root/arch/powerpc/mm/book3s64/radix_pgtable.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. early_alloc_pgtable
  2. early_map_kernel_page
  3. __map_kernel_page
  4. radix__map_kernel_page
  5. radix__change_memory_range
  6. radix__mark_rodata_ro
  7. radix__mark_initmem_nx
  8. print_mapping
  9. next_boundary
  10. create_physical_mapping
  11. radix_init_pgtable
  12. radix_init_partition_table
  13. get_idx_from_shift
  14. radix_dt_scan_page_sizes
  15. radix__early_init_devtree
  16. radix_init_amor
  17. setup_kuep
  18. setup_kuap
  19. radix__early_init_mmu
  20. radix__early_init_mmu_secondary
  21. radix__mmu_cleanup_all
  22. radix__setup_initial_memory_limit
  23. free_pte_table
  24. free_pmd_table
  25. stop_machine_change_mapping
  26. remove_pte_table
  27. split_kernel_mapping
  28. remove_pmd_table
  29. remove_pud_table
  30. remove_pagetable
  31. radix__create_section_mapping
  32. radix__remove_section_mapping
  33. __map_kernel_page_nid
  34. radix__vmemmap_create_mapping
  35. radix__vmemmap_remove_mapping
  36. radix__pmd_hugepage_update
  37. radix__pmdp_collapse_flush
  38. radix__pgtable_trans_huge_deposit
  39. radix__pgtable_trans_huge_withdraw
  40. radix__pmdp_huge_get_and_clear
  41. radix__ptep_set_access_flags
  42. radix__ptep_modify_prot_commit
  43. arch_ioremap_pud_supported
  44. arch_ioremap_pmd_supported
  45. p4d_free_pud_page
  46. pud_set_huge
  47. pud_clear_huge
  48. pud_free_pmd_page
  49. pmd_set_huge
  50. pmd_clear_huge
  51. pmd_free_pte_page
  52. arch_ioremap_p4d_supported

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Page table handling routines for radix page table.
   4  *
   5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   6  */
   7 
   8 #define pr_fmt(fmt) "radix-mmu: " fmt
   9 
  10 #include <linux/io.h>
  11 #include <linux/kernel.h>
  12 #include <linux/sched/mm.h>
  13 #include <linux/memblock.h>
  14 #include <linux/of_fdt.h>
  15 #include <linux/mm.h>
  16 #include <linux/string_helpers.h>
  17 #include <linux/stop_machine.h>
  18 
  19 #include <asm/pgtable.h>
  20 #include <asm/pgalloc.h>
  21 #include <asm/mmu_context.h>
  22 #include <asm/dma.h>
  23 #include <asm/machdep.h>
  24 #include <asm/mmu.h>
  25 #include <asm/firmware.h>
  26 #include <asm/powernv.h>
  27 #include <asm/sections.h>
  28 #include <asm/trace.h>
  29 #include <asm/uaccess.h>
  30 #include <asm/ultravisor.h>
  31 
  32 #include <trace/events/thp.h>
  33 
  34 unsigned int mmu_pid_bits;
  35 unsigned int mmu_base_pid;
  36 
  37 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
  38                         unsigned long region_start, unsigned long region_end)
  39 {
  40         phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
  41         phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
  42         void *ptr;
  43 
  44         if (region_start)
  45                 min_addr = region_start;
  46         if (region_end)
  47                 max_addr = region_end;
  48 
  49         ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
  50 
  51         if (!ptr)
  52                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
  53                       __func__, size, size, nid, &min_addr, &max_addr);
  54 
  55         return ptr;
  56 }
  57 
  58 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
  59                           pgprot_t flags,
  60                           unsigned int map_page_size,
  61                           int nid,
  62                           unsigned long region_start, unsigned long region_end)
  63 {
  64         unsigned long pfn = pa >> PAGE_SHIFT;
  65         pgd_t *pgdp;
  66         pud_t *pudp;
  67         pmd_t *pmdp;
  68         pte_t *ptep;
  69 
  70         pgdp = pgd_offset_k(ea);
  71         if (pgd_none(*pgdp)) {
  72                 pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
  73                                                 region_start, region_end);
  74                 pgd_populate(&init_mm, pgdp, pudp);
  75         }
  76         pudp = pud_offset(pgdp, ea);
  77         if (map_page_size == PUD_SIZE) {
  78                 ptep = (pte_t *)pudp;
  79                 goto set_the_pte;
  80         }
  81         if (pud_none(*pudp)) {
  82                 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
  83                                                 region_start, region_end);
  84                 pud_populate(&init_mm, pudp, pmdp);
  85         }
  86         pmdp = pmd_offset(pudp, ea);
  87         if (map_page_size == PMD_SIZE) {
  88                 ptep = pmdp_ptep(pmdp);
  89                 goto set_the_pte;
  90         }
  91         if (!pmd_present(*pmdp)) {
  92                 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
  93                                                 region_start, region_end);
  94                 pmd_populate_kernel(&init_mm, pmdp, ptep);
  95         }
  96         ptep = pte_offset_kernel(pmdp, ea);
  97 
  98 set_the_pte:
  99         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 100         smp_wmb();
 101         return 0;
 102 }
 103 
 104 /*
 105  * nid, region_start, and region_end are hints to try to place the page
 106  * table memory in the same node or region.
