlock();
4125 }
4126 
4127 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4128         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4129         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4130         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4131         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4132         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4133         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4134         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4135 };
4136 
4137 static __init void intel_arch_events_quirk(void)
4138 {
4139         int bit;
4140 
4141         /* disable event that reported as not presend by cpuid */
4142         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4143                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4144                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4145                         intel_arch_events_map[bit].name);
4146         }
4147 }
4148 
4149 static __init void intel_nehalem_quirk(void)
4150 {
4151         union cpuid10_ebx ebx;
4152 
4153         ebx.full = x86_pmu.events_maskl;
4154         if (ebx.split.no_branch_misses_retired) {
4155                 /*
4156                  * Erratum AAJ80 detected, we work it around by using
4157                  * the BR_MISP_EXEC.ANY event. This will over-count
4158                  * branch-misses, but it's still much better than the
4159                  * architectural event which is often completely bogus:
4160                  */
4161                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4162                 ebx.split.no_branch_misses_retired = 0;
4163                 x86_pmu.events_maskl = ebx.full;
4164                 pr_info("CPU erratum AAJ80 worked around\n");
4165         }
4166 }
4167 
4168 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4169         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         2, 0x0000000e),
4170         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         9, 0x0000002e),
4171         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,        10, 0x00000008),
4172         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,       1, 0x00000028),
4173         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    1, 0x00000028),
4174         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    8, 0x00000006),
4175         {}
4176 };
4177 
4178 static bool intel_counter_freezing_broken(void)
4179 {
4180         return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4181 }
4182 
4183 static __init void intel_counter_freezing_quirk(void)
4184 {
4185         /* Check if it's already disabled */
4186         if (disable_counter_freezing)
4187                 return;
4188 
4189         /*
4190          * If the system starts with the wrong ucode, leave the
4191          * counter-freezing feature permanently disabled.
4192          */
4193         if (intel_counter_freezing_broken()) {
4194                 pr_info("PMU counter freezing disabled due to CPU errata,"
4195                         "please upgrade microcode\n");
4196                 x86_pmu.counter_freezing = false;
4197                 x86_pmu.handle_irq = intel_pmu_handle_irq;
4198         }
4199 }
4200 
4201 /*
4202  * enable software workaround for errata:
4203  * SNB: BJ122
4204  * IVB: BV98
4205  * HSW: HSD29
4206  *
4207  * Only needed when HT is enabled. However detecting
4208  * if HT is enabled is difficult (model specific). So instead,
4209  * we enable the workaround in the early boot, and verify if
4210  * it is needed in a later initcall phase once we have valid
4211  * topology information to check if HT is actually enabled
4212  */
4213 static __init void intel_ht_bug(void)
4214 {
4215         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4216 
4217         x86_pmu.start_scheduling = intel_start_scheduling;
4218         x86_pmu.commit_scheduling = intel_commit_scheduling;
4219         x86_pmu.stop_scheduling = intel_stop_scheduling;
4220 }
4221 
4222 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4223 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4224 
4225 /* Haswell special events */
4226 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4227 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4228 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4229 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4230 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4231 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4232 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4233 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4234 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4235 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4236 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4237 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4238 
