root/arch/x86/events/intel/ds.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. intel_pmu_pebs_data_source_nhm
  2. intel_pmu_pebs_data_source_skl
  3. precise_store_data
  4. precise_datala_hsw
  5. load_latency_data
  6. init_debug_store_on_cpu
  7. fini_debug_store_on_cpu
  8. ds_update_cea
  9. ds_clear_cea
  10. dsalloc_pages
  11. dsfree_pages
  12. alloc_pebs_buffer
  13. release_pebs_buffer
  14. alloc_bts_buffer
  15. release_bts_buffer
  16. alloc_ds_buffer
  17. release_ds_buffer
  18. release_ds_buffers
  19. reserve_ds_buffers
  20. intel_pmu_enable_bts
  21. intel_pmu_disable_bts
  22. intel_pmu_drain_bts_buffer
  23. intel_pmu_drain_pebs_buffer
  24. intel_pebs_constraints
  25. pebs_needs_sched_cb
  26. intel_pmu_pebs_sched_task
  27. pebs_update_threshold
  28. adaptive_pebs_record_size_update
  29. pebs_update_adaptive_cfg
  30. pebs_update_state
  31. intel_pmu_pebs_add
  32. intel_pmu_pebs_via_pt_disable
  33. intel_pmu_pebs_via_pt_enable
  34. intel_pmu_pebs_enable
  35. intel_pmu_pebs_del
  36. intel_pmu_pebs_disable
  37. intel_pmu_pebs_enable_all
  38. intel_pmu_pebs_disable_all
  39. intel_pmu_pebs_fixup_ip
  40. intel_get_tsx_weight
  41. intel_get_tsx_transaction
  42. get_pebs_status
  43. get_data_src
  44. setup_pebs_fixed_sample_data
  45. adaptive_pebs_save_regs
  46. setup_pebs_adaptive_sample_data
  47. get_next_pebs_record_by_bit
  48. intel_pmu_auto_reload_read
  49. intel_pmu_save_and_restart_reload
  50. __intel_pmu_pebs_event
  51. intel_pmu_drain_pebs_core
  52. intel_pmu_pebs_event_update_no_drain
  53. intel_pmu_drain_pebs_nhm
  54. intel_pmu_drain_pebs_icl
  55. intel_ds_init
  56. perf_restore_debug_store

   1 // SPDX-License-Identifier: GPL-2.0
   2 #include <linux/bitops.h>
   3 #include <linux/types.h>
   4 #include <linux/slab.h>
   5 
   6 #include <asm/cpu_entry_area.h>
   7 #include <asm/perf_event.h>
   8 #include <asm/tlbflush.h>
   9 #include <asm/insn.h>
  10 
  11 #include "../perf_event.h"
  12 
  13 /* Waste a full page so it can be mapped into the cpu_entry_area */
  14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
  15 
  16 /* The size of a BTS record in bytes: */
  17 #define BTS_RECORD_SIZE         24
  18 
  19 #define PEBS_FIXUP_SIZE         PAGE_SIZE
  20 
  21 /*
  22  * pebs_record_32 for p4 and core not supported
  23 
  24 struct pebs_record_32 {
  25         u32 flags, ip;
  26         u32 ax, bc, cx, dx;
  27         u32 si, di, bp, sp;
  28 };
  29 
  30  */
  31 
  32 union intel_x86_pebs_dse {
  33         u64 val;
  34         struct {
  35                 unsigned int ld_dse:4;
  36                 unsigned int ld_stlb_miss:1;
  37                 unsigned int ld_locked:1;
  38                 unsigned int ld_reserved:26;
  39         };
  40         struct {
  41                 unsigned int st_l1d_hit:1;
  42                 unsigned int st_reserved1:3;
  43                 unsigned int st_stlb_miss:1;
  44                 unsigned int st_locked:1;
  45                 unsigned int st_reserved2:26;
  46         };
  47 };
  48 
  49 
  50 /*
  51  * Map PEBS Load Latency Data Source encodings to generic
  52  * memory data source information
  53  */
  54 #define P(a, b) PERF_MEM_S(a, b)
  55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
  56 #define LEVEL(x) P(LVLNUM, x)
  57 #define REM P(REMOTE, REMOTE)
  58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
  59 
  60 /* Version for Sandy Bridge and later */
  61 static u64 pebs_data_source[] = {
  62         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
  63         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
  64         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
  65         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
  66         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
  67         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
  68         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
  69         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
  70         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
  71         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
  72         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
  73         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
  74         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
  75         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
  76         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
  77         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
  78 };
  79 
  80 /* Patch up minor differences in the bits */
  81 void __init intel_pmu_pebs_data_source_nhm(void)
  82 {
  83         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
  84         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
  85         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
  86 }
  87 
  88 void __init intel_pmu_pebs_data_source_skl(bool pmem)
  89 {
  90         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
  91 
  92         pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
  93         pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
  94         pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
  95         pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
  96         pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
  97 }
  98 
  99 static u64 precise_store_data(u64 status)
 100 {
 101         union intel_x86_pebs_dse dse;
 102         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
 103 
 104         dse.val = status;
 105 
 106         /*
 107          * bit 4: TLB access
 108          * 1 = stored missed 2nd level TLB
 109          *
 110          * so it either hit the walker or the OS
 111          * otherwise hit 2nd level TLB
 112          */
 113         if (dse.st_stlb_miss)
 114                 val |= P(TLB, MISS);
 115         else
 116                 val |= P(TLB, HIT);
 117 
 118         /*
 119          * bit 0: hit L1 data cache
 120          * if not set, then all we know is that
 121          * it missed L1D
 122          */
 123         if (dse.st_l1d_hit)
 124                 val |= P(LVL, HIT);
 125         else
 126                 val |= P(LVL, MISS);
 127 
 128         /*
 129          * bit 5: Locked prefix
 130          */
 131         if (dse.st_locked)
 132                 val |= P(LOCK, LOCKED);
 133 
 134         return val;
 135 }
 136 
 137 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
 138 {
 139         union perf_mem_data_src dse;
 140 
 141         dse.val = PERF_MEM_NA;
 142 
 143         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
 144                 dse.mem_op = PERF_MEM_OP_STORE;
 145         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
 146                 dse.mem_op = PERF_MEM_OP_LOAD;
 147 
 148         /*
 149          * L1 info only valid for following events:
 150          *
 151          * MEM_UOPS_RETIRED.STLB_MISS_STORES
 152          * MEM_UOPS_RETIRED.LOCK_STORES
 153          * MEM_UOPS_RETIRED.SPLIT_STORES
 154          * MEM_UOPS_RETIRED.ALL_STORES
 155          */
 156         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
 157                 if (status & 1)
 158                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
 159                 else
 160                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
 161         }
 162         return dse.val;
 163 }
 164 
 165 static u64 load_latency_data(u64 status)
 166 {
 167         union intel_x86_pebs_dse dse;
 168         u64 val;
 169 
 170         dse.val = status;
 171 
 172         /*
 173          * use the mapping table for bit 0-3
 174          */
 175         val = pebs_data_source[dse.ld_dse];
 176 
 177         /*
 178          * Nehalem models do not support TLB, Lock infos
 179          */
 180         if (x86_pmu.pebs_no_tlb) {
 181                 val |= P(TLB, NA) | P(LOCK, NA);
 182                 return val;
 183         }
 184         /*
 185          * bit 4: TLB access
 186          * 0 = did not miss 2nd level TLB
 187          * 1 = missed 2nd level TLB
 188          */
 189         if (dse.ld_stlb_miss)
 190                 val |= P(TLB, MISS) | P(TLB, L2);
 191         else
 192                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
 193 
 194         /*
 195          * bit 5: locked prefix
 196          */
 197         if (dse.ld_locked)
 198                 val |= P(LOCK, LOCKED);
 199 
 200         return val;
 201 }
 202 
 203 struct pebs_record_core {
 204         u64 flags, ip;
 205         u64 ax, bx, cx, dx;
 206         u64 si, di, bp, sp;
 207         u64 r8,  r9,  r10, r11;
 208         u64 r12, r13, r14, r15;
 209 };
 210 
 211 struct pebs_record_nhm {
 212         u64 flags, ip;
 213         u64 ax, bx, cx, dx;
 214         u64 si, di, bp, sp;
 215         u64 r8,  r9,  r10, r11;
 216         u64 r12, r13, r14, r15;
 217         u64 status, dla, dse, lat;
 218 };
 219 
 220 /*
 221  * Same as pebs_record_nhm, with two additional fields.