 107  */
 108 static int __map_kernel_page(unsigned long ea, unsigned long pa,
 109                           pgprot_t flags,
 110                           unsigned int map_page_size,
 111                           int nid,
 112                           unsigned long region_start, unsigned long region_end)
 113 {
 114         unsigned long pfn = pa >> PAGE_SHIFT;
 115         pgd_t *pgdp;
 116         pud_t *pudp;
 117         pmd_t *pmdp;
 118         pte_t *ptep;
 119         /*
 120          * Make sure task size is correct as per the max adddr
 121          */
 122         BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
 123 
 124 #ifdef CONFIG_PPC_64K_PAGES
 125         BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
 126 #endif
 127 
 128         if (unlikely(!slab_is_available()))
 129                 return early_map_kernel_page(ea, pa, flags, map_page_size,
 130                                                 nid, region_start, region_end);
 131 
 132         /*
 133          * Should make page table allocation functions be able to take a
 134          * node, so we can place kernel page tables on the right nodes after
 135          * boot.
 136          */
 137         pgdp = pgd_offset_k(ea);
 138         pudp = pud_alloc(&init_mm, pgdp, ea);
 139         if (!pudp)
 140                 return -ENOMEM;
 141         if (map_page_size == PUD_SIZE) {
 142                 ptep = (pte_t *)pudp;
 143                 goto set_the_pte;
 144         }
 145         pmdp = pmd_alloc(&init_mm, pudp, ea);
 146         if (!pmdp)
 147                 return -ENOMEM;
 148         if (map_page_size == PMD_SIZE) {
 149                 ptep = pmdp_ptep(pmdp);
 150                 goto set_the_pte;
 151         }
 152         ptep = pte_alloc_kernel(pmdp, ea);
 153         if (!ptep)
 154                 return -ENOMEM;
 155 
 156 set_the_pte:
 157         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 158         smp_wmb();
 159         return 0;
 160 }
 161 
 162 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
 163                           pgprot_t flags,
 164                           unsigned int map_page_size)
 165 {
 166         return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
 167 }
 168 
 169 #ifdef CONFIG_STRICT_KERNEL_RWX
 170 void radix__change_memory_range(unsigned long start, unsigned long end,
 171                                 unsigned long clear)
 172 {
 173         unsigned long idx;
 174         pgd_t *pgdp;
 175         pud_t *pudp;
 176         pmd_t *pmdp;
 177         pte_t *ptep;
 178 
 179         start = ALIGN_DOWN(start, PAGE_SIZE);
 180         end = PAGE_ALIGN(end); // aligns up
 181 
 182         pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
 183                  start, end, clear);
 184 
 185         for (idx = start; idx < end; idx += PAGE_SIZE) {
 186                 pgdp = pgd_offset_k(idx);
 187                 pudp = pud_alloc(&init_mm, pgdp, idx);
 188                 if (!pudp)
 189                         continue;
 190                 if (pud_is_leaf(*pudp)) {
 191                         ptep = (pte_t *)pudp;
 192                         goto update_the_pte;
 193                 }
 194                 pmdp = pmd_alloc(&init_mm, pudp, idx);
 195                 if (!pmdp)
 196                         continue;
 197                 if (pmd_is_leaf(*pmdp)) {
 198                         ptep = pmdp_ptep(pmdp);
 199                         goto update_the_pte;
 200                 }
 201                 ptep = pte_alloc_kernel(pmdp, idx);
 202                 if (!ptep)
 203                         continue;
 204 update_the_pte:
 205                 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
 206         }
 207 
 208         radix__flush_tlb_kernel_range(start, end);
 209 }
 210 
 211 void radix__mark_rodata_ro(void)
 212 {
 213         unsigned long start, end;
 214 
 215         start = (unsigned long)_stext;
 216         end = (unsigned long)__init_begin;
 217 
 218         radix__change_memory_range(start, end, _PAGE_WRITE);
 219 }
 220 
 221 void radix__mark_initmem_nx(void)
 222 {
 223         unsigned long start = (unsigned long)__init_begin;
 224         unsigned long end = (unsigned long)__init_end;
 225 
 226         radix__change_memory_range(start, end, _PAGE_EXEC);
 227 }
 228 #endif /* CONFIG_STRICT_KERNEL_RWX */
 229 
 230 static inline void __meminit
 231 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
 232 {
 233         char buf[10];
 234 
 235         if (end <= start)
 236                 return;
 237 
 238         string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
 239 
 240         pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
 241                 exec ? " (exec)" : "");
 242 }
 243 
 244 static unsigned long next_boundary(unsigned long addr, unsigned long end)
 245 {
 246 #ifdef CONFIG_STRICT_KERNEL_RWX
 247         if (addr < __pa_symbol(__init_begin))
 248                 return __pa_symbol(__init_begin);
 249 #endif
 250         return end;
 251 }
 252 
 253 static int __meminit create_physical_mapping(unsigned long start,
