root/arch/powerpc/mm/book3s64/pgtable.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pmdp_set_access_flags
  2. pmdp_test_and_clear_young
  3. set_pmd_at
  4. do_nothing
  5. serialize_against_pte_lookup
  6. pmdp_invalidate
  7. pmd_set_protbits
  8. pfn_pmd
  9. mk_pmd
  10. pmd_modify
  11. update_mmu_cache_pmd
  12. mmu_cleanup_all
  13. create_section_mapping
  14. remove_section_mapping
  15. mmu_partition_table_init
  16. flush_partition
  17. mmu_partition_table_set_entry
  18. get_pmd_from_cache
  19. __alloc_for_pmdcache
  20. pmd_fragment_alloc
  21. pmd_fragment_free
  22. pgtable_free
  23. pgtable_free_tlb
  24. __tlb_remove_table
  25. arch_report_meminfo
  26. ptep_modify_prot_start
  27. ptep_modify_prot_commit
  28. pmd_move_must_withdraw
  29. setup_disable_tlbie
  30. pgtable_debugfs_setup

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   4  */
   5 
   6 #include <linux/sched.h>
   7 #include <linux/mm_types.h>
   8 #include <linux/memblock.h>
   9 #include <misc/cxl-base.h>
  10 
  11 #include <asm/debugfs.h>
  12 #include <asm/pgalloc.h>
  13 #include <asm/tlb.h>
  14 #include <asm/trace.h>
  15 #include <asm/powernv.h>
  16 #include <asm/firmware.h>
  17 #include <asm/ultravisor.h>
  18 
  19 #include <mm/mmu_decl.h>
  20 #include <trace/events/thp.h>
  21 
  22 unsigned long __pmd_frag_nr;
  23 EXPORT_SYMBOL(__pmd_frag_nr);
  24 unsigned long __pmd_frag_size_shift;
  25 EXPORT_SYMBOL(__pmd_frag_size_shift);
  26 
  27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  28 /*
  29  * This is called when relaxing access to a hugepage. It's also called in the page
  30  * fault path when we don't hit any of the major fault cases, ie, a minor
  31  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
  32  * handled those two for us, we additionally deal with missing execute
  33  * permission here on some processors
  34  */
  35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
  36                           pmd_t *pmdp, pmd_t entry, int dirty)
  37 {
  38         int changed;
  39 #ifdef CONFIG_DEBUG_VM
  40         WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
  41         assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
  42 #endif
  43         changed = !pmd_same(*(pmdp), entry);
  44         if (changed) {
  45                 /*
  46                  * We can use MMU_PAGE_2M here, because only radix
  47                  * path look at the psize.
  48                  */
  49                 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
  50                                         pmd_pte(entry), address, MMU_PAGE_2M);
  51         }
  52         return changed;
  53 }
  54 
  55 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  56                               unsigned long address, pmd_t *pmdp)
  57 {
  58         return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
  59 }
  60 /*
  61  * set a new huge pmd. We should not be called for updating
  62  * an existing pmd entry. That should go via pmd_hugepage_update.
  63  */
  64 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  65                 pmd_t *pmdp, pmd_t pmd)
  66 {
  67 #ifdef CONFIG_DEBUG_VM
  68         /*
  69          * Make sure hardware valid bit is not set. We don't do
  70          * tlb flush for this update.
  71          */
  72 
  73         WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
  74         assert_spin_locked(pmd_lockptr(mm, pmdp));
  75         WARN_ON(!(pmd_large(pmd)));
  76 #endif
  77         trace_hugepage_set_pmd(addr, pmd_val(pmd));
  78         return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
  79 }
  80 
  81 static void do_nothing(void *unused)
  82 {
  83 
  84 }
  85 /*
  86  * Serialize against find_current_mm_pte which does lock-less
  87  * lookup in page tables with local interrupts disabled. For huge pages
  88  * it casts pmd_t to pte_t. Since format of pte_t is different from
  89  * pmd_t we want to prevent transit from pmd pointing to page table
  90  * to pmd pointing to huge page (and back) while interrupts are disabled.
  91  * We clear pmd to possibly replace it with page table pointer in
  92  * different code paths. So make sure we wait for the parallel
  93  * find_current_mm_pte to finish.