 222  */
 223 struct pebs_record_hsw {
 224         u64 flags, ip;
 225         u64 ax, bx, cx, dx;
 226         u64 si, di, bp, sp;
 227         u64 r8,  r9,  r10, r11;
 228         u64 r12, r13, r14, r15;
 229         u64 status, dla, dse, lat;
 230         u64 real_ip, tsx_tuning;
 231 };
 232 
 233 union hsw_tsx_tuning {
 234         struct {
 235                 u32 cycles_last_block     : 32,
 236                     hle_abort             : 1,
 237                     rtm_abort             : 1,
 238                     instruction_abort     : 1,
 239                     non_instruction_abort : 1,
 240                     retry                 : 1,
 241                     data_conflict         : 1,
 242                     capacity_writes       : 1,
 243                     capacity_reads        : 1;
 244         };
 245         u64         value;
 246 };
 247 
 248 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
 249 
 250 /* Same as HSW, plus TSC */
 251 
 252 struct pebs_record_skl {
 253         u64 flags, ip;
 254         u64 ax, bx, cx, dx;
 255         u64 si, di, bp, sp;
 256         u64 r8,  r9,  r10, r11;
 257         u64 r12, r13, r14, r15;
 258         u64 status, dla, dse, lat;
 259         u64 real_ip, tsx_tuning;
 260         u64 tsc;
 261 };
 262 
 263 void init_debug_store_on_cpu(int cpu)
 264 {
 265         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
 266 
 267         if (!ds)
 268                 return;
 269 
 270         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
 271                      (u32)((u64)(unsigned long)ds),
 272                      (u32)((u64)(unsigned long)ds >> 32));
 273 }
 274 
 275 void fini_debug_store_on_cpu(int cpu)
 276 {
 277         if (!per_cpu(cpu_hw_events, cpu).ds)
 278                 return;
 279 
 280         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
 281 }
 282 
 283 static DEFINE_PER_CPU(void *, insn_buffer);
 284 
 285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
 286 {
 287         unsigned long start = (unsigned long)cea;
 288         phys_addr_t pa;
 289         size_t msz = 0;
 290 
 291         pa = virt_to_phys(addr);
 292 
 293         preempt_disable();
 294         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
 295                 cea_set_pte(cea, pa, prot);
 296 
 297         /*
 298          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
 299          * all TLB entries for it.
 300          */
 301         flush_tlb_kernel_range(start, start + size);
 302         preempt_enable();
 303 }
 304 
 305 static void ds_clear_cea(void *cea, size_t size)
 306 {
 307         unsigned long start = (unsigned long)cea;
 308         size_t msz = 0;
 309 
 310         preempt_disable();
 311         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
 312                 cea_set_pte(cea, 0, PAGE_NONE);
 313 
 314         flush_tlb_kernel_range(start, start + size);
 315         preempt_enable();
 316 }
 317 
 318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
 319 {
 320         unsigned int order = get_order(size);
 321         int node = cpu_to_node(cpu);
 322         struct page *page;
 323 
 324         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
 325         return page ? page_address(page) : NULL;
 326 }
 327 
 328 static void dsfree_pages(const void *buffer, size_t size)
 329 {
 330         if (buffer)
 331                 free_pages((unsigned long)buffer, get_order(size));
 332 }
 333 
 334 static int alloc_pebs_buffer(int cpu)
 335 {
 336         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
 337         struct debug_store *ds = hwev->ds;
 338         size_t bsiz = x86_pmu.pebs_buffer_size;
 339         int max, node = cpu_to_node(cpu);
 340         void *buffer, *insn_buff, *cea;
 341 
 342         if (!x86_pmu.pebs)
 343                 return 0;
 344 
 345         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
 346         if (unlikely(!buffer))
 347                 return -ENOMEM;
 348 
 349         /*
 350          * HSW+ already provides us the eventing ip; no need to allocate this
 351          * buffer then.
 352          */
 353         if (x86_pmu.intel_cap.pebs_format < 2) {
 354                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
 355                 if (!insn_buff) {
 356                         dsfree_pages(buffer, bsiz);
 357                         return -ENOMEM;
 358                 }
 359                 per_cpu(insn_buffer, cpu) = insn_buff;
 360         }
 361         hwev->ds_pebs_vaddr = buffer;
 362         /* Update the cpu entry area mapping */
 363         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
 364         ds->pebs_buffer_base = (unsigned long) cea;
 365         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
 366         ds->pebs_index = ds->pebs_buffer_base;
 367         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
 368         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
 369         return 0;
 370 }
 371 
 372 static void release_pebs_buffer(int cpu)
 373 {
 374         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
 375         void *cea;
 376 
 377         if (!x86_pmu.pebs)
 378                 return;
 379 
 380         kfree(per_cpu(insn_buffer, cpu));
 381         per_cpu(insn_buffer, cpu) = NULL;
 382 
 383         /* Clear the fixmap */
 384         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
 385         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
 386         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
 387         hwev->ds_pebs_vaddr = NULL;
 388 }
 389 
 390 static int alloc_bts_buffer(int cpu)
 391 {
 392         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
 393         struct debug_store *ds = hwev->ds;
 394         void *buffer, *cea;
 395         int max;
 396 
 397         if (!x86_pmu.bts)
 398                 return 0;
 399 
 400         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
 401         if (unlikely(!buffer)) {
 402                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
 403                 return -ENOMEM;
 404         }
 405         hwev->ds_bts_vaddr = buffer;
 406         /* Update the fixmap */
 407         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
 408         ds->bts_buffer_base = (unsigned long) cea;
 409         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
 410         ds->bts_index = ds->bts_buffer_base;
 411         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
 412         ds->bts_absolute_maximum = ds->bts_buffer_base +
 413                                         max * BTS_RECORD_SIZE;
 414         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
 415                                         (max / 16) * BTS_RECORD_SIZE;
 416         return 0;
 417 }
 418 
 419 static void release_bts_buffer(int cpu)
 420 {
 421         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
 422         void *cea;
 423 
 424         if (!x86_pmu.bts)
 425                 return;
 426 
 427         /* Clear the fixmap */
 428         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
 429         ds_clear_cea(cea, BTS_BUFFER_SIZE);
 430         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
 431         hwev->ds_bts_vaddr = NULL;
 432 }
 433 
 434 static int alloc_ds_buffer(int cpu)
 435 {
 436         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
 437 
 438         memset(ds, 0, sizeof(*ds));
 439         per_cpu(cpu_hw_events, cpu).ds = ds;
 440         return 0;
 441 }
 442 
 443 static void release_ds_buffer(int cpu)
 444 {
 445         per_cpu(cpu_hw_events, cpu).ds = NULL;
 446 }
 447 
 448 void release_ds_buffers(void)
 449 {
 450         int cpu;
 451 
 452         if (!x86_pmu.bts && !x86_pmu.pebs)
 453                 return;
 454 
 455         for_each_possible_cpu(cpu)
 456                 release_ds_buffer(cpu);
 457 
 458         for_each_possible_cpu(cpu) {
 459                 /*
 460                  * Again, ignore errors from offline CPUs, they will no longer
 461                  * observe cpu_hw_events.ds and not program the DS_AREA when
 462                  * they come up.