 254                                              unsigned long end,
 255                                              int nid)
 256 {
 257         unsigned long vaddr, addr, mapping_size = 0;
 258         bool prev_exec, exec = false;
 259         pgprot_t prot;
 260         int psize;
 261 
 262         start = _ALIGN_UP(start, PAGE_SIZE);
 263         for (addr = start; addr < end; addr += mapping_size) {
 264                 unsigned long gap, previous_size;
 265                 int rc;
 266 
 267                 gap = next_boundary(addr, end) - addr;
 268                 previous_size = mapping_size;
 269                 prev_exec = exec;
 270 
 271                 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
 272                     mmu_psize_defs[MMU_PAGE_1G].shift) {
 273                         mapping_size = PUD_SIZE;
 274                         psize = MMU_PAGE_1G;
 275                 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
 276                            mmu_psize_defs[MMU_PAGE_2M].shift) {
 277                         mapping_size = PMD_SIZE;
 278                         psize = MMU_PAGE_2M;
 279                 } else {
 280                         mapping_size = PAGE_SIZE;
 281                         psize = mmu_virtual_psize;
 282                 }
 283 
 284                 vaddr = (unsigned long)__va(addr);
 285 
 286                 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
 287                     overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
 288                         prot = PAGE_KERNEL_X;
 289                         exec = true;
 290                 } else {
 291                         prot = PAGE_KERNEL;
 292                         exec = false;
 293                 }
 294 
 295                 if (mapping_size != previous_size || exec != prev_exec) {
 296                         print_mapping(start, addr, previous_size, prev_exec);
 297                         start = addr;
 298                 }
 299 
 300                 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
 301                 if (rc)
 302                         return rc;
 303 
 304                 update_page_count(psize, 1);
 305         }
 306 
 307         print_mapping(start, addr, mapping_size, exec);
 308         return 0;
 309 }
 310 
 311 static void __init radix_init_pgtable(void)
 312 {
 313         unsigned long rts_field;
 314         struct memblock_region *reg;
 315 
 316         /* We don't support slb for radix */
 317         mmu_slb_size = 0;
 318         /*
 319          * Create the linear mapping, using standard page size for now
 320          */
 321         for_each_memblock(memory, reg) {
 322                 /*
 323                  * The memblock allocator  is up at this point, so the
 324                  * page tables will be allocated within the range. No
 325                  * need or a node (which we don't have yet).
 326                  */
 327 
 328                 if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
 329                         pr_warn("Outside the supported range\n");
 330                         continue;
 331                 }
 332 
 333                 WARN_ON(create_physical_mapping(reg->base,
 334                                                 reg->base + reg->size,
 335                                                 -1));
 336         }
 337 
 338         /* Find out how many PID bits are supported */
 339         if (cpu_has_feature(CPU_FTR_HVMODE)) {
 340                 if (!mmu_pid_bits)
 341                         mmu_pid_bits = 20;
 342 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 343                 /*
 344                  * When KVM is possible, we only use the top half of the
 345                  * PID space to avoid collisions between host and guest PIDs
 346                  * which can cause problems due to prefetch when exiting the
 347                  * guest with AIL=3
 348                  */
 349                 mmu_base_pid = 1 << (mmu_pid_bits - 1);
 350 #else
 351                 mmu_base_pid = 1;
 352 #endif
 353         } else {
 354                 /* The guest uses the bottom half of the PID space */
 355                 if (!mmu_pid_bits)
 356                         mmu_pid_bits = 19;
 357                 mmu_base_pid = 1;
 358         }
 359 
 360         /*
 361          * Allocate Partition table and process table for the
 362          * host.
 363          */
 364         BUG_ON(PRTB_SIZE_SHIFT > 36);
 365         process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
 366         /*
 367          * Fill in the process table.
 368          */
 369         rts_field = radix__get_tree_size();
 370         process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
 371 
 372         /*
 373          * The init_mm context is given the first available (non-zero) PID,
 374          * which is the "guard PID" and contains no page table. PIDR should
 375          * never be set to zero because that duplicates the kernel address
 376          * space at the 0x0... offset (quadrant 0)!