  94  */
  95 void serialize_against_pte_lookup(struct mm_struct *mm)
  96 {
  97         smp_mb();
  98         smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
  99 }
 100 
 101 /*
 102  * We use this to invalidate a pmdp entry before switching from a
 103  * hugepte to regular pmd entry.
 104  */
 105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 106                      pmd_t *pmdp)
 107 {
 108         unsigned long old_pmd;
 109 
 110         old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
 111         flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 112         /*
 113          * This ensures that generic code that rely on IRQ disabling
 114          * to prevent a parallel THP split work as expected.
 115          *
 116          * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
 117          * a special case check in pmd_access_permitted.
 118          */
 119         serialize_against_pte_lookup(vma->vm_mm);
 120         return __pmd(old_pmd);
 121 }
 122 
 123 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
 124 {
 125         return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
 126 }
 127 
 128 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
 129 {
 130         unsigned long pmdv;
 131 
 132         pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
 133         return pmd_set_protbits(__pmd(pmdv), pgprot);
 134 }
 135 
 136 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
 137 {
 138         return pfn_pmd(page_to_pfn(page), pgprot);
 139 }
 140 
 141 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
 142 {
 143         unsigned long pmdv;
 144 
 145         pmdv = pmd_val(pmd);
 146         pmdv &= _HPAGE_CHG_MASK;
 147         return pmd_set_protbits(__pmd(pmdv), newprot);
 148 }
 149 
 150 /*
 151  * This is called at the end of handling a user page fault, when the
 152  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 153  * We use it to preload an HPTE into the hash table corresponding to
 154  * the updated linux HUGE PMD entry.
 155  */
 156 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 157                           pmd_t *pmd)
 158 {
 159         if (radix_enabled())
 160                 prefetch((void *)addr);
 161 }
 162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 163 
 164 /* For use by kexec */
 165 void mmu_cleanup_all(void)
 166 {
 167         if (radix_enabled())
 168                 radix__mmu_cleanup_all();
 169         else if (mmu_hash_ops.hpte_clear_all)
 170                 mmu_hash_ops.hpte_clear_all();
 171 }
 172 
 173 #ifdef CONFIG_MEMORY_HOTPLUG
 174 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
 175 {
 176         if (radix_enabled())
 177                 return radix__create_section_mapping(start, end, nid);
 178 
 179         return hash__create_section_mapping(start, end, nid);
 180 }
 181 
 182 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
 183 {
 184         if (radix_enabled())
 185                 return radix__remove_section_mapping(start, end);
 186 
 187         return hash__remove_section_mapping(start, end);
 188 }
 189 #endif /* CONFIG_MEMORY_HOTPLUG */
 190 
 191 void __init mmu_partition_table_init(void)
 192 {
 193         unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
 194         unsigned long ptcr;
 195 
 196         BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
 197         /* Initialize the Partition Table with no entries */
 198         partition_tb = memblock_alloc(patb_size, patb_size);
 199         if (!partition_tb)
 200                 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 201                       __func__, patb_size, patb_size);
 202 
 203         /*
 204          * update partition table control register,
 205          * 64 K size.
 206          */
 207         ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
 208         set_ptcr_when_no_uv(ptcr);
 209         powernv_set_nmmu_ptcr(ptcr);
 210 }
 211 
 212 static void flush_partition(unsigned int lpid, bool radix)
 213 {
 214         if (radix) {
 215                 radix__flush_all_lpid(lpid);
 216                 radix__flush_all_lpid_guest(lpid);
 217         } else {
 218                 asm volatile("ptesync" : : : "memory");
 219                 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
 220                              "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
 221                 /* do we need fixup here ?*/
 222                 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 223                 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
 224         }
 225 }
 226 
 227 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
 228                                   unsigned long dw1, bool flush)
 229 {
 230         unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
 231 
 232         /*
 233          * When ultravisor is enabled, the partition table is stored in secure
 234          * memory and can only be accessed doing an ultravisor call. However, we
 235          * maintain a copy of the partition table in normal memory to allow Nest
 236          * MMU translations to occur (for normal VMs).
 237          *
 238          * Therefore, here we always update partition_tb, regardless of whether
 239          * we are running under an ultravisor or not.