 463                  */
 464                 fini_debug_store_on_cpu(cpu);
 465         }
 466 
 467         for_each_possible_cpu(cpu) {
 468                 release_pebs_buffer(cpu);
 469                 release_bts_buffer(cpu);
 470         }
 471 }
 472 
 473 void reserve_ds_buffers(void)
 474 {
 475         int bts_err = 0, pebs_err = 0;
 476         int cpu;
 477 
 478         x86_pmu.bts_active = 0;
 479         x86_pmu.pebs_active = 0;
 480 
 481         if (!x86_pmu.bts && !x86_pmu.pebs)
 482                 return;
 483 
 484         if (!x86_pmu.bts)
 485                 bts_err = 1;
 486 
 487         if (!x86_pmu.pebs)
 488                 pebs_err = 1;
 489 
 490         for_each_possible_cpu(cpu) {
 491                 if (alloc_ds_buffer(cpu)) {
 492                         bts_err = 1;
 493                         pebs_err = 1;
 494                 }
 495 
 496                 if (!bts_err && alloc_bts_buffer(cpu))
 497                         bts_err = 1;
 498 
 499                 if (!pebs_err && alloc_pebs_buffer(cpu))
 500                         pebs_err = 1;
 501 
 502                 if (bts_err && pebs_err)
 503                         break;
 504         }
 505 
 506         if (bts_err) {
 507                 for_each_possible_cpu(cpu)
 508                         release_bts_buffer(cpu);
 509         }
 510 
 511         if (pebs_err) {
 512                 for_each_possible_cpu(cpu)
 513                         release_pebs_buffer(cpu);
 514         }
 515 
 516         if (bts_err && pebs_err) {
 517                 for_each_possible_cpu(cpu)
 518                         release_ds_buffer(cpu);
 519         } else {
 520                 if (x86_pmu.bts && !bts_err)
 521                         x86_pmu.bts_active = 1;
 522 
 523                 if (x86_pmu.pebs && !pebs_err)
 524                         x86_pmu.pebs_active = 1;
 525 
 526                 for_each_possible_cpu(cpu) {
 527                         /*
 528                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
 529                          * will get this call through intel_pmu_cpu_starting().
 530                          */
 531                         init_debug_store_on_cpu(cpu);
 532                 }
 533         }
 534 }
 535 
 536 /*
 537  * BTS
 538  */
 539 
 540 struct event_constraint bts_constraint =
 541         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
 542 
 543 void intel_pmu_enable_bts(u64 config)
 544 {
 545         unsigned long debugctlmsr;
 546 
 547         debugctlmsr = get_debugctlmsr();
 548 
 549         debugctlmsr |= DEBUGCTLMSR_TR;
 550         debugctlmsr |= DEBUGCTLMSR_BTS;
 551         if (config & ARCH_PERFMON_EVENTSEL_INT)
 552                 debugctlmsr |= DEBUGCTLMSR_BTINT;
 553 
 554         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
 555                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
 556 
 557         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
 558                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
 559 
 560         update_debugctlmsr(debugctlmsr);
 561 }
 562 
 563 void intel_pmu_disable_bts(void)
 564 {
 565         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 566         unsigned long debugctlmsr;
 567 
 568         if (!cpuc->ds)
 569                 return;
 570 
 571         debugctlmsr = get_debugctlmsr();
 572 
 573         debugctlmsr &=
 574                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
 575                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
 576 
 577         update_debugctlmsr(debugctlmsr);
 578 }
 579 
 580 int intel_pmu_drain_bts_buffer(void)
 581 {
 582         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 583         struct debug_store *ds = cpuc->ds;
 584         struct bts_record {
 585                 u64     from;
 586                 u64     to;
 587                 u64     flags;
 588         };
 589         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
 590         struct bts_record *at, *base, *top;
 591         struct perf_output_handle handle;
 592         struct perf_event_header header;
 593         struct perf_sample_data data;
 594         unsigned long skip = 0;
 595         struct pt_regs regs;
 596 
 597         if (!event)
 598                 return 0;
 599 
 600         if (!x86_pmu.bts_active)
 601                 return 0;
 602 
 603         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
 604         top  = (struct bts_record *)(unsigned long)ds->bts_index;
 605 
 606         if (top <= base)
 607                 return 0;
 608 
 609         memset(&regs, 0, sizeof(regs));
 610 
 611         ds->bts_index = ds->bts_buffer_base;
 612 
 613         perf_sample_data_init(&data, 0, event->hw.last_period);
 614 
 615         /*
 616          * BTS leaks kernel addresses in branches across the cpl boundary,
 617          * such as traps or system calls, so unless the user is asking for
 618          * kernel tracing (and right now it's not possible), we'd need to
 619          * filter them out. But first we need to count how many of those we
 620          * have in the current batch. This is an extra O(n) pass, however,
 621          * it's much faster than the other one especially considering that
 622          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
 623          * alloc_bts_buffer()).
 624          */
 625         for (at = base; at < top; at++) {
 626                 /*
 627                  * Note that right now *this* BTS code only works if
 628                  * attr::exclude_kernel is set, but let's keep this extra
 629                  * check here in case that changes.
 630                  */
 631                 if (event->attr.exclude_kernel &&
 632                     (kernel_ip(at->from) || kernel_ip(at->to)))
 633                         skip++;
 634         }
 635 
 636         /*
 637          * Prepare a generic sample, i.e. fill in the invariant fields.
 638          * We will overwrite the from and to address before we output
 639          * the sample.