4239 static struct attribute *hsw_events_attrs[] = {
4240         EVENT_PTR(td_slots_issued),
4241         EVENT_PTR(td_slots_retired),
4242         EVENT_PTR(td_fetch_bubbles),
4243         EVENT_PTR(td_total_slots),
4244         EVENT_PTR(td_total_slots_scale),
4245         EVENT_PTR(td_recovery_bubbles),
4246         EVENT_PTR(td_recovery_bubbles_scale),
4247         NULL
4248 };
4249 
4250 static struct attribute *hsw_mem_events_attrs[] = {
4251         EVENT_PTR(mem_ld_hsw),
4252         EVENT_PTR(mem_st_hsw),
4253         NULL,
4254 };
4255 
4256 static struct attribute *hsw_tsx_events_attrs[] = {
4257         EVENT_PTR(tx_start),
4258         EVENT_PTR(tx_commit),
4259         EVENT_PTR(tx_abort),
4260         EVENT_PTR(tx_capacity),
4261         EVENT_PTR(tx_conflict),
4262         EVENT_PTR(el_start),
4263         EVENT_PTR(el_commit),
4264         EVENT_PTR(el_abort),
4265         EVENT_PTR(el_capacity),
4266         EVENT_PTR(el_conflict),
4267         EVENT_PTR(cycles_t),
4268         EVENT_PTR(cycles_ct),
4269         NULL
4270 };
4271 
4272 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4273 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4274 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4275 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4276 
4277 static struct attribute *icl_events_attrs[] = {
4278         EVENT_PTR(mem_ld_hsw),
4279         EVENT_PTR(mem_st_hsw),
4280         NULL,
4281 };
4282 
4283 static struct attribute *icl_tsx_events_attrs[] = {
4284         EVENT_PTR(tx_start),
4285         EVENT_PTR(tx_abort),
4286         EVENT_PTR(tx_commit),
4287         EVENT_PTR(tx_capacity_read),
4288         EVENT_PTR(tx_capacity_write),
4289         EVENT_PTR(tx_conflict),
4290         EVENT_PTR(el_start),
4291         EVENT_PTR(el_abort),
4292         EVENT_PTR(el_commit),
4293         EVENT_PTR(el_capacity_read),
4294         EVENT_PTR(el_capacity_write),
4295         EVENT_PTR(el_conflict),
4296         EVENT_PTR(cycles_t),
4297         EVENT_PTR(cycles_ct),
4298         NULL,
4299 };
4300 
4301 static ssize_t freeze_on_smi_show(struct device *cdev,
4302                                   struct device_attribute *attr,
4303                                   char *buf)
4304 {
4305         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4306 }
4307 
4308 static DEFINE_MUTEX(freeze_on_smi_mutex);
4309 
4310 static ssize_t freeze_on_smi_store(struct device *cdev,
4311                                    struct device_attribute *attr,
4312                                    const char *buf, size_t count)
4313 {
4314         unsigned long val;
4315         ssize_t ret;
4316 
4317         ret = kstrtoul(buf, 0, &val);
4318         if (ret)
4319                 return ret;
4320 
4321         if (val > 1)
4322                 return -EINVAL;
4323 
4324         mutex_lock(&freeze_on_smi_mutex);
4325 
4326         if (x86_pmu.attr_freeze_on_smi == val)
4327                 goto done;
4328 
4329         x86_pmu.attr_freeze_on_smi = val;
4330 
4331         get_online_cpus();
4332         on_each_cpu(flip_smm_bit, &val, 1);
4333         put_online_cpus();
4334 done:
4335         mutex_unlock(&freeze_on_smi_mutex);
4336 
4337         return count;
4338 }
4339 
4340 static void update_tfa_sched(void *ignored)
4341 {
4342         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4343 
4344         /*
4345          * check if PMC3 is used
4346          * and if so force schedule out for all event types all contexts
4347          */
4348         if (test_bit(3, cpuc->active_mask))
4349                 perf_pmu_resched(x86_get_pmu());
4350 }
4351 
4352 static ssize_t show_sysctl_tfa(struct device *cdev,
4353                               struct device_attribute *attr,
4354                               char *buf)
4355 {
4356         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4357 }
4358 
4359 static ssize_t set_sysctl_tfa(struct device *cdev,
4360                               struct device_attribute *attr,
4361                               const char *buf, size_t count)
4362 {
4363         bool val;
4364         ssize_t ret;
4365 
4366         ret = kstrtobool(buf, &val);
4367         if (ret)
4368                 return ret;
4369 
4370         /* no change */
4371         if (val == allow_tsx_force_abort)
4372                 return count;
4373 
4374         allow_tsx_force_abort = val;
4375 
4376         get_online_cpus();
4377         on_each_cpu(update_tfa_sched, NULL, 1);
4378         put_online_cpus();
4379 
4380         return count;
4381 }
4382 
4383 
4384 static DEVICE_ATTR_RW(freeze_on_smi);
4385 
4386 static ssize_t branches_show(struct device *cdev,
