root/arch/powerpc/mm/book3s64/hash_utils.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. htab_convert_pte_flags
  2. htab_bolt_mapping
  3. htab_remove_mapping
  4. parse_disable_1tb_segments
  5. htab_dt_scan_seg_sizes
  6. get_idx_from_shift
  7. htab_dt_scan_page_sizes
  8. htab_dt_scan_hugepage_blocks
  9. mmu_psize_set_default_penc
  10. might_have_hea
  11. htab_scan_page_sizes
  12. init_hpte_page_sizes
  13. htab_init_page_sizes
  14. htab_dt_scan_pftsize
  15. htab_shift_for_mem_size
  16. htab_get_table_size
  17. resize_hpt_for_hotplug
  18. hash__create_section_mapping
  19. hash__remove_section_mapping
  20. hash_init_partition_table
  21. htab_initialize
  22. hash__early_init_devtree
  23. hash__early_init_mmu
  24. hash__early_init_mmu_secondary
  25. hash_page_do_lazy_icache
  26. get_paca_psize
  27. get_paca_psize
  28. demote_segment_4k
  29. subpage_protection
  30. subpage_protection
  31. hash_failure_debug
  32. check_paca_psize
  33. hash_page_mm
  34. hash_page
  35. __hash_page
  36. should_hash_preload
  37. should_hash_preload
  38. hash_preload
  39. update_mmu_cache
  40. get_mm_addr_key
  41. tm_flush_hash_page
  42. tm_flush_hash_page
  43. pte_get_hash_gslot
  44. flush_hash_page
  45. flush_hash_hugepage
  46. flush_hash_range
  47. low_hash_fault
  48. hpte_insert_repeating
  49. kernel_map_linear_page
  50. kernel_unmap_linear_page
  51. __kernel_map_pages
  52. hash__setup_initial_memory_limit
  53. hpt_order_get
  54. hpt_order_set
  55. hash64_debugfs
  56. print_system_hash_info

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   4  *   {mikejc|engebret}@us.ibm.com
   5  *
   6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   7  *
   8  * SMP scalability work:
   9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  10  * 
  11  *    Module name: htab.c
  12  *
  13  *    Description:
  14  *      PowerPC Hashed Page Table functions
  15  */
  16 
  17 #undef DEBUG
  18 #undef DEBUG_LOW
  19 
  20 #define pr_fmt(fmt) "hash-mmu: " fmt
  21 #include <linux/spinlock.h>
  22 #include <linux/errno.h>
  23 #include <linux/sched/mm.h>
  24 #include <linux/proc_fs.h>
  25 #include <linux/stat.h>
  26 #include <linux/sysctl.h>
  27 #include <linux/export.h>
  28 #include <linux/ctype.h>
  29 #include <linux/cache.h>
  30 #include <linux/init.h>
  31 #include <linux/signal.h>
  32 #include <linux/memblock.h>
  33 #include <linux/context_tracking.h>
  34 #include <linux/libfdt.h>
  35 #include <linux/pkeys.h>
  36 #include <linux/hugetlb.h>
  37 #include <linux/cpu.h>
  38 
  39 #include <asm/debugfs.h>
  40 #include <asm/processor.h>
  41 #include <asm/pgtable.h>
  42 #include <asm/mmu.h>
  43 #include <asm/mmu_context.h>
  44 #include <asm/page.h>
  45 #include <asm/types.h>
  46 #include <linux/uaccess.h>
  47 #include <asm/machdep.h>
  48 #include <asm/prom.h>
  49 #include <asm/io.h>
  50 #include <asm/eeh.h>
  51 #include <asm/tlb.h>
  52 #include <asm/cacheflush.h>
  53 #include <asm/cputable.h>
  54 #include <asm/sections.h>
  55 #include <asm/copro.h>
  56 #include <asm/udbg.h>
  57 #include <asm/code-patching.h>
  58 #include <asm/fadump.h>
  59 #include <asm/firmware.h>
  60 #include <asm/tm.h>
  61 #include <asm/trace.h>
  62 #include <asm/ps3.h>
  63 #include <asm/pte-walk.h>
  64 #include <asm/asm-prototypes.h>
  65 #include <asm/ultravisor.h>
  66 
  67 #include <mm/mmu_decl.h>
  68 
  69 #ifdef DEBUG
  70 #define DBG(fmt...) udbg_printf(fmt)
  71 #else
  72 #define DBG(fmt...)
  73 #endif
  74 
  75 #ifdef DEBUG_LOW
  76 #define DBG_LOW(fmt...) udbg_printf(fmt)
  77 #else
  78 #define DBG_LOW(fmt...)
  79 #endif
  80 
  81 #define KB (1024)
  82 #define MB (1024*KB)
  83 #define GB (1024L*MB)
  84 
  85 /*
  86  * Note:  pte   --> Linux PTE
  87  *        HPTE  --> PowerPC Hashed Page Table Entry
  88  *
  89  * Execution context:
  90  *   htab_initialize is called with the MMU off (of course), but
  91  *   the kernel has been copied down to zero so it can directly
  92  *   reference global data.  At this point it is very difficult
  93  *   to print debug info.
  94  *
  95  */
  96 
  97 static unsigned long _SDR1;
  98 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  99 EXPORT_SYMBOL_GPL(mmu_psize_defs);
 100 
 101 u8 hpte_page_sizes[1 << LP_BITS];
 102 EXPORT_SYMBOL_GPL(hpte_page_sizes);
 103 
 104 struct hash_pte *htab_address;
 105 unsigned long htab_size_bytes;
 106 unsigned long htab_hash_mask;
 107 EXPORT_SYMBOL_GPL(htab_hash_mask);
 108 int mmu_linear_psize = MMU_PAGE_4K;
 109 EXPORT_SYMBOL_GPL(mmu_linear_psize);
 110 int mmu_virtual_psize = MMU_PAGE_4K;
 111 int mmu_vmalloc_psize = MMU_PAGE_4K;
 112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
 113 int mmu_vmemmap_psize = MMU_PAGE_4K;
 114 #endif
 115 int mmu_io_psize = MMU_PAGE_4K;
 116 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 117 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
 118 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 119 u16 mmu_slb_size = 64;
 120 EXPORT_SYMBOL_GPL(mmu_slb_size);
 121 #ifdef CONFIG_PPC_64K_PAGES
 122 int mmu_ci_restrictions;
 123 #endif
 124 #ifdef CONFIG_DEBUG_PAGEALLOC
 125 static u8 *linear_map_hash_slots;
 126 static unsigned long linear_map_hash_count;
 127 static DEFINE_SPINLOCK(linear_map_hash_lock);
 128 #endif /* CONFIG_DEBUG_PAGEALLOC */
 129 struct mmu_hash_ops mmu_hash_ops;
 130 EXPORT_SYMBOL(mmu_hash_ops);
 131 
 132 /*
 133  * These are definitions of page sizes arrays to be used when none
 134  * is provided by the firmware.
 135  */
 136 
 137 /*
 138  * Fallback (4k pages only)
 139  */
 140 static struct mmu_psize_def mmu_psize_defaults[] = {
 141         [MMU_PAGE_4K] = {
 142                 .shift  = 12,
 143                 .sllp   = 0,
 144                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 145                 .avpnm  = 0,
 146                 .tlbiel = 0,
 147         },
 148 };
 149 
 150 /*
 151  * POWER4, GPUL, POWER5
 152  *
 153  * Support for 16Mb large pages
 154  */
 155 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 156         [MMU_PAGE_4K] = {
 157                 .shift  = 12,
 158                 .sllp   = 0,
 159                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 160                 .avpnm  = 0,
 161                 .tlbiel = 1,
 162         },
 163         [MMU_PAGE_16M] = {
 164                 .shift  = 24,
 165                 .sllp   = SLB_VSID_L,
 166                 .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 167                             [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 168                 .avpnm  = 0x1UL,
 169                 .tlbiel = 0,
 170         },
 171 };
 172 
 173 /*
 174  * 'R' and 'C' update notes:
 175  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
 176  *     create writeable HPTEs without C set, because the hcall H_PROTECT
 177  *     that we use in that case will not update C
 178  *  - The above is however not a problem, because we also don't do that
 179  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
 180  *     do the right thing and thus we don't have the race I described earlier
 181  *
 182  *    - Under bare metal,  we do have the race, so we need R and C set
 183  *    - We make sure R is always set and never lost
 184  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
 185  */
 186 unsigned long htab_convert_pte_flags(unsigned long pteflags)
 187 {
 188         unsigned long rflags = 0;
 189 
 190         /* _PAGE_EXEC -> NOEXEC */
 191         if ((pteflags & _PAGE_EXEC) == 0)
 192                 rflags |= HPTE_R_N;
 193         /*
 194          * PPP bits:
 195          * Linux uses slb key 0 for kernel and 1 for user.