 640          */
 641         rcu_read_lock();
 642         perf_prepare_sample(&header, &data, event, &regs);
 643 
 644         if (perf_output_begin(&handle, event, header.size *
 645                               (top - base - skip)))
 646                 goto unlock;
 647 
 648         for (at = base; at < top; at++) {
 649                 /* Filter out any records that contain kernel addresses. */
 650                 if (event->attr.exclude_kernel &&
 651                     (kernel_ip(at->from) || kernel_ip(at->to)))
 652                         continue;
 653 
 654                 data.ip         = at->from;
 655                 data.addr       = at->to;
 656 
 657                 perf_output_sample(&handle, &header, &data, event);
 658         }
 659 
 660         perf_output_end(&handle);
 661 
 662         /* There's new data available. */
 663         event->hw.interrupts++;
 664         event->pending_kill = POLL_IN;
 665 unlock:
 666         rcu_read_unlock();
 667         return 1;
 668 }
 669 
 670 static inline void intel_pmu_drain_pebs_buffer(void)
 671 {
 672         struct pt_regs regs;
 673 
 674         x86_pmu.drain_pebs(&regs);
 675 }
 676 
 677 /*
 678  * PEBS
 679  */
 680 struct event_constraint intel_core2_pebs_event_constraints[] = {
 681         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
 682         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
 683         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
 684         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
 685         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
 686         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
 687         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
 688         EVENT_CONSTRAINT_END
 689 };
 690 
 691 struct event_constraint intel_atom_pebs_event_constraints[] = {
 692         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
 693         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
 694         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
 695         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
 696         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
 697         /* Allow all events as PEBS with no flags */
 698         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
 699         EVENT_CONSTRAINT_END
 700 };
 701 
 702 struct event_constraint intel_slm_pebs_event_constraints[] = {
 703         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
 704         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
 705         /* Allow all events as PEBS with no flags */
 706         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
 707         EVENT_CONSTRAINT_END
 708 };
 709 
 710 struct event_constraint intel_glm_pebs_event_constraints[] = {
 711         /* Allow all events as PEBS with no flags */
 712         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
 713         EVENT_CONSTRAINT_END
 714 };
 715 
 716 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
 717         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
 718         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
 719         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
 720         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
 721         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
 722         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
 723         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
 724         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
 725         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
 726         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
 727         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
 728         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
 729         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
 730         EVENT_CONSTRAINT_END
 731 };
 732 
 733 struct event_constraint intel_westmere_pebs_event_constraints[] = {
 734         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
 735         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
 736         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
 737         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
 738         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
 739         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
 740         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
 741         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
 742         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
 743         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
 744         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
 745         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
 746         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
 747         EVENT_CONSTRAINT_END
 748 };
 749 
 750 struct event_constraint intel_snb_pebs_event_constraints[] = {
 751         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
 752         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
 753         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
 754         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
 755         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
 756         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
 757         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
 758         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 759         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 760         /* Allow all events as PEBS with no flags */
 761         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
 762         EVENT_CONSTRAINT_END
 763 };
 764 
 765 struct event_constraint intel_ivb_pebs_event_constraints[] = {
 766         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
 767         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
 768         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
 769         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
 770         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
 771         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
 772         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
 773         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
 774         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
 775         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 776         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 777         /* Allow all events as PEBS with no flags */
 778         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
 779         EVENT_CONSTRAINT_END
 780 };
 781 
 782 struct event_constraint intel_hsw_pebs_event_constraints[] = {
 783         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
 784         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
 785         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
 786         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
 787         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
 788         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
 789         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
 790         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
 791         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
 792         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
 793         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
 794         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
 795         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
 796         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
 797         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
 798         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
 799         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
 800         /* Allow all events as PEBS with no flags */
 801         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
 802         EVENT_CONSTRAINT_END
 803 };
 804 
 805 struct event_constraint intel_bdw_pebs_event_constraints[] = {
 806         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
 807         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
 808         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
 809         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
 810         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
 811         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
 812         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
 813         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
 814         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
 815         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
 816         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
 817         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
 818         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
 819         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
 820         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
 821         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
 822         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
 823         /* Allow all events as PEBS with no flags */
 824         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
 825         EVENT_CONSTRAINT_END
 826 };
 827 
 828 
 829 struct event_constraint intel_skl_pebs_event_constraints[] = {
 830         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
 831         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
 832         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
 833         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
 834         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
 835         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
 836         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
 837         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
 838         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
 839         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
 840         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
 841         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
 842         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
 843         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
 844         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
 845         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
 846         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
 847         /* Allow all events as PEBS with no flags */
 848         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
 849         EVENT_CONSTRAINT_END
 850 };
 851 
 852 struct event_constraint intel_icl_pebs_event_constraints[] = {
 853         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
 854         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
 855 
 856         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 857         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),    /* MEM_INST_RETIRED.LOAD */
 858         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),    /* MEM_INST_RETIRED.STORE */
 859 
 860         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
 861 
 862         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
 863 
 864         /*
 865          * Everything else is handled by PMU_FL_PEBS_ALL, because we
 866          * need the full constraints from the main table.
 867          */
 868 
 869         EVENT_CONSTRAINT_END
 870 };
 871 
 872 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
 873 {
 874         struct event_constraint *c;
 875 
 876         if (!event->attr.precise_ip)
 877                 return NULL;
 878 
 879         if (x86_pmu.pebs_constraints) {
 880                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
 881                         if (constraint_match(c, event->hw.config)) {
 882                                 event->hw.flags |= c->flags;
 883                                 return c;
 884                         }
 885                 }
 886         }
 887 
 888         /*
 889          * Extended PEBS support
 890          * Makes the PEBS code search the normal constraints.
 891          */
 892         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
 893                 return NULL;
 894 
 895         return &emptyconstraint;
 896 }
 897 
 898 /*
 899  * We need the sched_task callback even for per-cpu events when we use
 900  * the large interrupt threshold, such that we can provide PID and TID
 901  * to PEBS samples.
 902  */
 903 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
 904 {
 905         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
 906                 return false;
 907 
 908         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
 909 }
 910 
 911 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
 912 {
 913         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 914 
 915         if (!sched_in && pebs_needs_sched_cb(cpuc))
 916                 intel_pmu_drain_pebs_buffer();
 917 }
 918 
 919 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
 920 {
 921         struct debug_store *ds = cpuc->ds;
 922         u64 threshold;
 923         int reserved;
 924 
 925         if (cpuc->n_pebs_via_pt)
 926                 return;
 927 
 928         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
 929                 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
 930         else
 931                 reserved = x86_pmu.max_pebs_events;
 932 
 933         if (cpuc->n_pebs == cpuc->n_large_pebs) {
 934                 threshold = ds->pebs_absolute_maximum -
 935                         reserved * cpuc->pebs_record_size;
 936         } else {
 937                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
 938         }
 939 
 940         ds->pebs_interrupt_threshold = threshold;
 941 }
 942 
 943 static void adaptive_pebs_record_size_update(void)
 944 {
 945         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 946         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
 947         int sz = sizeof(struct pebs_basic);
 948 
 949         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
 950                 sz += sizeof(struct pebs_meminfo);
 951         if (pebs_data_cfg & PEBS_DATACFG_GP)
 952                 sz += sizeof(struct pebs_gprs);
 953         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
 954                 sz += sizeof(struct pebs_xmm);
 955         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
 956                 sz += x86_pmu.lbr_nr * sizeof(struct pebs_lbr_entry);
 957 
 958         cpuc->pebs_record_size = sz;
 959 }
 960 
 961 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
 962                                 PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
 963                                 PERF_SAMPLE_TRANSACTION)
 964 
 965 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
 966 {
 967         struct perf_event_attr *attr = &event->attr;
 968         u64 sample_type = attr->sample_type;
 969         u64 pebs_data_cfg = 0;
 970         bool gprs, tsx_weight;
 971 
 972         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
 973             attr->precise_ip > 1)
 974                 return pebs_data_cfg;
 975 
 976         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
 977                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
 978 
 979         /*
 980          * We need GPRs when:
 981          * + user requested them
 982          * + precise_ip < 2 for the non event IP
 983          * + For RTM TSX weight we need GPRs for the abort code.
 984          */
 985         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
 986                (attr->sample_regs_intr & PEBS_GP_REGS);
 987 
 988         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
 989                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
 990                       x86_pmu.rtm_abort_event);
 991 
 992         if (gprs || (attr->precise_ip < 2) || tsx_weight)
 993                 pebs_data_cfg |= PEBS_DATACFG_GP;
 994 
 995         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
 996             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
 997                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
 998 
 999         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1000                 /*
1001                  * For now always log all LBRs. Could configure this
1002                  * later.
1003                  */
1004                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1005                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1006         }
1007 
1008         return pebs_data_cfg;
1009 }
1010 
1011 static void
1012 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1013                   struct perf_event *event, bool add)
1014 {
1015         struct pmu *pmu = event->ctx->pmu;
1016         /*
1017          * Make sure we get updated with the first PEBS
1018          * event. It will trigger also during removal, but
1019          * that does not hurt:
1020          */
1021         bool update = cpuc->n_pebs == 1;
1022 
1023         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1024                 if (!needed_cb)
1025                         perf_sched_cb_inc(pmu);
1026                 else
1027                         perf_sched_cb_dec(pmu);
1028 
1029                 update = true;
1030         }
1031 
1032         /*
1033          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1034          * iterating all remaining PEBS events to reconstruct the config.
