root/arch/riscv/kernel/perf_event.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. riscv_map_hw_event
  2. riscv_map_cache_decode
  3. riscv_map_cache_event
  4. read_counter
  5. write_counter
  6. riscv_pmu_read
  7. riscv_pmu_stop
  8. riscv_pmu_start
  9. riscv_pmu_add
  10. riscv_pmu_del
  11. riscv_base_pmu_handle_irq
  12. reserve_pmc_hardware
  13. release_pmc_hardware
  14. riscv_event_destroy
  15. riscv_event_init
  16. init_hw_perf_events

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   4  * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   5  * Copyright (C) 2009 Jaswinder Singh Rajput
   6  * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   7  * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
   8  * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
   9  * Copyright (C) 2009 Google, Inc., Stephane Eranian
  10  * Copyright 2014 Tilera Corporation. All Rights Reserved.
  11  * Copyright (C) 2018 Andes Technology Corporation
  12  *
  13  * Perf_events support for RISC-V platforms.
  14  *
  15  * Since the spec. (as of now, Priv-Spec 1.10) does not provide enough
  16  * functionality for perf event to fully work, this file provides
  17  * the very basic framework only.
  18  *
  19  * For platform portings, please check Documentations/riscv/pmu.txt.
  20  *
  21  * The Copyright line includes x86 and tile ones.
  22  */
  23 
  24 #include <linux/kprobes.h>
  25 #include <linux/kernel.h>
  26 #include <linux/kdebug.h>
  27 #include <linux/mutex.h>
  28 #include <linux/bitmap.h>
  29 #include <linux/irq.h>
  30 #include <linux/perf_event.h>
  31 #include <linux/atomic.h>
  32 #include <linux/of.h>
  33 #include <asm/perf_event.h>
  34 
  35 static const struct riscv_pmu *riscv_pmu __read_mostly;
  36 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  37 
  38 /*
  39  * Hardware & cache maps and their methods
  40  */
  41 
  42 static const int riscv_hw_event_map[] = {
  43         [PERF_COUNT_HW_CPU_CYCLES]              = RISCV_PMU_CYCLE,
  44         [PERF_COUNT_HW_INSTRUCTIONS]            = RISCV_PMU_INSTRET,
  45         [PERF_COUNT_HW_CACHE_REFERENCES]        = RISCV_OP_UNSUPP,
  46         [PERF_COUNT_HW_CACHE_MISSES]            = RISCV_OP_UNSUPP,
  47         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = RISCV_OP_UNSUPP,
  48         [PERF_COUNT_HW_BRANCH_MISSES]           = RISCV_OP_UNSUPP,
  49         [PERF_COUNT_HW_BUS_CYCLES]              = RISCV_OP_UNSUPP,
  50 };
  51 
  52 #define C(x) PERF_COUNT_HW_CACHE_##x
  53 static const int riscv_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
  54 [PERF_COUNT_HW_CACHE_OP_MAX]
  55 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  56         [C(L1D)] = {
  57                 [C(OP_READ)] = {
  58                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  59                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  60                 },
  61                 [C(OP_WRITE)] = {
  62                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  63                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  64                 },
  65                 [C(OP_PREFETCH)] = {
  66                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  67                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  68                 },
  69         },
  70         [C(L1I)] = {
  71                 [C(OP_READ)] = {
  72                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  73                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  74                 },
  75                 [C(OP_WRITE)] = {
  76                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  77                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  78                 },
  79                 [C(OP_PREFETCH)] = {
  80                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  81                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  82                 },
  83         },
  84         [C(LL)] = {
  85                 [C(OP_READ)] = {
  86                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  87                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  88                 },
  89                 [C(OP_WRITE)] = {
  90                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  91                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  92                 },
  93                 [C(OP_PREFETCH)] = {
  94                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
  95                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
  96                 },
  97         },
  98         [C(DTLB)] = {
  99                 [C(OP_READ)] = {
 100                         [C(RESULT_ACCESS)] =  RISCV_OP_UNSUPP,
 101                         [C(RESULT_MISS)] =  RISCV_OP_UNSUPP,
 102                 },
 103                 [C(OP_WRITE)] = {