 377          *
 378          * An arbitrary PID that may later be allocated by the PID allocator
 379          * for userspace processes must not be used either, because that
 380          * would cause stale user mappings for that PID on CPUs outside of
 381          * the TLB invalidation scheme (because it won't be in mm_cpumask).
 382          *
 383          * So permanently carve out one PID for the purpose of a guard PID.
 384          */
 385         init_mm.context.id = mmu_base_pid;
 386         mmu_base_pid++;
 387 }
 388 
 389 static void __init radix_init_partition_table(void)
 390 {
 391         unsigned long rts_field, dw0, dw1;
 392 
 393         mmu_partition_table_init();
 394         rts_field = radix__get_tree_size();
 395         dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
 396         dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
 397         mmu_partition_table_set_entry(0, dw0, dw1, false);
 398 
 399         pr_info("Initializing Radix MMU\n");
 400 }
 401 
 402 static int __init get_idx_from_shift(unsigned int shift)
 403 {
 404         int idx = -1;
 405 
 406         switch (shift) {
 407         case 0xc:
 408                 idx = MMU_PAGE_4K;
 409                 break;
 410         case 0x10:
 411                 idx = MMU_PAGE_64K;
 412                 break;
 413         case 0x15:
 414                 idx = MMU_PAGE_2M;
 415                 break;
 416         case 0x1e:
 417                 idx = MMU_PAGE_1G;
 418                 break;
 419         }
 420         return idx;
 421 }
 422 
 423 static int __init radix_dt_scan_page_sizes(unsigned long node,
 424                                            const char *uname, int depth,
 425                                            void *data)
 426 {
 427         int size = 0;
 428         int shift, idx;
 429         unsigned int ap;
 430         const __be32 *prop;
 431         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 432 
 433         /* We are scanning "cpu" nodes only */
 434         if (type == NULL || strcmp(type, "cpu") != 0)
 435                 return 0;
 436 
 437         /* Find MMU PID size */
 438         prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
 439         if (prop && size == 4)
 440                 mmu_pid_bits = be32_to_cpup(prop);
 441 
 442         /* Grab page size encodings */
 443         prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
 444         if (!prop)
 445                 return 0;
 446 
 447         pr_info("Page sizes from device-tree:\n");
 448         for (; size >= 4; size -= 4, ++prop) {
 449 
 450                 struct mmu_psize_def *def;
 451 
 452                 /* top 3 bit is AP encoding */
 453                 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
 454                 ap = be32_to_cpu(prop[0]) >> 29;
 455                 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
 456 
 457                 idx = get_idx_from_shift(shift);
 458                 if (idx < 0)
 459                         continue;
 460 
 461                 def = &mmu_psize_defs[idx];
 462                 def->shift = shift;
 463                 def->ap  = ap;
 464         }
 465 
 466         /* needed ? */
 467         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 468         return 1;
 469 }
 470 
 471 void __init radix__early_init_devtree(void)
 472 {
 473         int rc;
 474 
 475         /*
 476          * Try to find the available page sizes in the device-tree
 477          */
 478         rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
 479         if (rc != 0)  /* Found */
 480                 goto found;
 481         /*
 482          * let's assume we have page 4k and 64k support
 483          */
 484         mmu_psize_defs[MMU_PAGE_4K].shift = 12;
 485         mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
 486 
 487         mmu_psize_defs[MMU_PAGE_64K].shift = 16;
 488         mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
 489 found:
 490         return;
 491 }
 492 
 493 static void radix_init_amor(void)
 494 {
 495         /*
 496         * In HV mode, we init AMOR (Authority Mask Override Register) so that
 497         * the hypervisor and guest can setup IAMR (Instruction Authority Mask
 498         * Register), enable key 0 and set it to 1.
 499         *
 500         * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
 501         */
 502         mtspr(SPRN_AMOR, (3ul << 62));
 503 }
 504 
 505 #ifdef CONFIG_PPC_KUEP
 506 void setup_kuep(bool disabled)
 507 {
 508         if (disabled || !early_radix_enabled())
 509                 return;
 510 
 511         if (smp_processor_id() == boot_cpuid)
 512                 pr_info("Activating Kernel Userspace Execution Prevention\n");
 513 
 514         /*
 515          * Radix always uses key0 of the IAMR to determine if an access is
 516          * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
 517          * fetch.