 196          * kernel RW areas are mapped with PPP=0b000
 197          * User area is mapped with PPP=0b010 for read/write
 198          * or PPP=0b011 for read-only (including writeable but clean pages).
 199          */
 200         if (pteflags & _PAGE_PRIVILEGED) {
 201                 /*
 202                  * Kernel read only mapped with ppp bits 0b110
 203                  */
 204                 if (!(pteflags & _PAGE_WRITE)) {
 205                         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
 206                                 rflags |= (HPTE_R_PP0 | 0x2);
 207                         else
 208                                 rflags |= 0x3;
 209                 }
 210         } else {
 211                 if (pteflags & _PAGE_RWX)
 212                         rflags |= 0x2;
 213                 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
 214                         rflags |= 0x1;
 215         }
 216         /*
 217          * We can't allow hardware to update hpte bits. Hence always
 218          * set 'R' bit and set 'C' if it is a write fault
 219          */
 220         rflags |=  HPTE_R_R;
 221 
 222         if (pteflags & _PAGE_DIRTY)
 223                 rflags |= HPTE_R_C;
 224         /*
 225          * Add in WIG bits
 226          */
 227 
 228         if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
 229                 rflags |= HPTE_R_I;
 230         else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
 231                 rflags |= (HPTE_R_I | HPTE_R_G);
 232         else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
 233                 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
 234         else
 235                 /*
 236                  * Add memory coherence if cache inhibited is not set
 237                  */
 238                 rflags |= HPTE_R_M;
 239 
 240         rflags |= pte_to_hpte_pkey_bits(pteflags);
 241         return rflags;
 242 }
 243 
 244 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 245                       unsigned long pstart, unsigned long prot,
 246                       int psize, int ssize)
 247 {
 248         unsigned long vaddr, paddr;
 249         unsigned int step, shift;
 250         int ret = 0;
 251 
 252         shift = mmu_psize_defs[psize].shift;
 253         step = 1 << shift;
 254 
 255         prot = htab_convert_pte_flags(prot);
 256 
 257         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 258             vstart, vend, pstart, prot, psize, ssize);
 259 
 260         for (vaddr = vstart, paddr = pstart; vaddr < vend;
 261              vaddr += step, paddr += step) {
 262                 unsigned long hash, hpteg;
 263                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 264                 unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 265                 unsigned long tprot = prot;
 266 
 267                 /*
 268                  * If we hit a bad address return error.
 269                  */
 270                 if (!vsid)
 271                         return -1;
 272                 /* Make kernel text executable */
 273                 if (overlaps_kernel_text(vaddr, vaddr + step))
 274                         tprot &= ~HPTE_R_N;
 275 
 276                 /*
 277                  * If relocatable, check if it overlaps interrupt vectors that
 278                  * are copied down to real 0. For relocatable kernel
 279                  * (e.g. kdump case) we copy interrupt vectors down to real
 280                  * address 0. Mark that region as executable. This is
 281                  * because on p8 system with relocation on exception feature
 282                  * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
 283                  * in order to execute the interrupt handlers in virtual
 284                  * mode the vector region need to be marked as executable.
 285                  */
 286                 if ((PHYSICAL_START > MEMORY_START) &&
 287                         overlaps_interrupt_vector_text(vaddr, vaddr + step))
 288                                 tprot &= ~HPTE_R_N;
 289 
 290                 hash = hpt_hash(vpn, shift, ssize);
 291                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 292 
 293                 BUG_ON(!mmu_hash_ops.hpte_insert);
 294                 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 295                                                HPTE_V_BOLTED, psize, psize,
 296                                                ssize);
 297                 if (ret == -1) {
 298                         /* Try to remove a non bolted entry */
 299                         ret = mmu_hash_ops.hpte_remove(hpteg);
 300                         if (ret != -1)
 301                                 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 302                                                                HPTE_V_BOLTED, psize, psize,
 303                                                                ssize);
 304                 }
 305                 if (ret < 0)
 306                         break;
 307 
 308                 cond_resched();
 309 #ifdef CONFIG_DEBUG_PAGEALLOC
 310                 if (debug_pagealloc_enabled() &&
 311                         (paddr >> PAGE_SHIFT) < linear_map_hash_count)
 312                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 313 #endif /* CONFIG_DEBUG_PAGEALLOC */
 314         }
 315         return ret < 0 ? ret : 0;
 316 }
 317 
 318 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 319                       int psize, int ssize)
 320 {
 321         unsigned long vaddr;
 322         unsigned int step, shift;
 323         int rc;
 324         int ret = 0;
 325 
 326         shift = mmu_psize_defs[psize].shift;
 327         step = 1 << shift;
 328 
 329         if (!mmu_hash_ops.hpte_removebolted)
 330                 return -ENODEV;
 331 
 332         for (vaddr = vstart; vaddr < vend; vaddr += step) {
 333                 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
 334                 if (rc == -ENOENT) {
 335                         ret = -ENOENT;
 336                         continue;
 337                 }
 338                 if (rc < 0)
 339                         return rc;
 340         }
 341 
 342         return ret;
 343 }
 344 
 345 static bool disable_1tb_segments = false;
 346 
 347 static int __init parse_disable_1tb_segments(char *p)
 348 {
 349         disable_1tb_segments = true;
 350         return 0;
 351 }
 352 early_param("disable_1tb_segments", parse_disable_1tb_segments);
 353 
 354 static int __init htab_dt_scan_seg_sizes(unsigned long node,
 355                                          const char *uname, int depth,
 356                                          void *data)
 357 {
 358         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 359         const __be32 *prop;
 360         int size = 0;
 361 
 362         /* We are scanning "cpu" nodes only */
 363         if (type == NULL || strcmp(type, "cpu") != 0)
 364                 return 0;
 365 
 366         prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
 367         if (prop == NULL)
 368                 return 0;
 369         for (; size >= 4; size -= 4, ++prop) {
 370                 if (be32_to_cpu(prop[0]) == 40) {
 371                         DBG("1T segment support detected\n");
 372 
 373                         if (disable_1tb_segments) {
 374                                 DBG("1T segments disabled by command line\n");
 375                                 break;
 376                         }
 377 
 378                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 379                         return 1;
 380                 }
 381         }
 382         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 383         return 0;
 384 }
 385 
 386 static int __init get_idx_from_shift(unsigned int shift)
 387 {
 388         int idx = -1;
 389 
 390         switch (shift) {
 391         case 0xc:
 392                 idx = MMU_PAGE_4K;
 393                 break;
 394         case 0x10:
 395                 idx = MMU_PAGE_64K;
 396                 break;
 397         case 0x14:
 398                 idx = MMU_PAGE_1M;
 399                 break;
 400         case 0x18:
 401                 idx = MMU_PAGE_16M;
 402                 break;
 403         case 0x22:
 404                 idx = MMU_PAGE_16G;
 405                 break;
 406         }
 407         return idx;
 408 }
 409 
 410 static int __init htab_dt_scan_page_sizes(unsigned long node,
 411                                           const char *uname, int depth,
 412                                           void *data)
 413 {
 414         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 415         const __be32 *prop;
 416         int size = 0;
 417 
 418         /* We are scanning "cpu" nodes only */
 419         if (type == NULL || strcmp(type, "cpu") != 0)
 420                 return 0;
 421 
 422         prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
 423         if (!prop)
 424                 return 0;
 425 
 426         pr_info("Page sizes from device-tree:\n");
 427         size /= 4;
 428         cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 429         while(size > 0) {
 430                 unsigned int base_shift = be32_to_cpu(prop[0]);
 431                 unsigned int slbenc = be32_to_cpu(prop[1]);
 432                 unsigned int lpnum = be32_to_cpu(prop[2]);
 433                 struct mmu_psize_def *def;
 434                 int idx, base_idx;
 435 
 436                 size -= 3; prop += 3;
 437                 base_idx = get_idx_from_shift(base_shift);
 438                 if (base_idx < 0) {
 439                         /* skip the pte encoding also */
 440                         prop += lpnum * 2; size -= lpnum * 2;
 441                         continue;
 442                 }
 443                 def = &mmu_psize_defs[base_idx];
 444                 if (base_idx == MMU_PAGE_16M)
 445                         cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 446 
 447                 def->shift = base_shift;
 448                 if (base_shift <= 23)
 449                         def->avpnm = 0;
 450                 else
 451                         def->avpnm = (1 << (base_shift - 23)) - 1;
 452                 def->sllp = slbenc;
 453                 /*
 454                  * We don't know for sure what's up with tlbiel, so
 455                  * for now we only set it for 4K and 64K pages
 456                  */
 457                 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 458                         def->tlbiel = 1;
 459                 else
 460                         def->tlbiel = 0;
 461 
 462                 while (size > 0 && lpnum) {
 463                         unsigned int shift = be32_to_cpu(prop[0]);
 464                         int penc  = be32_to_cpu(prop[1]);
 465 
 466                         prop += 2; size -= 2;
 467                         lpnum--;
 468 
 469                         idx = get_idx_from_shift(shift);
 470                         if (idx < 0)
 471                                 continue;
 472 
 473                         if (penc == -1)
 474                                 pr_err("Invalid penc for base_shift=%d "
 475                                        "shift=%d\n", base_shift, shift);
 476 
 477                         def->penc[idx] = penc;
 478                         pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 479                                 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 480                                 base_shift, shift, def->sllp,
 481                                 def->avpnm, def->tlbiel, def->penc[idx]);
 482                 }
 483         }
 484 
 485         return 1;
 486 }
 487 
 488 #ifdef CONFIG_HUGETLB_PAGE
 489 /*
 490  * Scan for 16G memory blocks that have been set aside for huge pages
 491  * and reserve those blocks for 16G huge pages.