 104                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 105                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 106                 },
 107                 [C(OP_PREFETCH)] = {
 108                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 109                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 110                 },
 111         },
 112         [C(ITLB)] = {
 113                 [C(OP_READ)] = {
 114                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 115                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 116                 },
 117                 [C(OP_WRITE)] = {
 118                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 119                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 120                 },
 121                 [C(OP_PREFETCH)] = {
 122                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 123                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 124                 },
 125         },
 126         [C(BPU)] = {
 127                 [C(OP_READ)] = {
 128                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 129                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 130                 },
 131                 [C(OP_WRITE)] = {
 132                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 133                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 134                 },
 135                 [C(OP_PREFETCH)] = {
 136                         [C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
 137                         [C(RESULT_MISS)] = RISCV_OP_UNSUPP,
 138                 },
 139         },
 140 };
 141 
 142 static int riscv_map_hw_event(u64 config)
 143 {
 144         if (config >= riscv_pmu->max_events)
 145                 return -EINVAL;
 146 
 147         return riscv_pmu->hw_events[config];
 148 }
 149 
 150 int riscv_map_cache_decode(u64 config, unsigned int *type,
 151                            unsigned int *op, unsigned int *result)
 152 {
 153         return -ENOENT;
 154 }
 155 
 156 static int riscv_map_cache_event(u64 config)
 157 {
 158         unsigned int type, op, result;
 159         int err = -ENOENT;
 160                 int code;
 161 
 162         err = riscv_map_cache_decode(config, &type, &op, &result);
 163         if (!riscv_pmu->cache_events || err)
 164                 return err;
 165 
 166         if (type >= PERF_COUNT_HW_CACHE_MAX ||
 167             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
 168             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 169                 return -EINVAL;
 170 
 171         code = (*riscv_pmu->cache_events)[type][op][result];
 172         if (code == RISCV_OP_UNSUPP)
 173                 return -EINVAL;
 174 
 175         return code;
 176 }
 177 
 178 /*
 179  * Low-level functions: reading/writing counters
 180  */
 181 
 182 static inline u64 read_counter(int idx)
 183 {
 184         u64 val = 0;
 185 
 186         switch (idx) {
 187         case RISCV_PMU_CYCLE:
 188                 val = csr_read(CSR_CYCLE);
 189                 break;
 190         case RISCV_PMU_INSTRET:
 191                 val = csr_read(CSR_INSTRET);
 192                 break;
 193         default:
 194                 WARN_ON_ONCE(idx < 0 || idx > RISCV_MAX_COUNTERS);
 195                 return -EINVAL;
 196         }
 197 
 198         return val;
 199 }
 200 
 201 static inline void write_counter(int idx, u64 value)
 202 {
 203         /* currently not supported */
 204         WARN_ON_ONCE(1);
 205 }
 206 
 207 /*
 208  * pmu->read: read and update the counter
 209  *
 210  * Other architectures' implementation often have a xxx_perf_event_update
 211  * routine, which can return counter values when called in the IRQ, but
 212  * return void when being called by the pmu->read method.
 213  */
 214 static void riscv_pmu_read(struct perf_event *event)
 215 {
 216         struct hw_perf_event *hwc = &event->hw;
 217         u64 prev_raw_count, new_raw_count;
 218         u64 oldval;
 219         int idx = hwc->idx;
 220         u64 delta;
 221 
 222         do {
 223                 prev_raw_count = local64_read(&hwc->prev_count);
 224                 new_raw_count = read_counter(idx);
 225 
 226                 oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 227                                          new_raw_count);
 228         } while (oldval != prev_raw_count);
 229 
 230         /*
 231          * delta is the value to update the counter we maintain in the kernel.
 232          */
 233         delta = (new_raw_count - prev_raw_count) &
 234                 ((1ULL << riscv_pmu->counter_width) - 1);
 235         local64_add(delta, &event->count);
 236         /*
 237          * Something like local64_sub(delta, &hwc->period_left) here is
 238          * needed if there is an interrupt for perf.