1035          */
1036         if (x86_pmu.intel_cap.pebs_baseline && add) {
1037                 u64 pebs_data_cfg;
1038 
1039                 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1040                 if (cpuc->n_pebs == 1) {
1041                         cpuc->pebs_data_cfg = 0;
1042                         cpuc->pebs_record_size = sizeof(struct pebs_basic);
1043                 }
1044 
1045                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1046 
1047                 /* Update pebs_record_size if new event requires more data. */
1048                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1049                         cpuc->pebs_data_cfg |= pebs_data_cfg;
1050                         adaptive_pebs_record_size_update();
1051                         update = true;
1052                 }
1053         }
1054 
1055         if (update)
1056                 pebs_update_threshold(cpuc);
1057 }
1058 
1059 void intel_pmu_pebs_add(struct perf_event *event)
1060 {
1061         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1062         struct hw_perf_event *hwc = &event->hw;
1063         bool needed_cb = pebs_needs_sched_cb(cpuc);
1064 
1065         cpuc->n_pebs++;
1066         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1067                 cpuc->n_large_pebs++;
1068         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1069                 cpuc->n_pebs_via_pt++;
1070 
1071         pebs_update_state(needed_cb, cpuc, event, true);
1072 }
1073 
1074 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1075 {
1076         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1077 
1078         if (!is_pebs_pt(event))
1079                 return;
1080 
1081         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1082                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1083 }
1084 
1085 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1086 {
1087         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1088         struct hw_perf_event *hwc = &event->hw;
1089         struct debug_store *ds = cpuc->ds;
1090 
1091         if (!is_pebs_pt(event))
1092                 return;
1093 
1094         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1095                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1096 
1097         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1098 
1099         wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
1100 }
1101 
1102 void intel_pmu_pebs_enable(struct perf_event *event)
1103 {
1104         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1105         struct hw_perf_event *hwc = &event->hw;
1106         struct debug_store *ds = cpuc->ds;
1107 
1108         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1109 
1110         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1111 
1112         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1113                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1114         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1115                 cpuc->pebs_enabled |= 1ULL << 63;
1116 
1117         if (x86_pmu.intel_cap.pebs_baseline) {
1118                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1119                 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1120                         wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1121                         cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1122                 }
1123         }
1124 
1125         /*
1126          * Use auto-reload if possible to save a MSR write in the PMI.
1127          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1128          */
1129         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1130                 unsigned int idx = hwc->idx;
1131 
1132                 if (idx >= INTEL_PMC_IDX_FIXED)
1133                         idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1134                 ds->pebs_event_reset[idx] =
1135                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1136         } else {
1137                 ds->pebs_event_reset[hwc->idx] = 0;
1138         }
1139 
1140         intel_pmu_pebs_via_pt_enable(event);
1141 }
1142 
1143 void intel_pmu_pebs_del(struct perf_event *event)
1144 {
1145         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1146         struct hw_perf_event *hwc = &event->hw;
1147         bool needed_cb = pebs_needs_sched_cb(cpuc);
1148 
1149         cpuc->n_pebs--;
1150         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1151                 cpuc->n_large_pebs--;
1152         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1153                 cpuc->n_pebs_via_pt--;
1154 
1155         pebs_update_state(needed_cb, cpuc, event, false);
1156 }
1157 
1158 void intel_pmu_pebs_disable(struct perf_event *event)
1159 {
1160         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1161         struct hw_perf_event *hwc = &event->hw;
1162 
1163         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1164             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1165                 intel_pmu_drain_pebs_buffer();
1166 
1167         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1168 
1169         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1170             (x86_pmu.version < 5))
1171                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1172         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1173                 cpuc->pebs_enabled &= ~(1ULL << 63);
1174 
1175         intel_pmu_pebs_via_pt_disable(event);
1176 
1177         if (cpuc->enabled)
1178                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1179 
1180         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1181 }
1182 
1183 void intel_pmu_pebs_enable_all(void)
1184 {
1185         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1186 
1187         if (cpuc->pebs_enabled)
1188                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1189 }
1190 
1191 void intel_pmu_pebs_disable_all(void)
1192 {
1193         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1194 
1195         if (cpuc->pebs_enabled)
1196                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1197 }
1198 
1199 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1200 {
1201         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1202         unsigned long from = cpuc->lbr_entries[0].from;
1203         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1204         unsigned long ip = regs->ip;
1205         int is_64bit = 0;
1206         void *kaddr;
1207         int size;
1208 
1209         /*
1210          * We don't need to fixup if the PEBS assist is fault like
1211          */
1212         if (!x86_pmu.intel_cap.pebs_trap)
1213                 return 1;
1214 
1215         /*
1216          * No LBR entry, no basic block, no rewinding
1217          */
1218         if (!cpuc->lbr_stack.nr || !from || !to)
1219                 return 0;
1220 
1221         /*
1222          * Basic blocks should never cross user/kernel boundaries
1223          */
1224         if (kernel_ip(ip) != kernel_ip(to))
1225                 return 0;
1226 
1227         /*
1228          * unsigned math, either ip is before the start (impossible) or
1229          * the basic block is larger than 1 page (sanity)
1230          */
1231         if ((ip - to) > PEBS_FIXUP_SIZE)
1232                 return 0;
1233 
1234         /*
1235          * We sampled a branch insn, rewind using the LBR stack
1236          */
1237         if (ip == to) {
1238                 set_linear_ip(regs, from);
1239                 return 1;
1240         }
1241 
1242         size = ip - to;
1243         if (!kernel_ip(ip)) {
1244                 int bytes;
1245                 u8 *buf = this_cpu_read(insn_buffer);
1246 
1247                 /* 'size' must fit our buffer, see above */
1248                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1249                 if (bytes != 0)
1250                         return 0;
1251 
1252                 kaddr = buf;
1253         } else {
1254                 kaddr = (void *)to;
1255         }
1256 
1257         do {
1258                 struct insn insn;
1259 
1260                 old_to = to;
1261 
1262 #ifdef CONFIG_X86_64
1263                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1264 #endif
1265                 insn_init(&insn, kaddr, size, is_64bit);
1266                 insn_get_length(&insn);
1267                 /*
1268                  * Make sure there was not a problem decoding the
1269                  * instruction and getting the length.  This is
1270                  * doubly important because we have an infinite
1271                  * loop if insn.length=0.
1272                  */
1273                 if (!insn.length)
1274                         break;
1275 
1276                 to += insn.length;
1277                 kaddr += insn.length;
1278                 size -= insn.length;
1279         } while (to < ip);
1280 
1281         if (to == ip) {
1282                 set_linear_ip(regs, old_to);
1283                 return 1;
1284         }
1285 
1286         /*
1287          * Even though we decoded the basic block, the instruction stream
1288          * never matched the given IP, either the TO or the IP got corrupted.
1289          */
1290         return 0;
1291 }
1292 
1293 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1294 {
1295         if (tsx_tuning) {
1296                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1297                 return tsx.cycles_last_block;
1298         }
1299         return 0;
1300 }
1301 
1302 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1303 {
1304         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1305 
1306         /* For RTM XABORTs also log the abort code from AX */
1307         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1308                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1309         return txn;
1310 }
1311 
1312 static inline u64 get_pebs_status(void *n)
1313 {
1314         if (x86_pmu.intel_cap.pebs_format < 4)
1315                 return ((struct pebs_record_nhm *)n)->status;
1316         return ((struct pebs_basic *)n)->applicable_counters;
1317 }
1318 
1319 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1320                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1321                  PERF_X86_EVENT_PEBS_LD_HSW | \
1322                  PERF_X86_EVENT_PEBS_NA_HSW)
1323 
1324 static u64 get_data_src(struct perf_event *event, u64 aux)
1325 {
1326         u64 val = PERF_MEM_NA;
1327         int fl = event->hw.flags;
1328         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1329 
1330         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1331                 val = load_latency_data(aux);
1332         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1333                 val = precise_datala_hsw(event, aux);
1334         else if (fst)
1335                 val = precise_store_data(aux);
1336         return val;
1337 }
1338 
1339 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1340                                    struct pt_regs *iregs, void *__pebs,
1341                                    struct perf_sample_data *data,
1342                                    struct pt_regs *regs)
1343 {
1344         /*
1345          * We cast to the biggest pebs_record but are careful not to
1346          * unconditionally access the 'extra' entries.