 492  */
 493 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 494                                         const char *uname, int depth,
 495                                         void *data) {
 496         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 497         const __be64 *addr_prop;
 498         const __be32 *page_count_prop;
 499         unsigned int expected_pages;
 500         long unsigned int phys_addr;
 501         long unsigned int block_size;
 502 
 503         /* We are scanning "memory" nodes only */
 504         if (type == NULL || strcmp(type, "memory") != 0)
 505                 return 0;
 506 
 507         /*
 508          * This property is the log base 2 of the number of virtual pages that
 509          * will represent this memory block.
 510          */
 511         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 512         if (page_count_prop == NULL)
 513                 return 0;
 514         expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
 515         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 516         if (addr_prop == NULL)
 517                 return 0;
 518         phys_addr = be64_to_cpu(addr_prop[0]);
 519         block_size = be64_to_cpu(addr_prop[1]);
 520         if (block_size != (16 * GB))
 521                 return 0;
 522         printk(KERN_INFO "Huge page(16GB) memory: "
 523                         "addr = 0x%lX size = 0x%lX pages = %d\n",
 524                         phys_addr, block_size, expected_pages);
 525         if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
 526                 memblock_reserve(phys_addr, block_size * expected_pages);
 527                 pseries_add_gpage(phys_addr, block_size, expected_pages);
 528         }
 529         return 0;
 530 }
 531 #endif /* CONFIG_HUGETLB_PAGE */
 532 
 533 static void mmu_psize_set_default_penc(void)
 534 {
 535         int bpsize, apsize;
 536         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 537                 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 538                         mmu_psize_defs[bpsize].penc[apsize] = -1;
 539 }
 540 
 541 #ifdef CONFIG_PPC_64K_PAGES
 542 
 543 static bool might_have_hea(void)
 544 {
 545         /*
 546          * The HEA ethernet adapter requires awareness of the
 547          * GX bus. Without that awareness we can easily assume
 548          * we will never see an HEA ethernet device.
 549          */
 550 #ifdef CONFIG_IBMEBUS
 551         return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
 552                 firmware_has_feature(FW_FEATURE_SPLPAR);
 553 #else
 554         return false;
 555 #endif
 556 }
 557 
 558 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
 559 
 560 static void __init htab_scan_page_sizes(void)
 561 {
 562         int rc;
 563 
 564         /* se the invalid penc to -1 */
 565         mmu_psize_set_default_penc();
 566 
 567         /* Default to 4K pages only */
 568         memcpy(mmu_psize_defs, mmu_psize_defaults,
 569                sizeof(mmu_psize_defaults));
 570 
 571         /*
 572          * Try to find the available page sizes in the device-tree
 573          */
 574         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 575         if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
 576                 /*
 577                  * Nothing in the device-tree, but the CPU supports 16M pages,
 578                  * so let's fallback on a known size list for 16M capable CPUs.
 579                  */
 580                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 581                        sizeof(mmu_psize_defaults_gp));
 582         }
 583 
 584 #ifdef CONFIG_HUGETLB_PAGE
 585         if (!hugetlb_disabled) {
 586                 /* Reserve 16G huge page memory sections for huge pages */
 587                 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 588         }
 589 #endif /* CONFIG_HUGETLB_PAGE */
 590 }
 591 
 592 /*
 593  * Fill in the hpte_page_sizes[] array.
 594  * We go through the mmu_psize_defs[] array looking for all the
 595  * supported base/actual page size combinations.  Each combination
 596  * has a unique pagesize encoding (penc) value in the low bits of
 597  * the LP field of the HPTE.  For actual page sizes less than 1MB,
 598  * some of the upper LP bits are used for RPN bits, meaning that
 599  * we need to fill in several entries in hpte_page_sizes[].
 600  *
 601  * In diagrammatic form, with r = RPN bits and z = page size bits:
 602  *        PTE LP     actual page size
 603  *    rrrr rrrz         >=8KB
 604  *    rrrr rrzz         >=16KB
 605  *    rrrr rzzz         >=32KB
 606  *    rrrr zzzz         >=64KB
 607  *    ...
 608  *
 609  * The zzzz bits are implementation-specific but are chosen so that
 610  * no encoding for a larger page size uses the same value in its
 611  * low-order N bits as the encoding for the 2^(12+N) byte page size
 612  * (if it exists).
 613  */
 614 static void init_hpte_page_sizes(void)
 615 {
 616         long int ap, bp;
 617         long int shift, penc;
 618 
 619         for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
 620                 if (!mmu_psize_defs[bp].shift)
 621                         continue;       /* not a supported page size */
 622                 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
 623                         penc = mmu_psize_defs[bp].penc[ap];
 624                         if (penc == -1 || !mmu_psize_defs[ap].shift)
 625                                 continue;
 626                         shift = mmu_psize_defs[ap].shift - LP_SHIFT;
 627                         if (shift <= 0)
 628                                 continue;       /* should never happen */
 629                         /*
 630                          * For page sizes less than 1MB, this loop
 631                          * replicates the entry for all possible values
 632                          * of the rrrr bits.
 633                          */
 634                         while (penc < (1 << LP_BITS)) {
 635                                 hpte_page_sizes[penc] = (ap << 4) | bp;
 636                                 penc += 1 << shift;
 637                         }
 638                 }
 639         }
 640 }
 641 
 642 static void __init htab_init_page_sizes(void)
 643 {
 644         init_hpte_page_sizes();
 645 
 646         if (!debug_pagealloc_enabled()) {
 647                 /*
 648                  * Pick a size for the linear mapping. Currently, we only
 649                  * support 16M, 1M and 4K which is the default
 650                  */
 651                 if (mmu_psize_defs[MMU_PAGE_16M].shift)
 652                         mmu_linear_psize = MMU_PAGE_16M;
 653                 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 654                         mmu_linear_psize = MMU_PAGE_1M;
 655         }
 656 
 657 #ifdef CONFIG_PPC_64K_PAGES
 658         /*
 659          * Pick a size for the ordinary pages. Default is 4K, we support
 660          * 64K for user mappings and vmalloc if supported by the processor.
 661          * We only use 64k for ioremap if the processor
 662          * (and firmware) support cache-inhibited large pages.
 663          * If not, we use 4k and set mmu_ci_restrictions so that
 664          * hash_page knows to switch processes that use cache-inhibited
 665          * mappings to 4k pages.
 666          */
 667         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 668                 mmu_virtual_psize = MMU_PAGE_64K;
 669                 mmu_vmalloc_psize = MMU_PAGE_64K;
 670                 if (mmu_linear_psize == MMU_PAGE_4K)
 671                         mmu_linear_psize = MMU_PAGE_64K;
 672                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 673                         /*
 674                          * When running on pSeries using 64k pages for ioremap
 675                          * would stop us accessing the HEA ethernet. So if we
 676                          * have the chance of ever seeing one, stay at 4k.