 239          */
 240 }
 241 
 242 /*
 243  * State transition functions:
 244  *
 245  * stop()/start() & add()/del()
 246  */
 247 
 248 /*
 249  * pmu->stop: stop the counter
 250  */
 251 static void riscv_pmu_stop(struct perf_event *event, int flags)
 252 {
 253         struct hw_perf_event *hwc = &event->hw;
 254 
 255         WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
 256         hwc->state |= PERF_HES_STOPPED;
 257 
 258         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
 259                 riscv_pmu->pmu->read(event);
 260                 hwc->state |= PERF_HES_UPTODATE;
 261         }
 262 }
 263 
 264 /*
 265  * pmu->start: start the event.
 266  */
 267 static void riscv_pmu_start(struct perf_event *event, int flags)
 268 {
 269         struct hw_perf_event *hwc = &event->hw;
 270 
 271         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
 272                 return;
 273 
 274         if (flags & PERF_EF_RELOAD) {
 275                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 276 
 277                 /*
 278                  * Set the counter to the period to the next interrupt here,
 279                  * if you have any.
 280                  */
 281         }
 282 
 283         hwc->state = 0;
 284         perf_event_update_userpage(event);
 285 
 286         /*
 287          * Since we cannot write to counters, this serves as an initialization
 288          * to the delta-mechanism in pmu->read(); otherwise, the delta would be
 289          * wrong when pmu->read is called for the first time.
 290          */
 291         local64_set(&hwc->prev_count, read_counter(hwc->idx));
 292 }
 293 
 294 /*
 295  * pmu->add: add the event to PMU.
 296  */
 297 static int riscv_pmu_add(struct perf_event *event, int flags)
 298 {
 299         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 300         struct hw_perf_event *hwc = &event->hw;
 301 
 302         if (cpuc->n_events == riscv_pmu->num_counters)
 303                 return -ENOSPC;
 304 
 305         /*
 306          * We don't have general conunters, so no binding-event-to-counter
 307          * process here.
 308          *
 309          * Indexing using hwc->config generally not works, since config may
 310          * contain extra information, but here the only info we have in
 311          * hwc->config is the event index.
 312          */
 313         hwc->idx = hwc->config;
 314         cpuc->events[hwc->idx] = event;
 315         cpuc->n_events++;
 316 
 317         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
 318 
 319         if (flags & PERF_EF_START)
 320                 riscv_pmu->pmu->start(event, PERF_EF_RELOAD);
 321 
 322         return 0;
 323 }
 324 
 325 /*
 326  * pmu->del: delete the event from PMU.
 327  */
 328 static void riscv_pmu_del(struct perf_event *event, int flags)
 329 {
 330         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 331         struct hw_perf_event *hwc = &event->hw;
 332 
 333         cpuc->events[hwc->idx] = NULL;
 334         cpuc->n_events--;
 335         riscv_pmu->pmu->stop(event, PERF_EF_UPDATE);
 336         perf_event_update_userpage(event);
 337 }
 338 
 339 /*
 340  * Interrupt: a skeletion for reference.