 518          */
 519         mtspr(SPRN_IAMR, (1ul << 62));
 520 }
 521 #endif
 522 
 523 #ifdef CONFIG_PPC_KUAP
 524 void setup_kuap(bool disabled)
 525 {
 526         if (disabled || !early_radix_enabled())
 527                 return;
 528 
 529         if (smp_processor_id() == boot_cpuid) {
 530                 pr_info("Activating Kernel Userspace Access Prevention\n");
 531                 cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
 532         }
 533 
 534         /* Make sure userspace can't change the AMR */
 535         mtspr(SPRN_UAMOR, 0);
 536         mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
 537         isync();
 538 }
 539 #endif
 540 
 541 void __init radix__early_init_mmu(void)
 542 {
 543         unsigned long lpcr;
 544 
 545 #ifdef CONFIG_PPC_64K_PAGES
 546         /* PAGE_SIZE mappings */
 547         mmu_virtual_psize = MMU_PAGE_64K;
 548 #else
 549         mmu_virtual_psize = MMU_PAGE_4K;
 550 #endif
 551 
 552 #ifdef CONFIG_SPARSEMEM_VMEMMAP
 553         /* vmemmap mapping */
 554         if (mmu_psize_defs[MMU_PAGE_2M].shift) {
 555                 /*
 556                  * map vmemmap using 2M if available
 557                  */
 558                 mmu_vmemmap_psize = MMU_PAGE_2M;
 559         } else
 560                 mmu_vmemmap_psize = mmu_virtual_psize;
 561 #endif
 562         /*
 563          * initialize page table size
 564          */
 565         __pte_index_size = RADIX_PTE_INDEX_SIZE;
 566         __pmd_index_size = RADIX_PMD_INDEX_SIZE;
 567         __pud_index_size = RADIX_PUD_INDEX_SIZE;
 568         __pgd_index_size = RADIX_PGD_INDEX_SIZE;
 569         __pud_cache_index = RADIX_PUD_INDEX_SIZE;
 570         __pte_table_size = RADIX_PTE_TABLE_SIZE;
 571         __pmd_table_size = RADIX_PMD_TABLE_SIZE;
 572         __pud_table_size = RADIX_PUD_TABLE_SIZE;
 573         __pgd_table_size = RADIX_PGD_TABLE_SIZE;
 574 
 575         __pmd_val_bits = RADIX_PMD_VAL_BITS;
 576         __pud_val_bits = RADIX_PUD_VAL_BITS;
 577         __pgd_val_bits = RADIX_PGD_VAL_BITS;
 578 
 579         __kernel_virt_start = RADIX_KERN_VIRT_START;
 580         __vmalloc_start = RADIX_VMALLOC_START;
 581         __vmalloc_end = RADIX_VMALLOC_END;
 582         __kernel_io_start = RADIX_KERN_IO_START;
 583         __kernel_io_end = RADIX_KERN_IO_END;
 584         vmemmap = (struct page *)RADIX_VMEMMAP_START;
 585         ioremap_bot = IOREMAP_BASE;
 586 
 587 #ifdef CONFIG_PCI
 588         pci_io_base = ISA_IO_BASE;
 589 #endif
 590         __pte_frag_nr = RADIX_PTE_FRAG_NR;
 591         __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
 592         __pmd_frag_nr = RADIX_PMD_FRAG_NR;
 593         __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
 594 
 595         radix_init_pgtable();
 596 
 597         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 598                 lpcr = mfspr(SPRN_LPCR);
 599                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 600                 radix_init_partition_table();
 601                 radix_init_amor();
 602         } else {
 603                 radix_init_pseries();
 604         }
 605 
 606         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 607 
 608         /* Switch to the guard PID before turning on MMU */
 609         radix__switch_mmu_context(NULL, &init_mm);
 610         tlbiel_all();
 611 }
 612 
 613 void radix__early_init_mmu_secondary(void)
 614 {
 615         unsigned long lpcr;
 616         /*
 617          * update partition table control register and UPRT
 618          */
 619         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 620                 lpcr = mfspr(SPRN_LPCR);
 621                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 622 
 623                 set_ptcr_when_no_uv(__pa(partition_tb) |
 624                                     (PATB_SIZE_SHIFT - 12));
 625 
 626                 radix_init_amor();
 627         }
 628 
 629         radix__switch_mmu_context(NULL, &init_mm);
 630         tlbiel_all();
 631 }
 632 
 633 void radix__mmu_cleanup_all(void)
 634 {
 635         unsigned long lpcr;
 636 
 637         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 638                 lpcr = mfspr(SPRN_LPCR);
 639                 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
 640                 set_ptcr_when_no_uv(0);
 641                 powernv_set_nmmu_ptcr(0);
 642                 radix__flush_tlb_all();
 643         }
 644 }
 645 
 646 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
 647                                 phys_addr_t first_memblock_size)
 648 {
 649         /*
 650          * We don't currently support the first MEMBLOCK not mapping 0
 651          * physical on those processors
 652          */
 653         BUG_ON(first_memblock_base != 0);
 654 
 655         /*
 656          * Radix mode is not limited by RMA / VRMA addressing.