4387                              struct device_attribute *attr,
4388                              char *buf)
4389 {
4390         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4391 }
4392 
4393 static DEVICE_ATTR_RO(branches);
4394 
4395 static struct attribute *lbr_attrs[] = {
4396         &dev_attr_branches.attr,
4397         NULL
4398 };
4399 
4400 static char pmu_name_str[30];
4401 
4402 static ssize_t pmu_name_show(struct device *cdev,
4403                              struct device_attribute *attr,
4404                              char *buf)
4405 {
4406         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4407 }
4408 
4409 static DEVICE_ATTR_RO(pmu_name);
4410 
4411 static struct attribute *intel_pmu_caps_attrs[] = {
4412        &dev_attr_pmu_name.attr,
4413        NULL
4414 };
4415 
4416 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4417                    show_sysctl_tfa,
4418                    set_sysctl_tfa);
4419 
4420 static struct attribute *intel_pmu_attrs[] = {
4421         &dev_attr_freeze_on_smi.attr,
4422         &dev_attr_allow_tsx_force_abort.attr,
4423         NULL,
4424 };
4425 
4426 static umode_t
4427 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4428 {
4429         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4430 }
4431 
4432 static umode_t
4433 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4434 {
4435         return x86_pmu.pebs ? attr->mode : 0;
4436 }
4437 
4438 static umode_t
4439 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4440 {
4441         return x86_pmu.lbr_nr ? attr->mode : 0;
4442 }
4443 
4444 static umode_t
4445 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4446 {
4447         return x86_pmu.version >= 2 ? attr->mode : 0;
4448 }
4449 
4450 static umode_t
4451 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4452 {
4453         if (attr == &dev_attr_allow_tsx_force_abort.attr)
4454                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4455 
4456         return attr->mode;
4457 }
4458 
4459 static struct attribute_group group_events_td  = {
4460         .name = "events",
4461 };
4462 
4463 static struct attribute_group group_events_mem = {
4464         .name       = "events",
4465         .is_visible = pebs_is_visible,
4466 };
4467 
4468 static struct attribute_group group_events_tsx = {
4469         .name       = "events",
4470         .is_visible = tsx_is_visible,
4471 };
4472 
4473 static struct attribute_group group_caps_gen = {
4474         .name  = "caps",
4475         .attrs = intel_pmu_caps_attrs,
4476 };
4477 
4478 static struct attribute_group group_caps_lbr = {
4479         .name       = "caps",
4480         .attrs      = lbr_attrs,
4481         .is_visible = lbr_is_visible,
4482 };
4483 
4484 static struct attribute_group group_format_extra = {
4485         .name       = "format",
4486         .is_visible = exra_is_visible,
4487 };
4488 
4489 static struct attribute_group group_format_extra_skl = {
4490         .name       = "format",
4491         .is_visible = exra_is_visible,
4492 };
4493 
4494 static struct attribute_group group_default = {
4495         .attrs      = intel_pmu_attrs,
4496         .is_visible = default_is_visible,
4497 };
4498 
4499 static const struct attribute_group *attr_update[] = {
4500         &group_events_td,
4501         &group_events_mem,
4502         &group_events_tsx,
4503         &group_caps_gen,
4504         &group_caps_lbr,
4505         &group_format_extra,
4506         &group_format_extra_skl,
4507         &group_default,
4508         NULL,
4509 };
4510 
4511 static struct attribute *empty_attrs;
4512 
4513 __init int intel_pmu_init(void)
4514 {
4515         struct attribute **extra_skl_attr = &empty_attrs;
4516         struct attribute **extra_attr = &empty_attrs;
4517         struct attribute **td_attr    = &empty_attrs;
4518         struct attribute **mem_attr   = &empty_attrs;
4519         struct attribute **tsx_attr   = &empty_attrs;
4520         union cpuid10_edx edx;
4521         union cpuid10_eax eax;
4522         union cpuid10_ebx ebx;
4523         struct event_constraint *c;
4524         unsigned int unused;
4525         struct extra_reg *er;
4526         bool pmem = false;
4527         int version, i;
4528         char *name;
4529 
4530         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4531                 switch (boot_cpu_data.x86) {
4532                 case 0x6:
4533                         return p6_pmu_init();
4534                 case 0xb:
4535                         return knc_pmu_init();
4536                 case 0xf:
4537                         return p4_pmu_init();
4538                 }
4539                 return -ENODEV;
4540         }
4541 
4542         /*
4543          * Check whether the Architectural PerfMon supports
4544          * Branch Misses Retired hw_event or not.
