This source file includes following definitions.
- get_step_address
- do_single_step
- undo_single_step
- dbg_set_reg
- dbg_get_reg
- sleeping_thread_to_gdb_regs
- kgdb_arch_handle_exception
- kgdb_arch_pc
- kgdb_arch_set_pc
- BUILD_TRAP_HANDLER
- __kgdb_notify
- kgdb_notify
- kgdb_arch_init
- kgdb_arch_exit
1
2
3
4
5
6
7
8
9 #include <linux/kgdb.h>
10 #include <linux/kdebug.h>
11 #include <linux/irq.h>
12 #include <linux/io.h>
13 #include <linux/sched.h>
14 #include <linux/sched/task_stack.h>
15
16 #include <asm/cacheflush.h>
17 #include <asm/traps.h>
18
19
20 #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
21 #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
22 #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
23 (((op) & 0x7f ) << 1))
24 #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
25 #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
26 #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
27 #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
28 (((op) & 0x7ff) << 1))
29 #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
30 #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
31 #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
32 #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
33 (((op) & 0x7ff) << 1))
34 #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
35 #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
36 #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
37 #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
38 #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
39 #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
40 #define OPCODE_RTS(op) ((op) == 0xb)
41 #define OPCODE_RTE(op) ((op) == 0x2b)
42
43 #define SR_T_BIT_MASK 0x1
44 #define STEP_OPCODE 0xc33d
45
46
47 static short *get_step_address(struct pt_regs *linux_regs)
48 {
49 insn_size_t op = __raw_readw(linux_regs->pc);
50 long addr;
51
52
53 if (OPCODE_BT(op)) {
54 if (linux_regs->sr & SR_T_BIT_MASK)
55 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
56 else
57 addr = linux_regs->pc + 2;
58 }
59
60
61 else if (OPCODE_BTS(op)) {
62 if (linux_regs->sr & SR_T_BIT_MASK)
63 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
64 else
65 addr = linux_regs->pc + 4;
66 }
67
68
69 else if (OPCODE_BF(op)) {
70 if (!(linux_regs->sr & SR_T_BIT_MASK))
71 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
72 else
73 addr = linux_regs->pc + 2;
74 }
75
76
77 else if (OPCODE_BFS(op)) {
78 if (!(linux_regs->sr & SR_T_BIT_MASK))
79 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
80 else
81 addr = linux_regs->pc + 4;
82 }
83
84
85 else if (OPCODE_BRA(op))
86 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
87
88
89 else if (OPCODE_BRAF(op))
90 addr = linux_regs->pc + 4
91 + linux_regs->regs[OPCODE_BRAF_REG(op)];
92
93
94 else if (OPCODE_BSR(op))
95 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
96
97
98 else if (OPCODE_BSRF(op))
99 addr = linux_regs->pc + 4
100 + linux_regs->regs[OPCODE_BSRF_REG(op)];
101
102
103 else if (OPCODE_JMP(op))
104 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
105
106
107 else if (OPCODE_JSR(op))
108 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
109
110
111 else if (OPCODE_RTS(op))
112 addr = linux_regs->pr;
113
114
115 else if (OPCODE_RTE(op))
116 addr = linux_regs->regs[15];
117
118
119 else
120 addr = linux_regs->pc + instruction_size(op);
121
122 flush_icache_range(addr, addr + instruction_size(op));
123 return (short *)addr;
124 }
125
126
127
128
129
130
131
132
133
134
135 static unsigned long stepped_address;
136 static insn_size_t stepped_opcode;
137
138 static void do_single_step(struct pt_regs *linux_regs)
139 {
140
141 unsigned short *addr = get_step_address(linux_regs);
142
143 stepped_address = (int)addr;
144
145
146 stepped_opcode = __raw_readw((long)addr);
147 *addr = STEP_OPCODE;
148
149
150 flush_icache_range((long)addr, (long)addr +
151 instruction_size(stepped_opcode));
152 }
153
154
155 static void undo_single_step(struct pt_regs *linux_regs)
156 {
157
158
159 if (stepped_opcode != 0) {
160 __raw_writew(stepped_opcode, stepped_address);
161 flush_icache_range(stepped_address, stepped_address + 2);
162 }
163
164 stepped_opcode = 0;
165 }
166
167 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
168 { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
169 { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
170 { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
171 { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
172 { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
173 { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