 657          */
 658         ppc64_rma_size = ULONG_MAX;
 659 }
 660 
 661 #ifdef CONFIG_MEMORY_HOTPLUG
 662 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
 663 {
 664         pte_t *pte;
 665         int i;
 666 
 667         for (i = 0; i < PTRS_PER_PTE; i++) {
 668                 pte = pte_start + i;
 669                 if (!pte_none(*pte))
 670                         return;
 671         }
 672 
 673         pte_free_kernel(&init_mm, pte_start);
 674         pmd_clear(pmd);
 675 }
 676 
 677 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 678 {
 679         pmd_t *pmd;
 680         int i;
 681 
 682         for (i = 0; i < PTRS_PER_PMD; i++) {
 683                 pmd = pmd_start + i;
 684                 if (!pmd_none(*pmd))
 685                         return;
 686         }
 687 
 688         pmd_free(&init_mm, pmd_start);
 689         pud_clear(pud);
 690 }
 691 
 692 struct change_mapping_params {
 693         pte_t *pte;
 694         unsigned long start;
 695         unsigned long end;
 696         unsigned long aligned_start;
 697         unsigned long aligned_end;
 698 };
 699 
 700 static int __meminit stop_machine_change_mapping(void *data)
 701 {
 702         struct change_mapping_params *params =
 703                         (struct change_mapping_params *)data;
 704 
 705         if (!data)
 706                 return -1;
 707 
 708         spin_unlock(&init_mm.page_table_lock);
 709         pte_clear(&init_mm, params->aligned_start, params->pte);
 710         create_physical_mapping(__pa(params->aligned_start), __pa(params->start), -1);
 711         create_physical_mapping(__pa(params->end), __pa(params->aligned_end), -1);
 712         spin_lock(&init_mm.page_table_lock);
 713         return 0;
 714 }
 715 
 716 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
 717                              unsigned long end)
 718 {
 719         unsigned long next;
 720         pte_t *pte;
 721 
 722         pte = pte_start + pte_index(addr);
 723         for (; addr < end; addr = next, pte++) {
 724                 next = (addr + PAGE_SIZE) & PAGE_MASK;
 725                 if (next > end)
 726                         next = end;
 727 
 728                 if (!pte_present(*pte))
 729                         continue;
 730 
 731                 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
 732                         /*
 733                          * The vmemmap_free() and remove_section_mapping()
 734                          * codepaths call us with aligned addresses.
 735                          */
 736                         WARN_ONCE(1, "%s: unaligned range\n", __func__);
 737                         continue;
 738                 }
 739 
 740                 pte_clear(&init_mm, addr, pte);
 741         }
 742 }
 743 
 744 /*
 745  * clear the pte and potentially split the mapping helper
 746  */
 747 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
 748                                 unsigned long size, pte_t *pte)
 749 {
 750         unsigned long mask = ~(size - 1);
 751         unsigned long aligned_start = addr & mask;
 752         unsigned long aligned_end = addr + size;
 753         struct change_mapping_params params;
 754         bool split_region = false;
 755 
 756         if ((end - addr) < size) {
 757                 /*
 758                  * We're going to clear the PTE, but not flushed
 759                  * the mapping, time to remap and flush. The
 760                  * effects if visible outside the processor or
 761                  * if we are running in code close to the
 762                  * mapping we cleared, we are in trouble.