 677                          */
 678                         if (!might_have_hea())
 679                                 mmu_io_psize = MMU_PAGE_64K;
 680                 } else
 681                         mmu_ci_restrictions = 1;
 682         }
 683 #endif /* CONFIG_PPC_64K_PAGES */
 684 
 685 #ifdef CONFIG_SPARSEMEM_VMEMMAP
 686         /*
 687          * We try to use 16M pages for vmemmap if that is supported
 688          * and we have at least 1G of RAM at boot
 689          */
 690         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 691             memblock_phys_mem_size() >= 0x40000000)
 692                 mmu_vmemmap_psize = MMU_PAGE_16M;
 693         else
 694                 mmu_vmemmap_psize = mmu_virtual_psize;
 695 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 696 
 697         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 698                "virtual = %d, io = %d"
 699 #ifdef CONFIG_SPARSEMEM_VMEMMAP
 700                ", vmemmap = %d"
 701 #endif
 702                "\n",
 703                mmu_psize_defs[mmu_linear_psize].shift,
 704                mmu_psize_defs[mmu_virtual_psize].shift,
 705                mmu_psize_defs[mmu_io_psize].shift
 706 #ifdef CONFIG_SPARSEMEM_VMEMMAP
 707                ,mmu_psize_defs[mmu_vmemmap_psize].shift
 708 #endif
 709                );
 710 }
 711 
 712 static int __init htab_dt_scan_pftsize(unsigned long node,
 713                                        const char *uname, int depth,
 714                                        void *data)
 715 {
 716         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 717         const __be32 *prop;
 718 
 719         /* We are scanning "cpu" nodes only */
 720         if (type == NULL || strcmp(type, "cpu") != 0)
 721                 return 0;
 722 
 723         prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 724         if (prop != NULL) {
 725                 /* pft_size[0] is the NUMA CEC cookie */
 726                 ppc64_pft_size = be32_to_cpu(prop[1]);
 727                 return 1;
 728         }
 729         return 0;
 730 }
 731 
 732 unsigned htab_shift_for_mem_size(unsigned long mem_size)
 733 {
 734         unsigned memshift = __ilog2(mem_size);
 735         unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
 736         unsigned pteg_shift;
 737 
 738         /* round mem_size up to next power of 2 */
 739         if ((1UL << memshift) < mem_size)
 740                 memshift += 1;
 741 
 742         /* aim for 2 pages / pteg */
 743         pteg_shift = memshift - (pshift + 1);
 744 
 745         /*
 746          * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
 747          * size permitted by the architecture.
 748          */
 749         return max(pteg_shift + 7, 18U);
 750 }
 751 
 752 static unsigned long __init htab_get_table_size(void)
 753 {
 754         /*
 755          * If hash size isn't already provided by the platform, we try to
 756          * retrieve it from the device-tree. If it's not there neither, we
 757          * calculate it now based on the total RAM size
 758          */
 759         if (ppc64_pft_size == 0)
 760                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 761         if (ppc64_pft_size)
 762                 return 1UL << ppc64_pft_size;
 763 
 764         return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
 765 }
 766 
 767 #ifdef CONFIG_MEMORY_HOTPLUG
 768 int resize_hpt_for_hotplug(unsigned long new_mem_size)
 769 {
 770         unsigned target_hpt_shift;
 771 
 772         if (!mmu_hash_ops.resize_hpt)
 773                 return 0;
 774 
 775         target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
 776 
 777         /*
 778          * To avoid lots of HPT resizes if memory size is fluctuating
 779          * across a boundary, we deliberately have some hysterisis
 780          * here: we immediately increase the HPT size if the target
 781          * shift exceeds the current shift, but we won't attempt to
 782          * reduce unless the target shift is at least 2 below the
 783          * current shift
 784          */
 785         if (target_hpt_shift > ppc64_pft_size ||
 786             target_hpt_shift < ppc64_pft_size - 1)
 787                 return mmu_hash_ops.resize_hpt(target_hpt_shift);
 788 
 789         return 0;
 790 }
 791 
 792 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
 793 {
 794         int rc;
 795 
 796         if (end >= H_VMALLOC_START) {
 797                 pr_warn("Outside the supported range\n");
 798                 return -1;
 799         }
 800 
 801         rc = htab_bolt_mapping(start, end, __pa(start),
 802                                pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 803                                mmu_kernel_ssize);
 804 
 805         if (rc < 0) {
 806                 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
 807                                               mmu_kernel_ssize);
 808                 BUG_ON(rc2 && (rc2 != -ENOENT));
 809         }
 810         return rc;
 811 }
 812 
 813 int hash__remove_section_mapping(unsigned long start, unsigned long end)
 814 {
 815         int rc = htab_remove_mapping(start, end, mmu_linear_psize,
 816                                      mmu_kernel_ssize);
 817         WARN_ON(rc < 0);
 818         return rc;
 819 }
 820 #endif /* CONFIG_MEMORY_HOTPLUG */
 821 
 822 static void __init hash_init_partition_table(phys_addr_t hash_table,
 823                                              unsigned long htab_size)
 824 {
 825         mmu_partition_table_init();
 826 
 827         /*
 828          * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
 829          * For now, UPRT is 0 and we have no segment table.
 830          */
 831         htab_size =  __ilog2(htab_size) - 18;
 832         mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
 833         pr_info("Partition table %p\n", partition_tb);
 834 }
 835 
 836 static void __init htab_initialize(void)
 837 {
 838         unsigned long table;
 839         unsigned long pteg_count;
 840         unsigned long prot;
 841         unsigned long base = 0, size = 0;
 842         struct memblock_region *reg;
 843 
 844         DBG(" -> htab_initialize()\n");
 845 
 846         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 847                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
 848                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
 849                 printk(KERN_INFO "Using 1TB segments\n");
 850         }
 851 
 852         /*
 853          * Calculate the required size of the htab.  We want the number of
 854          * PTEGs to equal one half the number of real pages.
 855          */ 
 856         htab_size_bytes = htab_get_table_size();
 857         pteg_count = htab_size_bytes >> 7;
 858 
 859         htab_hash_mask = pteg_count - 1;
 860 
 861         if (firmware_has_feature(FW_FEATURE_LPAR) ||
 862             firmware_has_feature(FW_FEATURE_PS3_LV1)) {
 863                 /* Using a hypervisor which owns the htab */
 864                 htab_address = NULL;
 865                 _SDR1 = 0; 
 866 #ifdef CONFIG_FA_DUMP
 867                 /*
 868                  * If firmware assisted dump is active firmware preserves
 869                  * the contents of htab along with entire partition memory.
 870                  * Clear the htab if firmware assisted dump is active so
 871                  * that we dont end up using old mappings.
 872                  */
 873                 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
 874                         mmu_hash_ops.hpte_clear_all();
 875 #endif
 876         } else {
 877                 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
 878 
 879 #ifdef CONFIG_PPC_CELL
 880                 /*
 881                  * Cell may require the hash table down low when using the
 882                  * Axon IOMMU in order to fit the dynamic region over it, see
 883                  * comments in cell/iommu.c
 884                  */
 885                 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
 886                         limit = 0x80000000;
 887                         pr_info("Hash table forced below 2G for Axon IOMMU\n");
 888                 }
 889 #endif /* CONFIG_PPC_CELL */
 890 
 891                 table = memblock_phys_alloc_range(htab_size_bytes,
 892                                                   htab_size_bytes,
 893                                                   0, limit);
 894                 if (!table)
 895                         panic("ERROR: Failed to allocate %pa bytes below %pa\n",
 896                               &htab_size_bytes, &limit);
 897 
 898                 DBG("Hash table allocated at %lx, size: %lx\n", table,
 899                     htab_size_bytes);
 900 
 901                 htab_address = __va(table);
 902 
 903                 /* htab absolute addr + encoded htabsize */
 904                 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
 905 
 906                 /* Initialize the HPT with no entries */
 907                 memset((void *)table, 0, htab_size_bytes);
 908 
 909                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
 910                         /* Set SDR1 */
 911                         mtspr(SPRN_SDR1, _SDR1);
 912                 else
 913                         hash_init_partition_table(table, htab_size_bytes);
 914         }
 915 
 916         prot = pgprot_val(PAGE_KERNEL);
 917 
 918 #ifdef CONFIG_DEBUG_PAGEALLOC
 919         if (debug_pagealloc_enabled()) {
 920                 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 921                 linear_map_hash_slots = memblock_alloc_try_nid(
 922                                 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
 923                                 ppc64_rma_size, NUMA_NO_NODE);
 924                 if (!linear_map_hash_slots)
 925                         panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
 926                               __func__, linear_map_hash_count, &ppc64_rma_size);
 927         }
 928 #endif /* CONFIG_DEBUG_PAGEALLOC */
 929 
 930         /* create bolted the linear mapping in the hash table */
 931         for_each_memblock(memory, reg) {
 932                 base = (unsigned long)__va(reg->base);
 933                 size = reg->size;
 934 
 935                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 936                     base, size, prot);
 937 
 938                 if ((base + size) >= H_VMALLOC_START) {
 939                         pr_warn("Outside the supported range\n");
 940                         continue;
 941                 }
 942 
 943                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 944                                 prot, mmu_linear_psize, mmu_kernel_ssize));
 945         }
 946         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 947 
 948         /*
 949          * If we have a memory_limit and we've allocated TCEs then we need to
 950          * explicitly map the TCE area at the top of RAM. We also cope with the
 951          * case that the TCEs start below memory_limit.