 341  */
 342 
 343 static DEFINE_MUTEX(pmc_reserve_mutex);
 344 
 345 irqreturn_t riscv_base_pmu_handle_irq(int irq_num, void *dev)
 346 {
 347         return IRQ_NONE;
 348 }
 349 
 350 static int reserve_pmc_hardware(void)
 351 {
 352         int err = 0;
 353 
 354         mutex_lock(&pmc_reserve_mutex);
 355         if (riscv_pmu->irq >= 0 && riscv_pmu->handle_irq) {
 356                 err = request_irq(riscv_pmu->irq, riscv_pmu->handle_irq,
 357                                   IRQF_PERCPU, "riscv-base-perf", NULL);
 358         }
 359         mutex_unlock(&pmc_reserve_mutex);
 360 
 361         return err;
 362 }
 363 
 364 void release_pmc_hardware(void)
 365 {
 366         mutex_lock(&pmc_reserve_mutex);
 367         if (riscv_pmu->irq >= 0)
 368                 free_irq(riscv_pmu->irq, NULL);
 369         mutex_unlock(&pmc_reserve_mutex);
 370 }
 371 
 372 /*
 373  * Event Initialization/Finalization
 374  */
 375 
 376 static atomic_t riscv_active_events = ATOMIC_INIT(0);
 377 
 378 static void riscv_event_destroy(struct perf_event *event)
 379 {
 380         if (atomic_dec_return(&riscv_active_events) == 0)
 381                 release_pmc_hardware();
 382 }
 383 
 384 static int riscv_event_init(struct perf_event *event)
 385 {
 386         struct perf_event_attr *attr = &event->attr;
 387         struct hw_perf_event *hwc = &event->hw;
 388         int err;
 389         int code;
 390 
 391         if (atomic_inc_return(&riscv_active_events) == 1) {
 392                 err = reserve_pmc_hardware();
 393 
 394                 if (err) {
 395                         pr_warn("PMC hardware not available\n");
 396                         atomic_dec(&riscv_active_events);
 397                         return -EBUSY;
 398                 }
 399         }
 400 
 401         switch (event->attr.type) {
 402         case PERF_TYPE_HARDWARE:
 403                 code = riscv_pmu->map_hw_event(attr->config);
 404                 break;
 405         case PERF_TYPE_HW_CACHE:
 406                 code = riscv_pmu->map_cache_event(attr->config);
 407                 break;
 408         case PERF_TYPE_RAW:
 409                 return -EOPNOTSUPP;
 410         default:
 411                 return -ENOENT;
 412         }
 413 
 414         event->destroy = riscv_event_destroy;
 415         if (code < 0) {
 416                 event->destroy(event);
 417                 return code;
 418         }
 419 
 420         /*
 421          * idx is set to -1 because the index of a general event should not be
 422          * decided until binding to some counter in pmu->add().
 423          *
 424          * But since we don't have such support, later in pmu->add(), we just
 425          * use hwc->config as the index instead.
 426          */
 427         hwc->config = code;
 428         hwc->idx = -1;
 429 
 430         return 0;
 431 }
 432 
 433 /*
 434  * Initialization
 435  */
 436 
 437 static struct pmu min_pmu = {
 438         .name           = "riscv-base",
 439         .event_init     = riscv_event_init,
 440         .add            = riscv_pmu_add,
 441         .del            = riscv_pmu_del,
 442         .start          = riscv_pmu_start,
 443         .stop           = riscv_pmu_stop,
 444         .read           = riscv_pmu_read,
 445 };
 446 
 447 static const struct riscv_pmu riscv_base_pmu = {
 448         .pmu = &min_pmu,
 449         .max_events = ARRAY_SIZE(riscv_hw_event_map),
 450         .map_hw_event = riscv_map_hw_event,
 451         .hw_events = riscv_hw_event_map,
 452         .map_cache_event = riscv_map_cache_event,
 453         .cache_events = &riscv_cache_event_map,
 454         .counter_width = 63,
 455         .num_counters = RISCV_BASE_COUNTERS + 0,
 456         .handle_irq = &riscv_base_pmu_handle_irq,
 457 
 458         /* This means this PMU has no IRQ. */
 459         .irq = -1,
 460 };
 461 
 462 static const struct of_device_id riscv_pmu_of_ids[] = {
 463         {.compatible = "riscv,base-pmu",        .data = &riscv_base_pmu},
 464         { /* sentinel value */ }
 465 };
 466 
 467 int __init init_hw_perf_events(void)
 468 {
 469         struct device_node *node = of_find_node_by_type(NULL, "pmu");
 470         const struct of_device_id *of_id;
 471 
 472         riscv_pmu = &riscv_base_pmu;
 473 
 474         if (node) {
 475                 of_id = of_match_node(riscv_pmu_of_ids, node);
 476 
 477                 if (of_id)
 478                         riscv_pmu = of_id->data;
 479                 of_node_put(node);
 480         }
 481 
 482         perf_pmu_register(riscv_pmu->pmu, "cpu", PERF_TYPE_RAW);
 483         return 0;
 484 }
 485 arch_initcall(init_hw_perf_events);

/* [<][>][^][v][top][bottom][index][help] */