 763                  */
 764                 if (overlaps_kernel_text(aligned_start, addr) ||
 765                         overlaps_kernel_text(end, aligned_end)) {
 766                         /*
 767                          * Hack, just return, don't pte_clear
 768                          */
 769                         WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
 770                                   "text, not splitting\n", addr, end);
 771                         return;
 772                 }
 773                 split_region = true;
 774         }
 775 
 776         if (split_region) {
 777                 params.pte = pte;
 778                 params.start = addr;
 779                 params.end = end;
 780                 params.aligned_start = addr & ~(size - 1);
 781                 params.aligned_end = min_t(unsigned long, aligned_end,
 782                                 (unsigned long)__va(memblock_end_of_DRAM()));
 783                 stop_machine(stop_machine_change_mapping, &params, NULL);
 784                 return;
 785         }
 786 
 787         pte_clear(&init_mm, addr, pte);
 788 }
 789 
 790 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
 791                              unsigned long end)
 792 {
 793         unsigned long next;
 794         pte_t *pte_base;
 795         pmd_t *pmd;
 796 
 797         pmd = pmd_start + pmd_index(addr);
 798         for (; addr < end; addr = next, pmd++) {
 799                 next = pmd_addr_end(addr, end);
 800 
 801                 if (!pmd_present(*pmd))
 802                         continue;
 803 
 804                 if (pmd_is_leaf(*pmd)) {
 805                         split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
 806                         continue;
 807                 }
 808 
 809                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
 810                 remove_pte_table(pte_base, addr, next);
 811                 free_pte_table(pte_base, pmd);
 812         }
 813 }
 814 
 815 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
 816                              unsigned long end)
 817 {
 818         unsigned long next;
 819         pmd_t *pmd_base;
 820         pud_t *pud;
 821 
 822         pud = pud_start + pud_index(addr);
 823         for (; addr < end; addr = next, pud++) {
 824                 next = pud_addr_end(addr, end);
 825 
 826                 if (!pud_present(*pud))
 827                         continue;
 828 
 829                 if (pud_is_leaf(*pud)) {
 830                         split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
 831                         continue;
 832                 }
 833 
 834                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
 835                 remove_pmd_table(pmd_base, addr, next);
 836                 free_pmd_table(pmd_base, pud);
 837         }
 838 }
 839 
 840 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
 841 {
 842         unsigned long addr, next;
 843         pud_t *pud_base;
 844         pgd_t *pgd;
 845 
 846         spin_lock(&init_mm.page_table_lock);
 847 
 848         for (addr = start; addr < end; addr = next) {
 849                 next = pgd_addr_end(addr, end);
 850 
 851                 pgd = pgd_offset_k(addr);
 852                 if (!pgd_present(*pgd))
 853                         continue;
 854 
 855                 if (pgd_is_leaf(*pgd)) {
 856                         split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
 857                         continue;
 858                 }
 859 
 860                 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
 861                 remove_pud_table(pud_base, addr, next);
 862         }
 863 
 864         spin_unlock(&init_mm.page_table_lock);
 865         radix__flush_tlb_kernel_range(start, end);
 866 }
 867 
 868 int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
 869 {
 870         if (end >= RADIX_VMALLOC_START) {
 871                 pr_warn("Outside the supported range\n");
 872                 return -1;
 873         }
 874 
 875         return create_physical_mapping(__pa(start), __pa(end), nid);
 876 }
 877 
 878 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
 879 {
 880         remove_pagetable(start, end);
 881         return 0;
 882 }
 883 #endif /* CONFIG_MEMORY_HOTPLUG */
 884 
 885 #ifdef CONFIG_SPARSEMEM_VMEMMAP
 886 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
 887                                  pgprot_t flags, unsigned int map_page_size,
 888                                  int nid)
 889 {
 890         return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
 891 }
 892 
 893 int __meminit radix__vmemmap_create_mapping(unsigned long start,
 894                                       unsigned long page_size,
 895                                       unsigned long phys)
 896 {
 897         /* Create a PTE encoding */
 898         unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
 899         int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
 900         int ret;
 901 
 902         if ((start + page_size) >= RADIX_VMEMMAP_END) {
 903                 pr_warn("Outside the supported range\n");
 904                 return -1;
 905         }
 906 
 907         ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
 908         BUG_ON(ret);
 909 
 910         return 0;
 911 }
 912 
 913 #ifdef CONFIG_MEMORY_HOTPLUG
 914 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
 915 {
 916         remove_pagetable(start, start + page_size);
 917 }
 918 #endif
 919 #endif
 920 
 921 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 922 
 923 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 924                                   pmd_t *pmdp, unsigned long clr,
 925                                   unsigned long set)
 926 {
 927         unsigned long old;
 928 
 929 #ifdef CONFIG_DEBUG_VM
 930         WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 931         assert_spin_locked(pmd_lockptr(mm, pmdp));
 932 #endif
 933 
 934         old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
 935         trace_hugepage_update(addr, old, clr, set);
 936 
 937         return old;
 938 }
 939 
 940 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 941                         pmd_t *pmdp)
 942 
 943 {
 944         pmd_t pmd;
 945 
 946         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 947         VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
 948         VM_BUG_ON(pmd_devmap(*pmdp));
 949         /*
 950          * khugepaged calls this for normal pmd
 951          */
 952         pmd = *pmdp;
 953         pmd_clear(pmdp);
 954 
 955         /*FIXME!!  Verify whether we need this kick below */
 956         serialize_against_pte_lookup(vma->vm_mm);
 957 
 958         radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
 959 
 960         return pmd;
 961 }
 962 
 963 /*
 964  * For us pgtable_t is pte_t *. Inorder to save the deposisted
 965  * page table, we consider the allocated page table as a list
 966  * head. On withdraw we need to make sure we zero out the used
 967  * list_head memory area.