4545          */
4546         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4547         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4548                 return -ENODEV;
4549 
4550         version = eax.split.version_id;
4551         if (version < 2)
4552                 x86_pmu = core_pmu;
4553         else
4554                 x86_pmu = intel_pmu;
4555 
4556         x86_pmu.version                 = version;
4557         x86_pmu.num_counters            = eax.split.num_counters;
4558         x86_pmu.cntval_bits             = eax.split.bit_width;
4559         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
4560 
4561         x86_pmu.events_maskl            = ebx.full;
4562         x86_pmu.events_mask_len         = eax.split.mask_length;
4563 
4564         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4565 
4566         /*
4567          * Quirk: v2 perfmon does not report fixed-purpose events, so
4568          * assume at least 3 events, when not running in a hypervisor:
4569          */
4570         if (version > 1) {
4571                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4572 
4573                 x86_pmu.num_counters_fixed =
4574                         max((int)edx.split.num_counters_fixed, assume);
4575         }
4576 
4577         if (version >= 4)
4578                 x86_pmu.counter_freezing = !disable_counter_freezing;
4579 
4580         if (boot_cpu_has(X86_FEATURE_PDCM)) {
4581                 u64 capabilities;
4582 
4583                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4584                 x86_pmu.intel_cap.capabilities = capabilities;
4585         }
4586 
4587         intel_ds_init();
4588 
4589         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4590 
4591         /*
4592          * Install the hw-cache-events table:
4593          */
4594         switch (boot_cpu_data.x86_model) {
4595         case INTEL_FAM6_CORE_YONAH:
4596                 pr_cont("Core events, ");
4597                 name = "core";
4598                 break;
4599 
4600         case INTEL_FAM6_CORE2_MEROM:
4601                 x86_add_quirk(intel_clovertown_quirk);
4602                 /* fall through */
4603 
4604         case INTEL_FAM6_CORE2_MEROM_L:
4605         case INTEL_FAM6_CORE2_PENRYN:
4606         case INTEL_FAM6_CORE2_DUNNINGTON:
4607                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4608                        sizeof(hw_cache_event_ids));
4609 
4610                 intel_pmu_lbr_init_core();
4611 
4612                 x86_pmu.event_constraints = intel_core2_event_constraints;
4613                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4614                 pr_cont("Core2 events, ");
4615                 name = "core2";
4616                 break;
4617 
4618         case INTEL_FAM6_NEHALEM:
4619         case INTEL_FAM6_NEHALEM_EP:
4620         case INTEL_FAM6_NEHALEM_EX:
4621                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4622                        sizeof(hw_cache_event_ids));
4623                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4624                        sizeof(hw_cache_extra_regs));
4625 
4626                 intel_pmu_lbr_init_nhm();
4627 
4628                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4629                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4630                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4631                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4632                 x86_pmu.limit_period = nhm_limit_period;
4633 
4634                 mem_attr = nhm_mem_events_attrs;
4635 
4636                 /* UOPS_ISSUED.STALLED_CYCLES */
4637                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4638                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4639                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4640                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4641                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4642 
4643                 intel_pmu_pebs_data_source_nhm();
4644                 x86_add_quirk(intel_nehalem_quirk);
4645                 x86_pmu.pebs_no_tlb = 1;
4646                 extra_attr = nhm_format_attr;
4647 
4648                 pr_cont("Nehalem events, ");
4649                 name = "nehalem";
4650                 break;
4651 
4652         case INTEL_FAM6_ATOM_BONNELL:
4653         case INTEL_FAM6_ATOM_BONNELL_MID:
4654         case INTEL_FAM6_ATOM_SALTWELL:
4655         case INTEL_FAM6_ATOM_SALTWELL_MID:
4656         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4657                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4658                        sizeof(hw_cache_event_ids));
4659 
4660                 intel_pmu_lbr_init_atom();
4661 
4662                 x86_pmu.event_constraints = intel_gen_event_constraints;
4663                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4664                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4665                 pr_cont("Atom events, ");
4666                 name = "bonnell";
4667                 break;
4668 
4669         case INTEL_FAM6_ATOM_SILVERMONT:
4670         case INTEL_FAM6_ATOM_SILVERMONT_D:
4671         case INTEL_FAM6_ATOM_SILVERMONT_MID:
4672         case INTEL_FAM6_ATOM_AIRMONT:
4673         case INTEL_FAM6_ATOM_AIRMONT_MID:
4674                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4675                         sizeof(hw_cache_event_ids));
4676                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4677                        sizeof(hw_cache_extra_regs));
4678 
4679                 intel_pmu_lbr_init_slm();
4680 
4681                 x86_pmu.event_constraints = intel_slm_event_constraints;
4682                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4683                 x86_pmu.extra_regs = intel_slm_extra_regs;
4684                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4685                 td_attr = slm_events_attrs;
4686                 extra_attr = slm_format_attr;
4687                 pr_cont("Silvermont events, ");
4688                 name = "silvermont";
4689                 break;
4690 
4691         case INTEL_FAM6_ATOM_GOLDMONT:
4692         case INTEL_FAM6_ATOM_GOLDMONT_D:
4693                 x86_add_quirk(intel_counter_freezing_quirk);
4694                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4695                        sizeof(hw_cache_event_ids));
4696                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4697                        sizeof(hw_cache_extra_regs));
4698 
4699                 intel_pmu_lbr_init_skl();
4700 
4701                 x86_pmu.event_constraints = intel_slm_event_constraints;
4702                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4703                 x86_pmu.extra_regs = intel_glm_extra_regs;
4704                 /*
4705                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4706                  * for precise cycles.