 952          * tce_alloc_start/end are 16MB aligned so the mapping should work
 953          * for either 4K or 16MB pages.
 954          */
 955         if (tce_alloc_start) {
 956                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 957                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 958 
 959                 if (base + size >= tce_alloc_start)
 960                         tce_alloc_start = base + size + 1;
 961 
 962                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 963                                          __pa(tce_alloc_start), prot,
 964                                          mmu_linear_psize, mmu_kernel_ssize));
 965         }
 966 
 967 
 968         DBG(" <- htab_initialize()\n");
 969 }
 970 #undef KB
 971 #undef MB
 972 
 973 void __init hash__early_init_devtree(void)
 974 {
 975         /* Initialize segment sizes */
 976         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 977 
 978         /* Initialize page sizes */
 979         htab_scan_page_sizes();
 980 }
 981 
 982 static struct hash_mm_context init_hash_mm_context;
 983 void __init hash__early_init_mmu(void)
 984 {
 985 #ifndef CONFIG_PPC_64K_PAGES
 986         /*
 987          * We have code in __hash_page_4K() and elsewhere, which assumes it can
 988          * do the following:
 989          *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
 990          *
 991          * Where the slot number is between 0-15, and values of 8-15 indicate
 992          * the secondary bucket. For that code to work H_PAGE_F_SECOND and
 993          * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
 994          * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
 995          * with a BUILD_BUG_ON().
 996          */
 997         BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
 998 #endif /* CONFIG_PPC_64K_PAGES */
 999 
1000         htab_init_page_sizes();
1001 
1002         /*
1003          * initialize page table size
1004          */
1005         __pte_frag_nr = H_PTE_FRAG_NR;
1006         __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1007         __pmd_frag_nr = H_PMD_FRAG_NR;
1008         __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1009 
1010         __pte_index_size = H_PTE_INDEX_SIZE;
1011         __pmd_index_size = H_PMD_INDEX_SIZE;
1012         __pud_index_size = H_PUD_INDEX_SIZE;
1013         __pgd_index_size = H_PGD_INDEX_SIZE;
1014         __pud_cache_index = H_PUD_CACHE_INDEX;
1015         __pte_table_size = H_PTE_TABLE_SIZE;
1016         __pmd_table_size = H_PMD_TABLE_SIZE;
1017         __pud_table_size = H_PUD_TABLE_SIZE;
1018         __pgd_table_size = H_PGD_TABLE_SIZE;
1019         /*
1020          * 4k use hugepd format, so for hash set then to
1021          * zero
1022          */
1023         __pmd_val_bits = HASH_PMD_VAL_BITS;
1024         __pud_val_bits = HASH_PUD_VAL_BITS;
1025         __pgd_val_bits = HASH_PGD_VAL_BITS;
1026 
1027         __kernel_virt_start = H_KERN_VIRT_START;
1028         __vmalloc_start = H_VMALLOC_START;
1029         __vmalloc_end = H_VMALLOC_END;
1030         __kernel_io_start = H_KERN_IO_START;
1031         __kernel_io_end = H_KERN_IO_END;
1032         vmemmap = (struct page *)H_VMEMMAP_START;
1033         ioremap_bot = IOREMAP_BASE;
1034 
1035 #ifdef CONFIG_PCI
1036         pci_io_base = ISA_IO_BASE;
1037 #endif
1038 
1039         /* Select appropriate backend */
1040         if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1041                 ps3_early_mm_init();
1042         else if (firmware_has_feature(FW_FEATURE_LPAR))
1043                 hpte_init_pseries();
1044         else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1045                 hpte_init_native();
1046 
1047         if (!mmu_hash_ops.hpte_insert)
1048                 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1049 
1050         /*
1051          * Initialize the MMU Hash table and create the linear mapping
1052          * of memory. Has to be done before SLB initialization as this is
1053          * currently where the page size encoding is obtained.
1054          */
1055         htab_initialize();
1056 
1057         init_mm.context.hash_context = &init_hash_mm_context;
1058         mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1059 
1060         pr_info("Initializing hash mmu with SLB\n");
1061         /* Initialize SLB management */
1062         slb_initialize();
1063 
1064         if (cpu_has_feature(CPU_FTR_ARCH_206)
1065                         && cpu_has_feature(CPU_FTR_HVMODE))
1066                 tlbiel_all();
1067 }
1068 
1069 #ifdef CONFIG_SMP
1070 void hash__early_init_mmu_secondary(void)
1071 {
1072         /* Initialize hash table for that CPU */
1073         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1074 
1075                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1076                         mtspr(SPRN_SDR1, _SDR1);
1077                 else
1078                         set_ptcr_when_no_uv(__pa(partition_tb) |
1079                                             (PATB_SIZE_SHIFT - 12));
1080         }
1081         /* Initialize SLB */
1082         slb_initialize();
1083 
1084         if (cpu_has_feature(CPU_FTR_ARCH_206)
1085                         && cpu_has_feature(CPU_FTR_HVMODE))
1086                 tlbiel_all();
1087 }
1088 #endif /* CONFIG_SMP */
1089 
1090 /*
1091  * Called by asm hashtable.S for doing lazy icache flush
1092  */
1093 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1094 {
1095         struct page *page;
1096 
1097         if (!pfn_valid(pte_pfn(pte)))
1098                 return pp;
1099 
1100         page = pte_page(pte);
1101 
1102         /* page is dirty */
1103         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1104                 if (trap == 0x400) {
1105                         flush_dcache_icache_page(page);
1106                         set_bit(PG_arch_1, &page->flags);
1107                 } else
1108                         pp |= HPTE_R_N;
1109         }
1110         return pp;
1111 }
1112 
1113 #ifdef CONFIG_PPC_MM_SLICES
1114 static unsigned int get_paca_psize(unsigned long addr)
1115 {
1116         unsigned char *psizes;
1117         unsigned long index, mask_index;
1118 
1119         if (addr < SLICE_LOW_TOP) {
1120                 psizes = get_paca()->mm_ctx_low_slices_psize;
1121                 index = GET_LOW_SLICE_INDEX(addr);
1122         } else {
1123                 psizes = get_paca()->mm_ctx_high_slices_psize;
1124                 index = GET_HIGH_SLICE_INDEX(addr);
1125         }
1126         mask_index = index & 0x1;
1127         return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1128 }
1129 
1130 #else
1131 unsigned int get_paca_psize(unsigned long addr)
1132 {
1133         return get_paca()->mm_ctx_user_psize;
1134 }
1135 #endif
1136 
1137 /*
1138  * Demote a segment to using 4k pages.
1139  * For now this makes the whole process use 4k pages.
1140  */
1141 #ifdef CONFIG_PPC_64K_PAGES
1142 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1143 {
1144         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1145                 return;
1146         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1147         copro_flush_all_slbs(mm);
1148         if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1149 
1150                 copy_mm_to_paca(mm);
1151                 slb_flush_and_restore_bolted();
1152         }
1153 }
1154 #endif /* CONFIG_PPC_64K_PAGES */
1155 
1156 #ifdef CONFIG_PPC_SUBPAGE_PROT
1157 /*
1158  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1159  * Userspace sets the subpage permissions using the subpage_prot system call.
1160  *
1161  * Result is 0: full permissions, _PAGE_RW: read-only,
1162  * _PAGE_RWX: no access.
1163  */
1164 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1165 {
1166         struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1167         u32 spp = 0;
1168         u32 **sbpm, *sbpp;
1169 
1170         if (!spt)
1171                 return 0;
1172 
1173         if (ea >= spt->maxaddr)
1174                 return 0;
1175         if (ea < 0x100000000UL) {
1176                 /* addresses below 4GB use spt->low_prot */
1177                 sbpm = spt->low_prot;
1178         } else {
1179                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1180                 if (!sbpm)
1181                         return 0;
1182         }
1183         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1184         if (!sbpp)
1185                 return 0;
1186         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1187 
1188         /* extract 2-bit bitfield for this 4k subpage */
1189         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1190 
1191         /*
1192          * 0 -> full premission
1193          * 1 -> Read only
1194          * 2 -> no access.