174 { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
175 { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
176 { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
177 { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
178 { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
179 { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
180 { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
181 { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
182 { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
183 { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
184 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
185 { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
186 { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
187 { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
188 { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
189 { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
190 { "vbr", GDB_SIZEOF_REG, -1 },
191 };
192
193 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
194 {
195 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
196 return -EINVAL;
197
198 if (dbg_reg_def[regno].offset != -1)
199 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
200 dbg_reg_def[regno].size);
201
202 return 0;
203 }
204
205 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
206 {
207 if (regno >= DBG_MAX_REG_NUM || regno < 0)
208 return NULL;
209
210 if (dbg_reg_def[regno].size != -1)
211 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
212 dbg_reg_def[regno].size);
213
214 switch (regno) {
215 case GDB_VBR:
216 __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
217 break;
218 }
219
220 return dbg_reg_def[regno].name;
221 }
222
223 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
224 {
225 struct pt_regs *thread_regs = task_pt_regs(p);
226 int reg;
227
228
229 for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
230 gdb_regs[reg] = 0;
231
232
233
234
235
236
237
238
239 for (reg = GDB_R8; reg < GDB_R15; reg++)
240 gdb_regs[reg] = thread_regs->regs[reg];
241
242 gdb_regs[GDB_R15] = p->thread.sp;
243 gdb_regs[GDB_PC] = p->thread.pc;
244
245
246
247
248 gdb_regs[GDB_PR] = thread_regs->pr;
249 gdb_regs[GDB_GBR] = thread_regs->gbr;
250 }
251
252 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
253 char *remcomInBuffer, char *remcomOutBuffer,
254 struct pt_regs *linux_regs)
255 {
256 unsigned long addr;
257 char *ptr;
258
259
260 undo_single_step(linux_regs);
261
262 switch (remcomInBuffer[0]) {
263 case 'c':
264 case 's':
265
266 ptr = &remcomInBuffer[1];
267 if (kgdb_hex2long(&ptr, &addr))
268 linux_regs->pc = addr;
269 case 'D':
270 case 'k':
271 atomic_set(&kgdb_cpu_doing_single_step, -1);
272
273 if (remcomInBuffer[0] == 's') {
274 do_single_step(linux_regs);
275 kgdb_single_step = 1;
276
277 atomic_set(&kgdb_cpu_doing_single_step,
278 raw_smp_processor_id());
279 }
280
281 return 0;
282 }
283
284
285 return -1;
286 }
287
288 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
289 {
290 if (exception == 60)
291 return instruction_pointer(regs) - 2;
292 return instruction_pointer(regs);
293 }
294
295 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
296 {
297 regs->pc = ip;
298 }
299
300
301
302
303 BUILD_TRAP_HANDLER(singlestep)
304 {
305 unsigned long flags;
306 TRAP_HANDLER_DECL;
307
308 local_irq_save(flags);
309 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
310 kgdb_handle_exception(0, SIGTRAP, 0, regs);
311 local_irq_restore(flags);
312 }
313
314 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
315 {
316 int ret;
317
318 switch (cmd) {
319 case DIE_BREAKPOINT:
320
321
322
323
324 if (test_thread_flag(TIF_SINGLESTEP))
325 return NOTIFY_DONE;
326
327 ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
328 args->err, args->regs);
329 if (ret)
330 return NOTIFY_DONE;
331
332 break;
333 }
334
335 return NOTIFY_STOP;
336 }
337
338 static int
339 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
340 {
341 unsigned long flags;
342 int ret;
343
344 local_irq_save(flags);
345 ret = __kgdb_notify(ptr, cmd);
346 local_irq_restore(flags);
347
348 return ret;
349 }
350
351 static struct notifier_block kgdb_notifier = {
352 .notifier_call = kgdb_notify,
353
354
355
356
357 .priority = -INT_MAX,
358 };
359
360 int kgdb_arch_init(void)
361 {
362 return register_die_notifier(&kgdb_notifier);
363 }
364
365 void kgdb_arch_exit(void)
366 {
367 unregister_die_notifier(&kgdb_notifier);
368 }
369
370 const struct kgdb_arch arch_kgdb_ops = {
371
372 #ifdef CONFIG_CPU_LITTLE_ENDIAN
373 .gdb_bpt_instr = { 0x3c, 0xc3 },
374 #else
375 .gdb_bpt_instr = { 0xc3, 0x3c },
376 #endif
377 };