4707                  * :pp is identical to :ppp
4708                  */
4709                 x86_pmu.pebs_aliases = NULL;
4710                 x86_pmu.pebs_prec_dist = true;
4711                 x86_pmu.lbr_pt_coexist = true;
4712                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4713                 td_attr = glm_events_attrs;
4714                 extra_attr = slm_format_attr;
4715                 pr_cont("Goldmont events, ");
4716                 name = "goldmont";
4717                 break;
4718 
4719         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4720                 x86_add_quirk(intel_counter_freezing_quirk);
4721                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4722                        sizeof(hw_cache_event_ids));
4723                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4724                        sizeof(hw_cache_extra_regs));
4725 
4726                 intel_pmu_lbr_init_skl();
4727 
4728                 x86_pmu.event_constraints = intel_slm_event_constraints;
4729                 x86_pmu.extra_regs = intel_glm_extra_regs;
4730                 /*
4731                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4732                  * for precise cycles.
4733                  */
4734                 x86_pmu.pebs_aliases = NULL;
4735                 x86_pmu.pebs_prec_dist = true;
4736                 x86_pmu.lbr_pt_coexist = true;
4737                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4738                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4739                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4740                 td_attr = glm_events_attrs;
4741                 /* Goldmont Plus has 4-wide pipeline */
4742                 event_attr_td_total_slots_scale_glm.event_str = "4";
4743                 extra_attr = slm_format_attr;
4744                 pr_cont("Goldmont plus events, ");
4745                 name = "goldmont_plus";
4746                 break;
4747 
4748         case INTEL_FAM6_ATOM_TREMONT_D:
4749         case INTEL_FAM6_ATOM_TREMONT:
4750                 x86_pmu.late_ack = true;
4751                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4752                        sizeof(hw_cache_event_ids));
4753                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4754                        sizeof(hw_cache_extra_regs));
4755                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4756 
4757                 intel_pmu_lbr_init_skl();
4758 
4759                 x86_pmu.event_constraints = intel_slm_event_constraints;
4760                 x86_pmu.extra_regs = intel_tnt_extra_regs;
4761                 /*
4762                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4763                  * for precise cycles.
4764                  */
4765                 x86_pmu.pebs_aliases = NULL;
4766                 x86_pmu.pebs_prec_dist = true;
4767                 x86_pmu.lbr_pt_coexist = true;
4768                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4769                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
4770                 extra_attr = slm_format_attr;
4771                 pr_cont("Tremont events, ");
4772                 name = "Tremont";
4773                 break;
4774 
4775         case INTEL_FAM6_WESTMERE:
4776         case INTEL_FAM6_WESTMERE_EP:
4777         case INTEL_FAM6_WESTMERE_EX:
4778                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4779                        sizeof(hw_cache_event_ids));
4780                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4781                        sizeof(hw_cache_extra_regs));
4782 
4783                 intel_pmu_lbr_init_nhm();
4784 
4785                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4786                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4787                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4788                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4789                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4790 
4791                 mem_attr = nhm_mem_events_attrs;
4792 
4793                 /* UOPS_ISSUED.STALLED_CYCLES */
4794                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4795                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4796                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4797                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4798                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4799 
4800                 intel_pmu_pebs_data_source_nhm();
4801                 extra_attr = nhm_format_attr;
4802                 pr_cont("Westmere events, ");
4803                 name = "westmere";
4804                 break;
4805 
4806         case INTEL_FAM6_SANDYBRIDGE:
4807         case INTEL_FAM6_SANDYBRIDGE_X:
4808                 x86_add_quirk(intel_sandybridge_quirk);
4809                 x86_add_quirk(intel_ht_bug);
4810                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4811                        sizeof(hw_cache_event_ids));
4812                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4813                        sizeof(hw_cache_extra_regs));
4814 
4815                 intel_pmu_lbr_init_snb();
4816 
4817                 x86_pmu.event_constraints = intel_snb_event_constraints;
4818                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4819                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4820                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4821                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4822                 else
4823                         x86_pmu.extra_regs = intel_snb_extra_regs;
4824 
4825 
4826                 /* all extra regs are per-cpu when HT is on */
4827                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4828                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4829 