1195          * We return the flag that need to be cleared.
1196          */
1197         spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1198         return spp;
1199 }
1200 
1201 #else /* CONFIG_PPC_SUBPAGE_PROT */
1202 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1203 {
1204         return 0;
1205 }
1206 #endif
1207 
1208 void hash_failure_debug(unsigned long ea, unsigned long access,
1209                         unsigned long vsid, unsigned long trap,
1210                         int ssize, int psize, int lpsize, unsigned long pte)
1211 {
1212         if (!printk_ratelimit())
1213                 return;
1214         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1215                 ea, access, current->comm);
1216         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1217                 trap, vsid, ssize, psize, lpsize, pte);
1218 }
1219 
1220 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1221                              int psize, bool user_region)
1222 {
1223         if (user_region) {
1224                 if (psize != get_paca_psize(ea)) {
1225                         copy_mm_to_paca(mm);
1226                         slb_flush_and_restore_bolted();
1227                 }
1228         } else if (get_paca()->vmalloc_sllp !=
1229                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1230                 get_paca()->vmalloc_sllp =
1231                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1232                 slb_vmalloc_update();
1233         }
1234 }
1235 
1236 /*
1237  * Result code is:
1238  *  0 - handled
1239  *  1 - normal page fault
1240  * -1 - critical hash insertion error
1241  * -2 - access not permitted by subpage protection mechanism
1242  */
1243 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1244                  unsigned long access, unsigned long trap,
1245                  unsigned long flags)
1246 {
1247         bool is_thp;
1248         enum ctx_state prev_state = exception_enter();
1249         pgd_t *pgdir;
1250         unsigned long vsid;
1251         pte_t *ptep;
1252         unsigned hugeshift;
1253         int rc, user_region = 0;
1254         int psize, ssize;
1255 
1256         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1257                 ea, access, trap);
1258         trace_hash_fault(ea, access, trap);
1259 
1260         /* Get region & vsid */
1261         switch (get_region_id(ea)) {
1262         case USER_REGION_ID:
1263                 user_region = 1;
1264                 if (! mm) {
1265                         DBG_LOW(" user region with no mm !\n");
1266                         rc = 1;
1267                         goto bail;
1268                 }
1269                 psize = get_slice_psize(mm, ea);
1270                 ssize = user_segment_size(ea);
1271                 vsid = get_user_vsid(&mm->context, ea, ssize);
1272                 break;
1273         case VMALLOC_REGION_ID:
1274                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1275                 psize = mmu_vmalloc_psize;
1276                 ssize = mmu_kernel_ssize;
1277                 break;
1278 
1279         case IO_REGION_ID:
1280                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1281                 psize = mmu_io_psize;
1282                 ssize = mmu_kernel_ssize;
1283                 break;
1284         default:
1285                 /*
1286                  * Not a valid range
1287                  * Send the problem up to do_page_fault()
1288                  */
1289                 rc = 1;
1290                 goto bail;
1291         }
1292         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1293 
1294         /* Bad address. */
1295         if (!vsid) {
1296                 DBG_LOW("Bad address!\n");
1297                 rc = 1;
1298                 goto bail;
1299         }
1300         /* Get pgdir */
1301         pgdir = mm->pgd;
1302         if (pgdir == NULL) {
1303                 rc = 1;
1304                 goto bail;
1305         }
1306 
1307         /* Check CPU locality */
1308         if (user_region && mm_is_thread_local(mm))
1309                 flags |= HPTE_LOCAL_UPDATE;
1310 
1311 #ifndef CONFIG_PPC_64K_PAGES
1312         /*
1313          * If we use 4K pages and our psize is not 4K, then we might
1314          * be hitting a special driver mapping, and need to align the
1315          * address before we fetch the PTE.
1316          *
1317          * It could also be a hugepage mapping, in which case this is
1318          * not necessary, but it's not harmful, either.
1319          */
1320         if (psize != MMU_PAGE_4K)
1321                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1322 #endif /* CONFIG_PPC_64K_PAGES */
1323 
1324         /* Get PTE and page size from page tables */
1325         ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1326         if (ptep == NULL || !pte_present(*ptep)) {
1327                 DBG_LOW(" no PTE !\n");
1328                 rc = 1;
1329                 goto bail;
1330         }
1331 
1332         /* Add _PAGE_PRESENT to the required access perm */
1333         access |= _PAGE_PRESENT;
1334 
1335         /*
1336          * Pre-check access permissions (will be re-checked atomically
1337          * in __hash_page_XX but this pre-check is a fast path
1338          */
1339         if (!check_pte_access(access, pte_val(*ptep))) {
1340                 DBG_LOW(" no access !\n");
1341                 rc = 1;
1342                 goto bail;
1343         }
1344 
1345         if (hugeshift) {
1346                 if (is_thp)
1347                         rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1348                                              trap, flags, ssize, psize);
1349 #ifdef CONFIG_HUGETLB_PAGE
1350                 else
1351                         rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1352                                               flags, ssize, hugeshift, psize);
1353 #else
1354                 else {
1355                         /*
1356                          * if we have hugeshift, and is not transhuge with
1357                          * hugetlb disabled, something is really wrong.
1358                          */
1359                         rc = 1;
1360                         WARN_ON(1);
1361                 }
1362 #endif
1363                 if (current->mm == mm)
1364                         check_paca_psize(ea, mm, psize, user_region);
1365 
1366                 goto bail;
1367         }
1368 
1369 #ifndef CONFIG_PPC_64K_PAGES
1370         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1371 #else
1372         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1373                 pte_val(*(ptep + PTRS_PER_PTE)));
1374 #endif
1375         /* Do actual hashing */
1376 #ifdef CONFIG_PPC_64K_PAGES
1377         /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1378         if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1379                 demote_segment_4k(mm, ea);
1380                 psize = MMU_PAGE_4K;
1381         }
1382 
1383         /*
1384          * If this PTE is non-cacheable and we have restrictions on
1385          * using non cacheable large pages, then we switch to 4k
1386          */
1387         if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1388                 if (user_region) {
1389                         demote_segment_4k(mm, ea);
1390                         psize = MMU_PAGE_4K;
1391                 } else if (ea < VMALLOC_END) {
1392                         /*
1393                          * some driver did a non-cacheable mapping
1394                          * in vmalloc space, so switch vmalloc
1395                          * to 4k pages
1396                          */
1397                         printk(KERN_ALERT "Reducing vmalloc segment "
1398                                "to 4kB pages because of "
1399                                "non-cacheable mapping\n");
1400                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1401                         copro_flush_all_slbs(mm);
1402                 }
1403         }
1404 
1405 #endif /* CONFIG_PPC_64K_PAGES */
1406 
1407         if (current->mm == mm)
1408                 check_paca_psize(ea, mm, psize, user_region);
1409 
1410 #ifdef CONFIG_PPC_64K_PAGES
1411         if (psize == MMU_PAGE_64K)
1412                 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1413                                      flags, ssize);
1414         else
1415 #endif /* CONFIG_PPC_64K_PAGES */
1416         {
1417                 int spp = subpage_protection(mm, ea);
1418                 if (access & spp)
1419                         rc = -2;
1420                 else
1421                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1422                                             flags, ssize, spp);
1423         }
1424 
1425         /*
1426          * Dump some info in case of hash insertion failure, they should
1427          * never happen so it is really useful to know if/when they do
1428          */
1429         if (rc == -1)
1430                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1431                                    psize, pte_val(*ptep));
1432 #ifndef CONFIG_PPC_64K_PAGES
1433         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1434 #else
1435         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1436                 pte_val(*(ptep + PTRS_PER_PTE)));
1437 #endif
1438         DBG_LOW(" -> rc=%d\n", rc);
1439 
1440 bail:
1441         exception_exit(prev_state);
1442         return rc;
1443 }
1444 EXPORT_SYMBOL_GPL(hash_page_mm);
1445 
1446 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1447               unsigned long dsisr)
1448 {
1449         unsigned long flags = 0;
1450         struct mm_struct *mm = current->mm;
1451 
1452         if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1453             (get_region_id(ea) == IO_REGION_ID))
1454                 mm = &init_mm;
1455 
1456         if (dsisr & DSISR_NOHPTE)
1457                 flags |= HPTE_NOHPTE_UPDATE;
1458 
1459         return hash_page_mm(mm, ea, access, trap, flags);
1460 }
1461 EXPORT_SYMBOL_GPL(hash_page);
1462 
1463 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1464                 unsigned long msr)
1465 {
1466         unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1467         unsigned long flags = 0;
1468         struct mm_struct *mm = current->mm;
1469         unsigned int region_id = get_region_id(ea);
1470 
1471         if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1472                 mm = &init_mm;
1473 
1474         if (dsisr & DSISR_NOHPTE)
1475                 flags |= HPTE_NOHPTE_UPDATE;
1476 
1477         if (dsisr & DSISR_ISSTORE)
1478                 access |= _PAGE_WRITE;
1479         /*
1480          * We set _PAGE_PRIVILEGED only when
1481          * kernel mode access kernel space.
