1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * This file contains the routines for handling the MMU on those 4 * PowerPC implementations where the MMU substantially follows the 5 * architecture specification. This includes the 6xx, 7xx, 7xxx, 6 * and 8260 implementations but excludes the 8xx and 4xx. 7 * -- paulus 8 * 9 * Derived from arch/ppc/mm/init.c: 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 * 12 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 13 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 14 * Copyright (C) 1996 Paul Mackerras 15 * 16 * Derived from "arch/i386/mm/init.c" 17 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 18 */ 19 20 #include <linux/mm.h> 21 #include <linux/init.h> 22 #include <linux/export.h> 23 24 #include <asm/mmu_context.h> 25 26 /* 27 * On 32-bit PowerPC 6xx/7xx/7xxx CPUs, we use a set of 16 VSIDs 28 * (virtual segment identifiers) for each context. Although the 29 * hardware supports 24-bit VSIDs, and thus >1 million contexts, 30 * we only use 32,768 of them. That is ample, since there can be 31 * at most around 30,000 tasks in the system anyway, and it means 32 * that we can use a bitmap to indicate which contexts are in use. 33 * Using a bitmap means that we entirely avoid all of the problems 34 * that we used to have when the context number overflowed, 35 * particularly on SMP systems. 36 * -- paulus. 37 */ 38 #define NO_CONTEXT ((unsigned long) -1) 39 #define LAST_CONTEXT 32767 40 #define FIRST_CONTEXT 1 41 42 /* 43 * This function defines the mapping from contexts to VSIDs (virtual 44 * segment IDs). We use a skew on both the context and the high 4 bits 45 * of the 32-bit virtual address (the "effective segment ID") in order 46 * to spread out the entries in the MMU hash table. Note, if this 47 * function is changed then arch/ppc/mm/hashtable.S will have to be 48 * changed to correspond. 49 * 50 * 51 * CTX_TO_VSID(ctx, va) (((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \ 52 * & 0xffffff) 53 */ 54 55 static unsigned long next_mmu_context; 56 static unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1]; 57 58 unsigned long __init_new_context(void) 59 { 60 unsigned long ctx = next_mmu_context; 61 62 while (test_and_set_bit(ctx, context_map)) { 63 ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx); 64 if (ctx > LAST_CONTEXT) 65 ctx = 0; 66 } 67 next_mmu_context = (ctx + 1) & LAST_CONTEXT; 68 69 return ctx; 70 } 71 EXPORT_SYMBOL_GPL(__init_new_context); 72 73 /* 74 * Set up the context for a new address space. 75 */ 76 int init_new_context(struct task_struct *t, struct mm_struct *mm) 77 { 78 mm->context.id = __init_new_context(); 79 80 return 0; 81 } 82 83 /* 84 * Free a context ID. Make sure to call this with preempt disabled! 85 */ 86 void __destroy_context(unsigned long ctx) 87 { 88 clear_bit(ctx, context_map); 89 } 90 EXPORT_SYMBOL_GPL(__destroy_context); 91 92 /* 93 * We're finished using the context for an address space. 94 */ 95 void destroy_context(struct mm_struct *mm) 96 { 97 preempt_disable(); 98 if (mm->context.id != NO_CONTEXT) { 99 __destroy_context(mm->context.id); 100 mm->context.id = NO_CONTEXT; 101 } 102 preempt_enable(); 103 } 104 105 /* 106 * Initialize the context management stuff. 107 */ 108 void __init mmu_context_init(void) 109 { 110 /* Reserve context 0 for kernel use */ 111 context_map[0] = (1 << FIRST_CONTEXT) - 1; 112 next_mmu_context = FIRST_CONTEXT; 113 }