4830                 td_attr  = snb_events_attrs;
4831                 mem_attr = snb_mem_events_attrs;
4832 
4833                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4834                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4835                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4836                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4837                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4838                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4839 
4840                 extra_attr = nhm_format_attr;
4841 
4842                 pr_cont("SandyBridge events, ");
4843                 name = "sandybridge";
4844                 break;
4845 
4846         case INTEL_FAM6_IVYBRIDGE:
4847         case INTEL_FAM6_IVYBRIDGE_X:
4848                 x86_add_quirk(intel_ht_bug);
4849                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4850                        sizeof(hw_cache_event_ids));
4851                 /* dTLB-load-misses on IVB is different than SNB */
4852                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4853 
4854                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4855                        sizeof(hw_cache_extra_regs));
4856 
4857                 intel_pmu_lbr_init_snb();
4858 
4859                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4860                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4861                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4862                 x86_pmu.pebs_prec_dist = true;
4863                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4864                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4865                 else
4866                         x86_pmu.extra_regs = intel_snb_extra_regs;
4867                 /* all extra regs are per-cpu when HT is on */
4868                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4869                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4870 
4871                 td_attr  = snb_events_attrs;
4872                 mem_attr = snb_mem_events_attrs;
4873 
4874                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4875                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4876                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4877 
4878                 extra_attr = nhm_format_attr;
4879 
4880                 pr_cont("IvyBridge events, ");
4881                 name = "ivybridge";
4882                 break;
4883 
4884 
4885         case INTEL_FAM6_HASWELL:
4886         case INTEL_FAM6_HASWELL_X:
4887         case INTEL_FAM6_HASWELL_L:
4888         case INTEL_FAM6_HASWELL_G:
4889                 x86_add_quirk(intel_ht_bug);
4890                 x86_add_quirk(intel_pebs_isolation_quirk);
4891                 x86_pmu.late_ack = true;
4892                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4893                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4894 
4895                 intel_pmu_lbr_init_hsw();
4896 
4897                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4898                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4899                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4900                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4901                 x86_pmu.pebs_prec_dist = true;
4902                 /* all extra regs are per-cpu when HT is on */
4903                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4904                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4905 
4906                 x86_pmu.hw_config = hsw_hw_config;
4907                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4908                 x86_pmu.lbr_double_abort = true;
4909                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4910                         hsw_format_attr : nhm_format_attr;
4911                 td_attr  = hsw_events_attrs;
4912                 mem_attr = hsw_mem_events_attrs;
4913                 tsx_attr = hsw_tsx_events_attrs;
4914                 pr_cont("Haswell events, ");
4915                 name = "haswell";
4916                 break;
4917 
4918         case INTEL_FAM6_BROADWELL:
4919         case INTEL_FAM6_BROADWELL_D:
4920         case INTEL_FAM6_BROADWELL_G:
4921         case INTEL_FAM6_BROADWELL_X:
4922                 x86_add_quirk(intel_pebs_isolation_quirk);
4923                 x86_pmu.late_ack = true;
4924                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4925                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4926 
4927                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4928                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4929                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
4930                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4931                                                                           HSW_SNOOP_DRAM;
4932                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4933                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4934                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4935                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4936 
4937                 intel_pmu_lbr_init_hsw();
4938 
4939                 x86_pmu.event_constraints = intel_bdw_event_constraints;
4940                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4941                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4942                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4943                 x86_pmu.pebs_prec_dist = true;
4944                 /* all extra regs are per-cpu when HT is on */
4945                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4946                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4947 
4948                 x86_pmu.hw_config = hsw_hw_config;