1482          *
1483          * _PAGE_PRIVILEGED is NOT set
1484          * 1) when kernel mode access user space
1485          * 2) user space access kernel space.
1486          */
1487         access |= _PAGE_PRIVILEGED;
1488         if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1489                 access &= ~_PAGE_PRIVILEGED;
1490 
1491         if (trap == 0x400)
1492                 access |= _PAGE_EXEC;
1493 
1494         return hash_page_mm(mm, ea, access, trap, flags);
1495 }
1496 
1497 #ifdef CONFIG_PPC_MM_SLICES
1498 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1499 {
1500         int psize = get_slice_psize(mm, ea);
1501 
1502         /* We only prefault standard pages for now */
1503         if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1504                 return false;
1505 
1506         /*
1507          * Don't prefault if subpage protection is enabled for the EA.
1508          */
1509         if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1510                 return false;
1511 
1512         return true;
1513 }
1514 #else
1515 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1516 {
1517         return true;
1518 }
1519 #endif
1520 
1521 static void hash_preload(struct mm_struct *mm, unsigned long ea,
1522                          bool is_exec, unsigned long trap)
1523 {
1524         int hugepage_shift;
1525         unsigned long vsid;
1526         pgd_t *pgdir;
1527         pte_t *ptep;
1528         unsigned long flags;
1529         int rc, ssize, update_flags = 0;
1530         unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1531 
1532         BUG_ON(get_region_id(ea) != USER_REGION_ID);
1533 
1534         if (!should_hash_preload(mm, ea))
1535                 return;
1536 
1537         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1538                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1539 
1540         /* Get Linux PTE if available */
1541         pgdir = mm->pgd;
1542         if (pgdir == NULL)
1543                 return;
1544 
1545         /* Get VSID */
1546         ssize = user_segment_size(ea);
1547         vsid = get_user_vsid(&mm->context, ea, ssize);
1548         if (!vsid)
1549                 return;
1550         /*
1551          * Hash doesn't like irqs. Walking linux page table with irq disabled
1552          * saves us from holding multiple locks.
1553          */
1554         local_irq_save(flags);
1555 
1556         /*
1557          * THP pages use update_mmu_cache_pmd. We don't do
1558          * hash preload there. Hence can ignore THP here
1559          */
1560         ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1561         if (!ptep)
1562                 goto out_exit;
1563 
1564         WARN_ON(hugepage_shift);
1565 #ifdef CONFIG_PPC_64K_PAGES
1566         /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1567          * a 64K kernel), then we don't preload, hash_page() will take
1568          * care of it once we actually try to access the page.
1569          * That way we don't have to duplicate all of the logic for segment
1570          * page size demotion here
1571          */
1572         if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1573                 goto out_exit;
1574 #endif /* CONFIG_PPC_64K_PAGES */
1575 
1576         /* Is that local to this CPU ? */
1577         if (mm_is_thread_local(mm))
1578                 update_flags |= HPTE_LOCAL_UPDATE;
1579 
1580         /* Hash it in */
1581 #ifdef CONFIG_PPC_64K_PAGES
1582         if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1583                 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1584                                      update_flags, ssize);
1585         else
1586 #endif /* CONFIG_PPC_64K_PAGES */
1587                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1588                                     ssize, subpage_protection(mm, ea));
1589 
1590         /* Dump some info in case of hash insertion failure, they should
1591          * never happen so it is really useful to know if/when they do
1592          */
1593         if (rc == -1)
1594                 hash_failure_debug(ea, access, vsid, trap, ssize,
1595                                    mm_ctx_user_psize(&mm->context),
1596                                    mm_ctx_user_psize(&mm->context),
1597                                    pte_val(*ptep));
1598 out_exit:
1599         local_irq_restore(flags);
1600 }
1601 
1602 /*
1603  * This is called at the end of handling a user page fault, when the
1604  * fault has been handled by updating a PTE in the linux page tables.
1605  * We use it to preload an HPTE into the hash table corresponding to
1606  * the updated linux PTE.
1607  *
1608  * This must always be called with the pte lock held.
1609  */
1610 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1611                       pte_t *ptep)
1612 {
1613         /*
1614          * We don't need to worry about _PAGE_PRESENT here because we are
1615          * called with either mm->page_table_lock held or ptl lock held
1616          */
1617         unsigned long trap;
1618         bool is_exec;
1619 
1620         if (radix_enabled()) {
1621                 prefetch((void *)address);
1622                 return;
1623         }
1624 
1625         /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1626         if (!pte_young(*ptep) || address >= TASK_SIZE)
1627                 return;
1628 
1629         /*
1630          * We try to figure out if we are coming from an instruction
1631          * access fault and pass that down to __hash_page so we avoid
1632          * double-faulting on execution of fresh text. We have to test
1633          * for regs NULL since init will get here first thing at boot.
1634          *
1635          * We also avoid filling the hash if not coming from a fault.
1636          */
1637 
1638         trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1639         switch (trap) {
1640         case 0x300:
1641                 is_exec = false;
1642                 break;
1643         case 0x400:
1644                 is_exec = true;
1645                 break;
1646         default:
1647                 return;
1648         }
1649 
1650         hash_preload(vma->vm_mm, address, is_exec, trap);
1651 }
1652 
1653 #ifdef CONFIG_PPC_MEM_KEYS
1654 /*
1655  * Return the protection key associated with the given address and the
1656  * mm_struct.
1657  */
1658 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1659 {
1660         pte_t *ptep;
1661         u16 pkey = 0;
1662         unsigned long flags;
1663 
1664         if (!mm || !mm->pgd)
1665                 return 0;
1666 
1667         local_irq_save(flags);
1668         ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1669         if (ptep)
1670                 pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1671         local_irq_restore(flags);
1672 
1673         return pkey;
1674 }
1675 #endif /* CONFIG_PPC_MEM_KEYS */
1676 
1677 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1678 static inline void tm_flush_hash_page(int local)
1679 {
1680         /*
1681          * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1682          * page back to a block device w/PIO could pick up transactional data
1683          * (bad!) so we force an abort here. Before the sync the page will be
1684          * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1685          * kernel uses a page from userspace without unmapping it first, it may
1686          * see the speculated version.
1687          */
1688         if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1689             MSR_TM_ACTIVE(current->thread.regs->msr)) {
1690                 tm_enable();
1691                 tm_abort(TM_CAUSE_TLBI);
1692         }
1693 }
1694 #else
1695 static inline void tm_flush_hash_page(int local)
1696 {
1697 }
1698 #endif
1699 
1700 /*
1701  * Return the global hash slot, corresponding to the given PTE, which contains
1702  * the HPTE.
1703  */
1704 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1705                 int ssize, real_pte_t rpte, unsigned int subpg_index)
1706 {
1707         unsigned long hash, gslot, hidx;
1708 
1709         hash = hpt_hash(vpn, shift, ssize);
1710         hidx = __rpte_to_hidx(rpte, subpg_index);
1711         if (hidx & _PTEIDX_SECONDARY)
1712                 hash = ~hash;
1713         gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1714         gslot += hidx & _PTEIDX_GROUP_IX;
1715         return gslot;
1716 }
1717 
1718 /*
1719  * WARNING: This is called from hash_low_64.S, if you change this prototype,
1720  *          do not forget to update the assembly call site !
1721  */
1722 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1723                      unsigned long flags)
1724 {
1725         unsigned long index, shift, gslot;
1726         int local = flags & HPTE_LOCAL_UPDATE;
1727 
1728         DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1729         pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1730                 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1731                 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1732                 /*
1733                  * We use same base page size and actual psize, because we don't
1734                  * use these functions for hugepage
1735                  */
1736                 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1737                                              ssize, local);
1738         } pte_iterate_hashed_end();
1739 
1740         tm_flush_hash_page(local);
1741 }
1742 
1743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1744 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1745                          pmd_t *pmdp, unsigned int psize, int ssize,
1746                          unsigned long flags)
1747 {
1748         int i, max_hpte_count, valid;
1749         unsigned long s_addr;
1750         unsigned char *hpte_slot_array;
1751         unsigned long hidx, shift, vpn, hash, slot;
1752         int local = flags & HPTE_LOCAL_UPDATE;
1753 
1754         s_addr = addr & HPAGE_PMD_MASK;
1755         hpte_slot_array = get_hpte_slot_array(pmdp);
1756         /*
1757          * IF we try to do a HUGE PTE update after a withdraw is done.