1347          */
1348         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1349         struct pebs_record_skl *pebs = __pebs;
1350         u64 sample_type;
1351         int fll;
1352 
1353         if (pebs == NULL)
1354                 return;
1355 
1356         sample_type = event->attr.sample_type;
1357         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1358 
1359         perf_sample_data_init(data, 0, event->hw.last_period);
1360 
1361         data->period = event->hw.last_period;
1362 
1363         /*
1364          * Use latency for weight (only avail with PEBS-LL)
1365          */
1366         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1367                 data->weight = pebs->lat;
1368 
1369         /*
1370          * data.data_src encodes the data source
1371          */
1372         if (sample_type & PERF_SAMPLE_DATA_SRC)
1373                 data->data_src.val = get_data_src(event, pebs->dse);
1374 
1375         /*
1376          * We must however always use iregs for the unwinder to stay sane; the
1377          * record BP,SP,IP can point into thin air when the record is from a
1378          * previous PMI context or an (I)RET happened between the record and
1379          * PMI.
1380          */
1381         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1382                 data->callchain = perf_callchain(event, iregs);
1383 
1384         /*
1385          * We use the interrupt regs as a base because the PEBS record does not
1386          * contain a full regs set, specifically it seems to lack segment
1387          * descriptors, which get used by things like user_mode().
1388          *
1389          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1390          */
1391         *regs = *iregs;
1392 
1393         /*
1394          * Initialize regs_>flags from PEBS,
1395          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1396          * i.e., do not rely on it being zero:
1397          */
1398         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1399 
1400         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1401                 regs->ax = pebs->ax;
1402                 regs->bx = pebs->bx;
1403                 regs->cx = pebs->cx;
1404                 regs->dx = pebs->dx;
1405                 regs->si = pebs->si;
1406                 regs->di = pebs->di;
1407 
1408                 regs->bp = pebs->bp;
1409                 regs->sp = pebs->sp;
1410 
1411 #ifndef CONFIG_X86_32
1412                 regs->r8 = pebs->r8;
1413                 regs->r9 = pebs->r9;
1414                 regs->r10 = pebs->r10;
1415                 regs->r11 = pebs->r11;
1416                 regs->r12 = pebs->r12;
1417                 regs->r13 = pebs->r13;
1418                 regs->r14 = pebs->r14;
1419                 regs->r15 = pebs->r15;
1420 #endif
1421         }
1422 
1423         if (event->attr.precise_ip > 1) {
1424                 /*
1425                  * Haswell and later processors have an 'eventing IP'
1426                  * (real IP) which fixes the off-by-1 skid in hardware.
1427                  * Use it when precise_ip >= 2 :
1428                  */
1429                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1430                         set_linear_ip(regs, pebs->real_ip);
1431                         regs->flags |= PERF_EFLAGS_EXACT;
1432                 } else {
1433                         /* Otherwise, use PEBS off-by-1 IP: */
1434                         set_linear_ip(regs, pebs->ip);
1435 
1436                         /*
1437                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1438                          * using the LBR. If successful, the fixup function
1439                          * corrects regs->ip and calls set_linear_ip() on regs:
1440                          */
1441                         if (intel_pmu_pebs_fixup_ip(regs))
1442                                 regs->flags |= PERF_EFLAGS_EXACT;
1443                 }
1444         } else {
1445                 /*
1446                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1447                  * no fixup attempted:
1448                  */
1449                 set_linear_ip(regs, pebs->ip);
1450         }
1451 
1452 
1453         if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1454             x86_pmu.intel_cap.pebs_format >= 1)
1455                 data->addr = pebs->dla;
1456 
1457         if (x86_pmu.intel_cap.pebs_format >= 2) {
1458                 /* Only set the TSX weight when no memory weight. */
1459                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1460                         data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1461 
1462                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1463                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1464                                                               pebs->ax);
1465         }
1466 
1467         /*
1468          * v3 supplies an accurate time stamp, so we use that
1469          * for the time stamp.
1470          *
1471          * We can only do this for the default trace clock.
1472          */
1473         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1474                 event->attr.use_clockid == 0)
1475                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1476 
1477         if (has_branch_stack(event))
1478                 data->br_stack = &cpuc->lbr_stack;
1479 }
1480 
1481 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1482                                     struct pebs_gprs *gprs)
1483 {
1484         regs->ax = gprs->ax;
1485         regs->bx = gprs->bx;
1486         regs->cx = gprs->cx;
1487         regs->dx = gprs->dx;
1488         regs->si = gprs->si;
1489         regs->di = gprs->di;
1490         regs->bp = gprs->bp;
1491         regs->sp = gprs->sp;
1492 #ifndef CONFIG_X86_32
1493         regs->r8 = gprs->r8;
1494         regs->r9 = gprs->r9;
1495         regs->r10 = gprs->r10;
1496         regs->r11 = gprs->r11;
1497         regs->r12 = gprs->r12;
1498         regs->r13 = gprs->r13;
1499         regs->r14 = gprs->r14;
1500         regs->r15 = gprs->r15;
1501 #endif
1502 }
1503 
1504 /*
1505  * With adaptive PEBS the layout depends on what fields are configured.
1506  */
1507 
1508 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1509                                             struct pt_regs *iregs, void *__pebs,
1510                                             struct perf_sample_data *data,
1511                                             struct pt_regs *regs)
1512 {
1513         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1514         struct pebs_basic *basic = __pebs;
1515         void *next_record = basic + 1;
1516         u64 sample_type;
1517         u64 format_size;
1518         struct pebs_meminfo *meminfo = NULL;
1519         struct pebs_gprs *gprs = NULL;
1520         struct x86_perf_regs *perf_regs;
1521 
1522         if (basic == NULL)
1523                 return;
1524 
1525         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1526         perf_regs->xmm_regs = NULL;
1527 
1528         sample_type = event->attr.sample_type;
1529         format_size = basic->format_size;
1530         perf_sample_data_init(data, 0, event->hw.last_period);
1531         data->period = event->hw.last_period;
1532 
1533         if (event->attr.use_clockid == 0)
1534                 data->time = native_sched_clock_from_tsc(basic->tsc);
1535 
1536         /*
1537          * We must however always use iregs for the unwinder to stay sane; the
1538          * record BP,SP,IP can point into thin air when the record is from a
1539          * previous PMI context or an (I)RET happened between the record and
1540          * PMI.
1541          */
1542         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1543                 data->callchain = perf_callchain(event, iregs);
1544 
1545         *regs = *iregs;
1546         /* The ip in basic is EventingIP */
1547         set_linear_ip(regs, basic->ip);
1548         regs->flags = PERF_EFLAGS_EXACT;
1549 
1550         /*
1551          * The record for MEMINFO is in front of GP
1552          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1553          * Save the pointer here but process later.