4949                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4950                 x86_pmu.limit_period = bdw_limit_period;
4951                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4952                         hsw_format_attr : nhm_format_attr;
4953                 td_attr  = hsw_events_attrs;
4954                 mem_attr = hsw_mem_events_attrs;
4955                 tsx_attr = hsw_tsx_events_attrs;
4956                 pr_cont("Broadwell events, ");
4957                 name = "broadwell";
4958                 break;
4959 
4960         case INTEL_FAM6_XEON_PHI_KNL:
4961         case INTEL_FAM6_XEON_PHI_KNM:
4962                 memcpy(hw_cache_event_ids,
4963                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4964                 memcpy(hw_cache_extra_regs,
4965                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4966                 intel_pmu_lbr_init_knl();
4967 
4968                 x86_pmu.event_constraints = intel_slm_event_constraints;
4969                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4970                 x86_pmu.extra_regs = intel_knl_extra_regs;
4971 
4972                 /* all extra regs are per-cpu when HT is on */
4973                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4974                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4975                 extra_attr = slm_format_attr;
4976                 pr_cont("Knights Landing/Mill events, ");
4977                 name = "knights-landing";
4978                 break;
4979 
4980         case INTEL_FAM6_SKYLAKE_X:
4981                 pmem = true;
4982                 /* fall through */
4983         case INTEL_FAM6_SKYLAKE_L:
4984         case INTEL_FAM6_SKYLAKE:
4985         case INTEL_FAM6_KABYLAKE_L:
4986         case INTEL_FAM6_KABYLAKE:
4987         case INTEL_FAM6_COMETLAKE_L:
4988         case INTEL_FAM6_COMETLAKE:
4989                 x86_add_quirk(intel_pebs_isolation_quirk);
4990                 x86_pmu.late_ack = true;
4991                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4992                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4993                 intel_pmu_lbr_init_skl();
4994 
4995                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4996                 event_attr_td_recovery_bubbles.event_str_noht =
4997                         "event=0xd,umask=0x1,cmask=1";
4998                 event_attr_td_recovery_bubbles.event_str_ht =
4999                         "event=0xd,umask=0x1,cmask=1,any=1";
5000 
5001                 x86_pmu.event_constraints = intel_skl_event_constraints;
5002                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5003                 x86_pmu.extra_regs = intel_skl_extra_regs;
5004                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5005                 x86_pmu.pebs_prec_dist = true;
5006                 /* all extra regs are per-cpu when HT is on */
5007                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5008                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5009 
5010                 x86_pmu.hw_config = hsw_hw_config;
5011                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5012                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5013                         hsw_format_attr : nhm_format_attr;
5014                 extra_skl_attr = skl_format_attr;
5015                 td_attr  = hsw_events_attrs;
5016                 mem_attr = hsw_mem_events_attrs;
5017                 tsx_attr = hsw_tsx_events_attrs;
5018                 intel_pmu_pebs_data_source_skl(pmem);
5019 
5020                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5021                         x86_pmu.flags |= PMU_FL_TFA;
5022                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
5023                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5024                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5025                 }
5026 
5027                 pr_cont("Skylake events, ");
5028                 name = "skylake";
5029                 break;
5030 
5031         case INTEL_FAM6_ICELAKE_X:
5032         case INTEL_FAM6_ICELAKE_D:
5033                 pmem = true;
5034                 /* fall through */
5035         case INTEL_FAM6_ICELAKE_L:
5036         case INTEL_FAM6_ICELAKE:
5037         case INTEL_FAM6_TIGERLAKE_L:
5038         case INTEL_FAM6_TIGERLAKE:
5039                 x86_pmu.late_ack = true;
5040                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5041                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5042                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5043                 intel_pmu_lbr_init_skl();
5044 
5045                 x86_pmu.event_constraints = intel_icl_event_constraints;
5046                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5047                 x86_pmu.extra_regs = intel_icl_extra_regs;
5048                 x86_pmu.pebs_aliases = NULL;
5049                 x86_pmu.pebs_prec_dist = true;
5050                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5051                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5052 
5053                 x86_pmu.hw_config = hsw_hw_config;
5054                 x86_pmu.get_event_constraints = icl_get_event_constraints;
5055                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5056                         hsw_format_attr : nhm_format_attr;
5057                 extra_skl_attr = skl_format_attr;
5058                 mem_attr = icl_events_attrs;
5059                 tsx_attr = icl_tsx_events_attrs;
5060                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5061                 x86_pmu.lbr_pt_coexist = true;
5062                 intel_pmu_pebs_data_source_skl(pmem);
5063                 pr_cont("Icelake events, ");
5064                 name = "icelake";
5065                 break;
5066 
5067         default:
5068                 switch (x86_pmu.version) {