 240          */
 241         partition_tb[lpid].patb0 = cpu_to_be64(dw0);
 242         partition_tb[lpid].patb1 = cpu_to_be64(dw1);
 243 
 244         /*
 245          * If ultravisor is enabled, we do an ultravisor call to register the
 246          * partition table entry (PATE), which also do a global flush of TLBs
 247          * and partition table caches for the lpid. Otherwise, just do the
 248          * flush. The type of flush (hash or radix) depends on what the previous
 249          * use of the partition ID was, not the new use.
 250          */
 251         if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
 252                 uv_register_pate(lpid, dw0, dw1);
 253                 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
 254                         dw0, dw1);
 255         } else if (flush) {
 256                 /*
 257                  * Boot does not need to flush, because MMU is off and each
 258                  * CPU does a tlbiel_all() before switching them on, which
 259                  * flushes everything.
 260                  */
 261                 flush_partition(lpid, (old & PATB_HR));
 262         }
 263 }
 264 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
 265 
 266 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
 267 {
 268         void *pmd_frag, *ret;
 269 
 270         if (PMD_FRAG_NR == 1)
 271                 return NULL;
 272 
 273         spin_lock(&mm->page_table_lock);
 274         ret = mm->context.pmd_frag;
 275         if (ret) {
 276                 pmd_frag = ret + PMD_FRAG_SIZE;
 277                 /*
 278                  * If we have taken up all the fragments mark PTE page NULL
 279                  */
 280                 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
 281                         pmd_frag = NULL;
 282                 mm->context.pmd_frag = pmd_frag;
 283         }
 284         spin_unlock(&mm->page_table_lock);
 285         return (pmd_t *)ret;
 286 }
 287 
 288 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
 289 {
 290         void *ret = NULL;
 291         struct page *page;
 292         gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
 293 
 294         if (mm == &init_mm)
 295                 gfp &= ~__GFP_ACCOUNT;
 296         page = alloc_page(gfp);
 297         if (!page)
 298                 return NULL;
 299         if (!pgtable_pmd_page_ctor(page)) {
 300                 __free_pages(page, 0);
 301                 return NULL;
 302         }
 303 
 304         atomic_set(&page->pt_frag_refcount, 1);
 305 
 306         ret = page_address(page);
 307         /*
 308          * if we support only one fragment just return the
 309          * allocated page.
 310          */
 311         if (PMD_FRAG_NR == 1)
 312                 return ret;
 313 
 314         spin_lock(&mm->page_table_lock);
 315         /*
 316          * If we find pgtable_page set, we return
 317          * the allocated page with single fragement
 318          * count.
 319          */
 320         if (likely(!mm->context.pmd_frag)) {
 321                 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
 322                 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
 323         }
 324         spin_unlock(&mm->page_table_lock);
 325 
 326         return (pmd_t *)ret;
 327 }
 328 
 329 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
 330 {
 331         pmd_t *pmd;
 332 
 333         pmd = get_pmd_from_cache(mm);
 334         if (pmd)
 335                 return pmd;
 336 
 337         return __alloc_for_pmdcache(mm);
 338 }
 339 
 340 void pmd_fragment_free(unsigned long *pmd)
 341 {
 342         struct page *page = virt_to_page(pmd);
 343 
 344         BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
 345         if (atomic_dec_and_test(&page->pt_frag_refcount)) {
 346                 pgtable_pmd_page_dtor(page);
 347                 __free_page(page);
 348         }
 349 }
 350 
 351 static inline void pgtable_free(void *table, int index)
 352 {
 353         switch (index) {
 354         case PTE_INDEX:
 355                 pte_fragment_free(table, 0);
 356                 break;
 357         case PMD_INDEX:
 358                 pmd_fragment_free(table);
 359                 break;
 360         case PUD_INDEX:
 361                 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
 362                 break;
 363 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
 364                 /* 16M hugepd directory at pud level */
 365         case HTLB_16M_INDEX:
 366                 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
 367                 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
 368                 break;
 369                 /* 16G hugepd directory at the pgd level */
 370         case HTLB_16G_INDEX:
 371                 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
 372                 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
 373                 break;
 374 #endif
 375                 /* We don't free pgd table via RCU callback */
 376         default:
 377                 BUG();
 378         }
 379 }
 380 
 381 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
 382 {
 383         unsigned long pgf = (unsigned long)table;
 384 
 385         BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
 386         pgf |= index;
 387         tlb_remove_table(tlb, (void *)pgf);
 388 }
 389 
 390 void __tlb_remove_table(void *_table)
 391 {
 392         void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
 393         unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
 394 
 395         return pgtable_free(table, index);
 396 }
 397 
 398 #ifdef CONFIG_PROC_FS
 399 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
 400 
 401 void arch_report_meminfo(struct seq_file *m)
 402 {
 403         /*
 404          * Hash maps the memory with one size mmu_linear_psize.