1554          */
1555         if (format_size & PEBS_DATACFG_MEMINFO) {
1556                 meminfo = next_record;
1557                 next_record = meminfo + 1;
1558         }
1559 
1560         if (format_size & PEBS_DATACFG_GP) {
1561                 gprs = next_record;
1562                 next_record = gprs + 1;
1563 
1564                 if (event->attr.precise_ip < 2) {
1565                         set_linear_ip(regs, gprs->ip);
1566                         regs->flags &= ~PERF_EFLAGS_EXACT;
1567                 }
1568 
1569                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1570                         adaptive_pebs_save_regs(regs, gprs);
1571         }
1572 
1573         if (format_size & PEBS_DATACFG_MEMINFO) {
1574                 if (sample_type & PERF_SAMPLE_WEIGHT)
1575                         data->weight = meminfo->latency ?:
1576                                 intel_get_tsx_weight(meminfo->tsx_tuning);
1577 
1578                 if (sample_type & PERF_SAMPLE_DATA_SRC)
1579                         data->data_src.val = get_data_src(event, meminfo->aux);
1580 
1581                 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
1582                         data->addr = meminfo->address;
1583 
1584                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1585                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1586                                                           gprs ? gprs->ax : 0);
1587         }
1588 
1589         if (format_size & PEBS_DATACFG_XMMS) {
1590                 struct pebs_xmm *xmm = next_record;
1591 
1592                 next_record = xmm + 1;
1593                 perf_regs->xmm_regs = xmm->xmm;
1594         }
1595 
1596         if (format_size & PEBS_DATACFG_LBRS) {
1597                 struct pebs_lbr *lbr = next_record;
1598                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1599                                         & 0xff) + 1;
1600                 next_record = next_record + num_lbr*sizeof(struct pebs_lbr_entry);
1601 
1602                 if (has_branch_stack(event)) {
1603                         intel_pmu_store_pebs_lbrs(lbr);
1604                         data->br_stack = &cpuc->lbr_stack;
1605                 }
1606         }
1607 
1608         WARN_ONCE(next_record != __pebs + (format_size >> 48),
1609                         "PEBS record size %llu, expected %llu, config %llx\n",
1610                         format_size >> 48,
1611                         (u64)(next_record - __pebs),
1612                         basic->format_size);
1613 }
1614 
1615 static inline void *
1616 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1617 {
1618         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1619         void *at;
1620         u64 pebs_status;
1621 
1622         /*
1623          * fmt0 does not have a status bitfield (does not use
1624          * perf_record_nhm format)
1625          */
1626         if (x86_pmu.intel_cap.pebs_format < 1)
1627                 return base;
1628 
1629         if (base == NULL)
1630                 return NULL;
1631 
1632         for (at = base; at < top; at += cpuc->pebs_record_size) {
1633                 unsigned long status = get_pebs_status(at);
1634 
1635                 if (test_bit(bit, (unsigned long *)&status)) {
1636                         /* PEBS v3 has accurate status bits */
1637                         if (x86_pmu.intel_cap.pebs_format >= 3)
1638                                 return at;
1639 
1640                         if (status == (1 << bit))
1641                                 return at;
1642 
1643                         /* clear non-PEBS bit and re-check */
1644                         pebs_status = status & cpuc->pebs_enabled;
1645                         pebs_status &= PEBS_COUNTER_MASK;
1646                         if (pebs_status == (1 << bit))
1647                                 return at;
1648                 }
1649         }
1650         return NULL;
1651 }
1652 
1653 void intel_pmu_auto_reload_read(struct perf_event *event)
1654 {
1655         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1656 
1657         perf_pmu_disable(event->pmu);
1658         intel_pmu_drain_pebs_buffer();
1659         perf_pmu_enable(event->pmu);
1660 }
1661 
1662 /*
1663  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1664  */
1665 static int
1666 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1667 {
1668         struct hw_perf_event *hwc = &event->hw;
1669         int shift = 64 - x86_pmu.cntval_bits;
1670         u64 period = hwc->sample_period;
1671         u64 prev_raw_count, new_raw_count;
1672         s64 new, old;
1673 
1674         WARN_ON(!period);
1675 
1676         /*
1677          * drain_pebs() only happens when the PMU is disabled.
1678          */
1679         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1680 
1681         prev_raw_count = local64_read(&hwc->prev_count);
1682         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1683         local64_set(&hwc->prev_count, new_raw_count);
1684 
1685         /*
1686          * Since the counter increments a negative counter value and
1687          * overflows on the sign switch, giving the interval:
1688          *
1689          *   [-period, 0]
1690          *
1691          * the difference between two consequtive reads is:
1692          *
1693          *   A) value2 - value1;
1694          *      when no overflows have happened in between,
1695          *
1696          *   B) (0 - value1) + (value2 - (-period));
1697          *      when one overflow happened in between,
1698          *
1699          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1700          *      when @n overflows happened in between.
1701          *
1702          * Here A) is the obvious difference, B) is the extension to the
1703          * discrete interval, where the first term is to the top of the
1704          * interval and the second term is from the bottom of the next
1705          * interval and C) the extension to multiple intervals, where the
1706          * middle term is the whole intervals covered.
1707          *
1708          * An equivalent of C, by reduction, is:
1709          *
1710          *   value2 - value1 + n * period
1711          */
1712         new = ((s64)(new_raw_count << shift) >> shift);
1713         old = ((s64)(prev_raw_count << shift) >> shift);
1714         local64_add(new - old + count * period, &event->count);
1715 
1716         local64_set(&hwc->period_left, -new);
1717 
1718         perf_event_update_userpage(event);
1719 
1720         return 0;
1721 }
1722 
1723 static void __intel_pmu_pebs_event(struct perf_event *event,
1724                                    struct pt_regs *iregs,
1725                                    void *base, void *top,
1726                                    int bit, int count,
1727                                    void (*setup_sample)(struct perf_event *,
1728                                                 struct pt_regs *,
1729                                                 void *,
1730                                                 struct perf_sample_data *,
1731                                                 struct pt_regs *))
1732 {
1733         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1734         struct hw_perf_event *hwc = &event->hw;
1735         struct perf_sample_data data;
1736         struct x86_perf_regs perf_regs;
1737         struct pt_regs *regs = &perf_regs.regs;
1738         void *at = get_next_pebs_record_by_bit(base, top, bit);
1739 
1740         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1741                 /*
1742                  * Now, auto-reload is only enabled in fixed period mode.
1743                  * The reload value is always hwc->sample_period.
1744                  * May need to change it, if auto-reload is enabled in
1745                  * freq mode later.
1746                  */
1747                 intel_pmu_save_and_restart_reload(event, count);
1748         } else if (!intel_pmu_save_and_restart(event))
1749                 return;
1750 
1751         while (count > 1) {
1752                 setup_sample(event, iregs, at, &data, regs);
1753                 perf_event_output(event, &data, regs);
1754                 at += cpuc->pebs_record_size;
1755                 at = get_next_pebs_record_by_bit(at, top, bit);
1756                 count--;
1757         }
1758 
1759         setup_sample(event, iregs, at, &data, regs);
1760 
1761         /*
1762          * All but the last records are processed.
1763          * The last one is left to be able to call the overflow handler.
1764          */
1765         if (perf_event_overflow(event, &data, regs)) {
1766                 x86_pmu_stop(event, 0);
1767                 return;
1768         }
1769 
1770 }
1771 
1772 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1773 {
1774         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1775         struct debug_store *ds = cpuc->ds;
1776         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1777         struct pebs_record_core *at, *top;
1778         int n;
1779 
1780         if (!x86_pmu.pebs_active)
1781                 return;
1782 
1783         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1784         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1785 
1786         /*
1787          * Whatever else happens, drain the thing
1788          */
1789         ds->pebs_index = ds->pebs_buffer_base;
1790 
1791         if (!test_bit(0, cpuc->active_mask))
1792                 return;
1793 
1794         WARN_ON_ONCE(!event);
1795 
1796         if (!event->attr.precise_ip)
1797                 return;
1798 
1799         n = top - at;
1800         if (n <= 0) {
1801                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1802                         intel_pmu_save_and_restart_reload(event, 0);
1803                 return;
1804         }
1805 
1806         __intel_pmu_pebs_event(event, iregs, at, top, 0, n,
1807                                setup_pebs_fixed_sample_data);
1808 }
1809 
1810 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1811 {
1812         struct perf_event *event;
1813         int bit;
1814 
1815         /*
1816          * The drain_pebs() could be called twice in a short period
1817          * for auto-reload event in pmu::read(). There are no
1818          * overflows have happened in between.
1819          * It needs to call intel_pmu_save_and_restart_reload() to
1820          * update the event->count for this case.