5069                 case 1:
5070                         x86_pmu.event_constraints = intel_v1_event_constraints;
5071                         pr_cont("generic architected perfmon v1, ");
5072                         name = "generic_arch_v1";
5073                         break;
5074                 default:
5075                         /*
5076                          * default constraints for v2 and up
5077                          */
5078                         x86_pmu.event_constraints = intel_gen_event_constraints;
5079                         pr_cont("generic architected perfmon, ");
5080                         name = "generic_arch_v2+";
5081                         break;
5082                 }
5083         }
5084 
5085         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5086 
5087 
5088         group_events_td.attrs  = td_attr;
5089         group_events_mem.attrs = mem_attr;
5090         group_events_tsx.attrs = tsx_attr;
5091         group_format_extra.attrs = extra_attr;
5092         group_format_extra_skl.attrs = extra_skl_attr;
5093 
5094         x86_pmu.attr_update = attr_update;
5095 
5096         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5097                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5098                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5099                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5100         }
5101         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5102 
5103         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5104                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5105                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5106                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5107         }
5108 
5109         x86_pmu.intel_ctrl |=
5110                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5111 
5112         if (x86_pmu.event_constraints) {
5113                 /*
5114                  * event on fixed counter2 (REF_CYCLES) only works on this
5115                  * counter, so do not extend mask to generic counters
5116                  */
5117                 for_each_event_constraint(c, x86_pmu.event_constraints) {
5118                         if (c->cmask == FIXED_EVENT_FLAGS
5119                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5120                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5121                         }
5122                         c->idxmsk64 &=
5123                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5124                         c->weight = hweight64(c->idxmsk64);
5125                 }
5126         }
5127 
5128         /*
5129          * Access LBR MSR may cause #GP under certain circumstances.
5130          * E.g. KVM doesn't support LBR MSR
5131          * Check all LBT MSR here.
5132          * Disable LBR access if any LBR MSRs can not be accessed.
5133          */
5134         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5135                 x86_pmu.lbr_nr = 0;
5136         for (i = 0; i < x86_pmu.lbr_nr; i++) {
5137                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5138                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5139                         x86_pmu.lbr_nr = 0;
5140         }
5141 
5142         if (x86_pmu.lbr_nr)
5143                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5144 
5145         /*
5146          * Access extra MSR may cause #GP under certain circumstances.
5147          * E.g. KVM doesn't support offcore event
5148          * Check all extra_regs here.
5149          */
5150         if (x86_pmu.extra_regs) {
5151                 for (er = x86_pmu.extra_regs; er->msr; er++) {
5152                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
5153                         /* Disable LBR select mapping */
5154                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5155                                 x86_pmu.lbr_sel_map = NULL;
5156                 }
5157         }
5158 
5159         /* Support full width counters using alternative MSR range */
5160         if (x86_pmu.intel_cap.full_width_write) {
5161                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5162                 x86_pmu.perfctr = MSR_IA32_PMC0;
5163                 pr_cont("full-width counters, ");
5164         }
5165 
5166         /*
5167          * For arch perfmon 4 use counter freezing to avoid
5168          * several MSR accesses in the PMI.
5169          */
5170         if (x86_pmu.counter_freezing)
5171                 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5172 
5173         return 0;
5174 }
5175 
5176 /*
5177  * HT bug: phase 2 init
5178  * Called once we have valid topology information to check
5179  * whether or not HT is enabled
5180  * If HT is off, then we disable the workaround
5181  */
5182 static __init int fixup_ht_bug(void)
5183 {
5184         int c;
5185         /*
5186          * problem not present on this CPU model, nothing to do
5187          */
5188         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5189                 return 0;
5190 
5191         if (topology_max_smt_threads() > 1) {
5192                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5193                 return 0;
5194         }
5195 
5196         cpus_read_lock();
5197 
5198         hardlockup_detector_perf_stop();
5199 
5200         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5201 
5202         x86_pmu.start_scheduling = NULL;
5203         x86_pmu.commit_scheduling = NULL;
5204         x86_pmu.stop_scheduling = NULL;
5205 
5206         hardlockup_detector_perf_restart();
5207 
5208         for_each_online_cpu(c)
5209                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5210 
5211         cpus_read_unlock();
5212         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5213         return 0;
5214 }
5215 subsys_initcall(fixup_ht_bug)

/* [<][>][^][v][top][bottom][index][help] */