1758          * we will find the below NULL. This happens when we do
1759          * split_huge_pmd
1760          */
1761         if (!hpte_slot_array)
1762                 return;
1763 
1764         if (mmu_hash_ops.hugepage_invalidate) {
1765                 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1766                                                  psize, ssize, local);
1767                 goto tm_abort;
1768         }
1769         /*
1770          * No bluk hpte removal support, invalidate each entry
1771          */
1772         shift = mmu_psize_defs[psize].shift;
1773         max_hpte_count = HPAGE_PMD_SIZE >> shift;
1774         for (i = 0; i < max_hpte_count; i++) {
1775                 /*
1776                  * 8 bits per each hpte entries
1777                  * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1778                  */
1779                 valid = hpte_valid(hpte_slot_array, i);
1780                 if (!valid)
1781                         continue;
1782                 hidx =  hpte_hash_index(hpte_slot_array, i);
1783 
1784                 /* get the vpn */
1785                 addr = s_addr + (i * (1ul << shift));
1786                 vpn = hpt_vpn(addr, vsid, ssize);
1787                 hash = hpt_hash(vpn, shift, ssize);
1788                 if (hidx & _PTEIDX_SECONDARY)
1789                         hash = ~hash;
1790 
1791                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1792                 slot += hidx & _PTEIDX_GROUP_IX;
1793                 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1794                                              MMU_PAGE_16M, ssize, local);
1795         }
1796 tm_abort:
1797         tm_flush_hash_page(local);
1798 }
1799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1800 
1801 void flush_hash_range(unsigned long number, int local)
1802 {
1803         if (mmu_hash_ops.flush_hash_range)
1804                 mmu_hash_ops.flush_hash_range(number, local);
1805         else {
1806                 int i;
1807                 struct ppc64_tlb_batch *batch =
1808                         this_cpu_ptr(&ppc64_tlb_batch);
1809 
1810                 for (i = 0; i < number; i++)
1811                         flush_hash_page(batch->vpn[i], batch->pte[i],
1812                                         batch->psize, batch->ssize, local);
1813         }
1814 }
1815 
1816 /*
1817  * low_hash_fault is called when we the low level hash code failed
1818  * to instert a PTE due to an hypervisor error
1819  */
1820 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1821 {
1822         enum ctx_state prev_state = exception_enter();
1823 
1824         if (user_mode(regs)) {
1825 #ifdef CONFIG_PPC_SUBPAGE_PROT
1826                 if (rc == -2)
1827                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1828                 else
1829 #endif
1830                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1831         } else
1832                 bad_page_fault(regs, address, SIGBUS);
1833 
1834         exception_exit(prev_state);
1835 }
1836 
1837 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1838                            unsigned long pa, unsigned long rflags,
1839                            unsigned long vflags, int psize, int ssize)
1840 {
1841         unsigned long hpte_group;
1842         long slot;
1843 
1844 repeat:
1845         hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1846 
1847         /* Insert into the hash table, primary slot */
1848         slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1849                                         psize, psize, ssize);
1850 
1851         /* Primary is full, try the secondary */
1852         if (unlikely(slot == -1)) {
1853                 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1854                 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1855                                                 vflags | HPTE_V_SECONDARY,
1856                                                 psize, psize, ssize);
1857                 if (slot == -1) {
1858                         if (mftb() & 0x1)
1859                                 hpte_group = (hash & htab_hash_mask) *
1860                                                 HPTES_PER_GROUP;
1861 
1862                         mmu_hash_ops.hpte_remove(hpte_group);
1863                         goto repeat;
1864                 }
1865         }
1866 
1867         return slot;
1868 }
1869 
1870 #ifdef CONFIG_DEBUG_PAGEALLOC
1871 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1872 {
1873         unsigned long hash;
1874         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1875         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1876         unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1877         long ret;
1878 
1879         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1880 
1881         /* Don't create HPTE entries for bad address */
1882         if (!vsid)
1883                 return;
1884 
1885         ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1886                                     HPTE_V_BOLTED,
1887                                     mmu_linear_psize, mmu_kernel_ssize);
1888 
1889         BUG_ON (ret < 0);
1890         spin_lock(&linear_map_hash_lock);
1891         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1892         linear_map_hash_slots[lmi] = ret | 0x80;
1893         spin_unlock(&linear_map_hash_lock);
1894 }
1895 
1896 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1897 {
1898         unsigned long hash, hidx, slot;
1899         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1900         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1901 
1902         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1903         spin_lock(&linear_map_hash_lock);
1904         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1905         hidx = linear_map_hash_slots[lmi] & 0x7f;
1906         linear_map_hash_slots[lmi] = 0;
1907         spin_unlock(&linear_map_hash_lock);
1908         if (hidx & _PTEIDX_SECONDARY)
1909                 hash = ~hash;
1910         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1911         slot += hidx & _PTEIDX_GROUP_IX;
1912         mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1913                                      mmu_linear_psize,
1914                                      mmu_kernel_ssize, 0);
1915 }
1916 
1917 void __kernel_map_pages(struct page *page, int numpages, int enable)
1918 {
1919         unsigned long flags, vaddr, lmi;
1920         int i;
1921 
1922         local_irq_save(flags);
1923         for (i = 0; i < numpages; i++, page++) {
1924                 vaddr = (unsigned long)page_address(page);
1925                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1926                 if (lmi >= linear_map_hash_count)
1927                         continue;
1928                 if (enable)
1929                         kernel_map_linear_page(vaddr, lmi);
1930                 else
1931                         kernel_unmap_linear_page(vaddr, lmi);
1932         }
1933         local_irq_restore(flags);
1934 }
1935 #endif /* CONFIG_DEBUG_PAGEALLOC */
1936 
1937 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1938                                 phys_addr_t first_memblock_size)
1939 {
1940         /*
1941          * We don't currently support the first MEMBLOCK not mapping 0
1942          * physical on those processors
1943          */
1944         BUG_ON(first_memblock_base != 0);
1945 
1946         /*
1947          * On virtualized systems the first entry is our RMA region aka VRMA,
1948          * non-virtualized 64-bit hash MMU systems don't have a limitation
1949          * on real mode access.
1950          *
1951          * For guests on platforms before POWER9, we clamp the it limit to 1G
1952          * to avoid some funky things such as RTAS bugs etc...
1953          *
1954          * On POWER9 we limit to 1TB in case the host erroneously told us that
1955          * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1956          * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1957          * for virtual real mode addressing and so it doesn't make sense to
1958          * have an area larger than 1TB as it can't be addressed.
1959          */
1960         if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1961                 ppc64_rma_size = first_memblock_size;
1962                 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1963                         ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1964                 else
1965                         ppc64_rma_size = min_t(u64, ppc64_rma_size,
1966                                                1UL << SID_SHIFT_1T);
1967 
1968                 /* Finally limit subsequent allocations */
1969                 memblock_set_current_limit(ppc64_rma_size);
1970         } else {
1971                 ppc64_rma_size = ULONG_MAX;
1972         }
1973 }
1974 
1975 #ifdef CONFIG_DEBUG_FS
1976 
1977 static int hpt_order_get(void *data, u64 *val)
1978 {
1979         *val = ppc64_pft_size;
1980         return 0;
1981 }
1982 
1983 static int hpt_order_set(void *data, u64 val)
1984 {
1985         int ret;
1986 
1987         if (!mmu_hash_ops.resize_hpt)
1988                 return -ENODEV;
1989 
1990         cpus_read_lock();
1991         ret = mmu_hash_ops.resize_hpt(val);
1992         cpus_read_unlock();
1993 
1994         return ret;
1995 }
1996 
1997 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1998 
1999 static int __init hash64_debugfs(void)
2000 {
2001         if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
2002                                         NULL, &fops_hpt_order)) {
2003                 pr_err("lpar: unable to create hpt_order debugsfs file\n");
2004         }
2005 
2006         return 0;
2007 }
2008 machine_device_initcall(pseries, hash64_debugfs);
2009 #endif /* CONFIG_DEBUG_FS */
2010 
2011 void __init print_system_hash_info(void)
2012 {
2013         pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2014 
2015         if (htab_hash_mask)
2016                 pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2017 }

/* [<][>][^][v][top][bottom][index][help] */