 405          * So don't bother to print these on hash
 406          */
 407         if (!radix_enabled())
 408                 return;
 409         seq_printf(m, "DirectMap4k:    %8lu kB\n",
 410                    atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
 411         seq_printf(m, "DirectMap64k:    %8lu kB\n",
 412                    atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
 413         seq_printf(m, "DirectMap2M:    %8lu kB\n",
 414                    atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
 415         seq_printf(m, "DirectMap1G:    %8lu kB\n",
 416                    atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
 417 }
 418 #endif /* CONFIG_PROC_FS */
 419 
 420 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
 421                              pte_t *ptep)
 422 {
 423         unsigned long pte_val;
 424 
 425         /*
 426          * Clear the _PAGE_PRESENT so that no hardware parallel update is
 427          * possible. Also keep the pte_present true so that we don't take
 428          * wrong fault.
 429          */
 430         pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
 431 
 432         return __pte(pte_val);
 433 
 434 }
 435 
 436 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
 437                              pte_t *ptep, pte_t old_pte, pte_t pte)
 438 {
 439         if (radix_enabled())
 440                 return radix__ptep_modify_prot_commit(vma, addr,
 441                                                       ptep, old_pte, pte);
 442         set_pte_at(vma->vm_mm, addr, ptep, pte);
 443 }
 444 
 445 /*
 446  * For hash translation mode, we use the deposited table to store hash slot
 447  * information and they are stored at PTRS_PER_PMD offset from related pmd
 448  * location. Hence a pmd move requires deposit and withdraw.
 449  *
 450  * For radix translation with split pmd ptl, we store the deposited table in the
 451  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
 452  * move.
 453  *
 454  * With hash we use deposited table always irrespective of anon or not.
 455  * With radix we use deposited table only for anonymous mapping.
 456  */
 457 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
 458                            struct spinlock *old_pmd_ptl,
 459                            struct vm_area_struct *vma)
 460 {
 461         if (radix_enabled())
 462                 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
 463 
 464         return true;
 465 }
 466 
 467 /*
 468  * Does the CPU support tlbie?
 469  */
 470 bool tlbie_capable __read_mostly = true;
 471 EXPORT_SYMBOL(tlbie_capable);
 472 
 473 /*
 474  * Should tlbie be used for management of CPU TLBs, for kernel and process
 475  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
 476  * guest address spaces.
 477  */
 478 bool tlbie_enabled __read_mostly = true;
 479 
 480 static int __init setup_disable_tlbie(char *str)
 481 {
 482         if (!radix_enabled()) {
 483                 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
 484                 return 1;
 485         }
 486 
 487         tlbie_capable = false;
 488         tlbie_enabled = false;
 489 
 490         return 1;
 491 }
 492 __setup("disable_tlbie", setup_disable_tlbie);
 493 
 494 static int __init pgtable_debugfs_setup(void)
 495 {
 496         if (!tlbie_capable)
 497                 return 0;
 498 
 499         /*
 500          * There is no locking vs tlb flushing when changing this value.
 501          * The tlb flushers will see one value or another, and use either
 502          * tlbie or tlbiel with IPIs. In both cases the TLBs will be
 503          * invalidated as expected.
 504          */
 505         debugfs_create_bool("tlbie_enabled", 0600,
 506                         powerpc_debugfs_root,
 507                         &tlbie_enabled);
 508 
 509         return 0;
 510 }
 511 arch_initcall(pgtable_debugfs_setup);

/* [<][>][^][v][top][bottom][index][help] */