1821          */
1822         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1823                 event = cpuc->events[bit];
1824                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1825                         intel_pmu_save_and_restart_reload(event, 0);
1826         }
1827 }
1828 
1829 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1830 {
1831         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1832         struct debug_store *ds = cpuc->ds;
1833         struct perf_event *event;
1834         void *base, *at, *top;
1835         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1836         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1837         int bit, i, size;
1838         u64 mask;
1839 
1840         if (!x86_pmu.pebs_active)
1841                 return;
1842 
1843         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1844         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1845 
1846         ds->pebs_index = ds->pebs_buffer_base;
1847 
1848         mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1849         size = x86_pmu.max_pebs_events;
1850         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1851                 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1852                 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1853         }
1854 
1855         if (unlikely(base >= top)) {
1856                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1857                 return;
1858         }
1859 
1860         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1861                 struct pebs_record_nhm *p = at;
1862                 u64 pebs_status;
1863 
1864                 pebs_status = p->status & cpuc->pebs_enabled;
1865                 pebs_status &= mask;
1866 
1867                 /* PEBS v3 has more accurate status bits */
1868                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1869                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1870                                 counts[bit]++;
1871 
1872                         continue;
1873                 }
1874 
1875                 /*
1876                  * On some CPUs the PEBS status can be zero when PEBS is
1877                  * racing with clearing of GLOBAL_STATUS.
1878                  *
1879                  * Normally we would drop that record, but in the
1880                  * case when there is only a single active PEBS event
1881                  * we can assume it's for that event.
1882                  */
1883                 if (!pebs_status && cpuc->pebs_enabled &&
1884                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1885                         pebs_status = cpuc->pebs_enabled;
1886 
1887                 bit = find_first_bit((unsigned long *)&pebs_status,
1888                                         x86_pmu.max_pebs_events);
1889                 if (bit >= x86_pmu.max_pebs_events)
1890                         continue;
1891 
1892                 /*
1893                  * The PEBS hardware does not deal well with the situation
1894                  * when events happen near to each other and multiple bits
1895                  * are set. But it should happen rarely.
1896                  *
1897                  * If these events include one PEBS and multiple non-PEBS
1898                  * events, it doesn't impact PEBS record. The record will
1899                  * be handled normally. (slow path)
1900                  *
1901                  * If these events include two or more PEBS events, the
1902                  * records for the events can be collapsed into a single
1903                  * one, and it's not possible to reconstruct all events
1904                  * that caused the PEBS record. It's called collision.
1905                  * If collision happened, the record will be dropped.
1906                  */
1907                 if (p->status != (1ULL << bit)) {
1908                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1909                                 error[i]++;
1910                         continue;
1911                 }
1912 
1913                 counts[bit]++;
1914         }
1915 
1916         for_each_set_bit(bit, (unsigned long *)&mask, size) {
1917                 if ((counts[bit] == 0) && (error[bit] == 0))
1918                         continue;
1919 
1920                 event = cpuc->events[bit];
1921                 if (WARN_ON_ONCE(!event))
1922                         continue;
1923 
1924                 if (WARN_ON_ONCE(!event->attr.precise_ip))
1925                         continue;
1926 
1927                 /* log dropped samples number */
1928                 if (error[bit]) {
1929                         perf_log_lost_samples(event, error[bit]);
1930 
1931                         if (perf_event_account_interrupt(event))
1932                                 x86_pmu_stop(event, 0);
1933                 }
1934 
1935                 if (counts[bit]) {
1936                         __intel_pmu_pebs_event(event, iregs, base,
1937                                                top, bit, counts[bit],
1938                                                setup_pebs_fixed_sample_data);
1939                 }
1940         }
1941 }
1942 
1943 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs)
1944 {
1945         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1946         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1947         struct debug_store *ds = cpuc->ds;
1948         struct perf_event *event;
1949         void *base, *at, *top;
1950         int bit, size;
1951         u64 mask;
1952 
1953         if (!x86_pmu.pebs_active)
1954                 return;
1955 
1956         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
1957         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
1958 
1959         ds->pebs_index = ds->pebs_buffer_base;
1960 
1961         mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
1962                (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
1963         size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1964 
1965         if (unlikely(base >= top)) {
1966                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1967                 return;
1968         }
1969 
1970         for (at = base; at < top; at += cpuc->pebs_record_size) {
1971                 u64 pebs_status;
1972 
1973                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
1974                 pebs_status &= mask;
1975 
1976                 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1977                         counts[bit]++;
1978         }
1979 
1980         for_each_set_bit(bit, (unsigned long *)&mask, size) {
1981                 if (counts[bit] == 0)
1982                         continue;
1983 
1984                 event = cpuc->events[bit];
1985                 if (WARN_ON_ONCE(!event))
1986                         continue;
1987 
1988                 if (WARN_ON_ONCE(!event->attr.precise_ip))
1989                         continue;
1990 
1991                 __intel_pmu_pebs_event(event, iregs, base,
1992                                        top, bit, counts[bit],
1993                                        setup_pebs_adaptive_sample_data);
1994         }
1995 }
1996 
1997 /*
1998  * BTS, PEBS probe and setup
1999  */
2000 
2001 void __init intel_ds_init(void)
2002 {
2003         /*
2004          * No support for 32bit formats
2005          */
2006         if (!boot_cpu_has(X86_FEATURE_DTES64))
2007                 return;
2008 
2009         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2010         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2011         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2012         if (x86_pmu.version <= 4)
2013                 x86_pmu.pebs_no_isolation = 1;
2014 
2015         if (x86_pmu.pebs) {
2016                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2017                 char *pebs_qual = "";
2018                 int format = x86_pmu.intel_cap.pebs_format;
2019 
2020                 if (format < 4)
2021                         x86_pmu.intel_cap.pebs_baseline = 0;
2022 
2023                 switch (format) {
2024                 case 0:
2025                         pr_cont("PEBS fmt0%c, ", pebs_type);
2026                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2027                         /*
2028                          * Using >PAGE_SIZE buffers makes the WRMSR to
2029                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2030                          * mysteriously hang on Core2.
2031                          *
2032                          * As a workaround, we don't do this.
2033                          */
2034                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2035                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2036                         break;
2037 
2038                 case 1:
2039                         pr_cont("PEBS fmt1%c, ", pebs_type);
2040                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2041                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2042                         break;
2043 
2044                 case 2:
2045                         pr_cont("PEBS fmt2%c, ", pebs_type);
2046                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2047                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2048                         break;
2049 
2050                 case 3:
2051                         pr_cont("PEBS fmt3%c, ", pebs_type);
2052                         x86_pmu.pebs_record_size =
2053                                                 sizeof(struct pebs_record_skl);
2054                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2055                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2056                         break;
2057 
2058                 case 4:
2059                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2060                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2061                         if (x86_pmu.intel_cap.pebs_baseline) {
2062                                 x86_pmu.large_pebs_flags |=
2063                                         PERF_SAMPLE_BRANCH_STACK |
2064                                         PERF_SAMPLE_TIME;
2065                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2066                                 pebs_qual = "-baseline";
2067                                 x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2068                         } else {
2069                                 /* Only basic record supported */
2070                                 x86_pmu.large_pebs_flags &=
2071                                         ~(PERF_SAMPLE_ADDR |
2072                                           PERF_SAMPLE_TIME |
2073                                           PERF_SAMPLE_DATA_SRC |
2074                                           PERF_SAMPLE_TRANSACTION |
2075                                           PERF_SAMPLE_REGS_USER |
2076                                           PERF_SAMPLE_REGS_INTR);
2077                         }
2078                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2079 
2080                         if (x86_pmu.intel_cap.pebs_output_pt_available) {
2081                                 pr_cont("PEBS-via-PT, ");
2082                                 x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2083                         }
2084 
2085                         break;
2086 
2087                 default:
2088                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2089                         x86_pmu.pebs = 0;
2090                 }
2091         }
2092 }
2093 
2094 void perf_restore_debug_store(void)
2095 {
2096         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2097 
2098         if (!x86_pmu.bts && !x86_pmu.pebs)
2099                 return;
2100 
2101         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2102 }

/* [<][>][^][v][top][bottom][index][help] */