 968  */
 969 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 970                                  pgtable_t pgtable)
 971 {
 972         struct list_head *lh = (struct list_head *) pgtable;
 973 
 974         assert_spin_locked(pmd_lockptr(mm, pmdp));
 975 
 976         /* FIFO */
 977         if (!pmd_huge_pte(mm, pmdp))
 978                 INIT_LIST_HEAD(lh);
 979         else
 980                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
 981         pmd_huge_pte(mm, pmdp) = pgtable;
 982 }
 983 
 984 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 985 {
 986         pte_t *ptep;
 987         pgtable_t pgtable;
 988         struct list_head *lh;
 989 
 990         assert_spin_locked(pmd_lockptr(mm, pmdp));
 991 
 992         /* FIFO */
 993         pgtable = pmd_huge_pte(mm, pmdp);
 994         lh = (struct list_head *) pgtable;
 995         if (list_empty(lh))
 996                 pmd_huge_pte(mm, pmdp) = NULL;
 997         else {
 998                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
 999                 list_del(lh);
1000         }
1001         ptep = (pte_t *) pgtable;
1002         *ptep = __pte(0);
1003         ptep++;
1004         *ptep = __pte(0);
1005         return pgtable;
1006 }
1007 
1008 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1009                                      unsigned long addr, pmd_t *pmdp)
1010 {
1011         pmd_t old_pmd;
1012         unsigned long old;
1013 
1014         old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1015         old_pmd = __pmd(old);
1016         /*
1017          * Serialize against find_current_mm_pte which does lock-less
1018          * lookup in page tables with local interrupts disabled. For huge pages
1019          * it casts pmd_t to pte_t. Since format of pte_t is different from
1020          * pmd_t we want to prevent transit from pmd pointing to page table
1021          * to pmd pointing to huge page (and back) while interrupts are disabled.
1022          * We clear pmd to possibly replace it with page table pointer in
1023          * different code paths. So make sure we wait for the parallel
1024          * find_current_mm_pte to finish.
1025          */
1026         serialize_against_pte_lookup(mm);
1027         return old_pmd;
1028 }
1029 
1030 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1031 
1032 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1033                                   pte_t entry, unsigned long address, int psize)
1034 {
1035         struct mm_struct *mm = vma->vm_mm;
1036         unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1037                                               _PAGE_RW | _PAGE_EXEC);
1038 
1039         unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1040         /*
1041          * To avoid NMMU hang while relaxing access, we need mark
1042          * the pte invalid in between.
1043          */
1044         if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1045                 unsigned long old_pte, new_pte;
1046 
1047                 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1048                 /*
1049                  * new value of pte
1050                  */
1051                 new_pte = old_pte | set;
1052                 radix__flush_tlb_page_psize(mm, address, psize);
1053                 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1054         } else {
1055                 __radix_pte_update(ptep, 0, set);
1056                 /*
1057                  * Book3S does not require a TLB flush when relaxing access
1058                  * restrictions when the address space is not attached to a
1059                  * NMMU, because the core MMU will reload the pte after taking
1060                  * an access fault, which is defined by the architectue.
1061                  */
1062         }
1063         /* See ptesync comment in radix__set_pte_at */
1064 }
1065 
1066 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1067                                     unsigned long addr, pte_t *ptep,
1068                                     pte_t old_pte, pte_t pte)
1069 {
1070         struct mm_struct *mm = vma->vm_mm;
1071 
1072         /*
1073          * To avoid NMMU hang while relaxing access we need to flush the tlb before
1074          * we set the new value. We need to do this only for radix, because hash
1075          * translation does flush when updating the linux pte.
1076          */
1077         if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1078             (atomic_read(&mm->context.copros) > 0))
1079                 radix__flush_tlb_page(vma, addr);
1080 
1081         set_pte_at(mm, addr, ptep, pte);
1082 }
1083 
1084 int __init arch_ioremap_pud_supported(void)
1085 {
1086         /* HPT does not cope with large pages in the vmalloc area */
1087         return radix_enabled();
1088 }
1089 
1090 int __init arch_ioremap_pmd_supported(void)
1091 {
1092         return radix_enabled();
1093 }
1094 
1095 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1096 {
1097         return 0;
1098 }
1099 
1100 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1101 {
1102         pte_t *ptep = (pte_t *)pud;
1103         pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1104 
1105         if (!radix_enabled())
1106                 return 0;
1107 
1108         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1109 
1110         return 1;
1111 }
1112 
1113 int pud_clear_huge(pud_t *pud)
1114 {
1115         if (pud_huge(*pud)) {
1116                 pud_clear(pud);
1117                 return 1;
1118         }
1119 
1120         return 0;
1121 }
1122 
1123 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1124 {
1125         pmd_t *pmd;
1126         int i;
1127 
1128         pmd = (pmd_t *)pud_page_vaddr(*pud);
1129         pud_clear(pud);
1130 
1131         flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1132 
1133         for (i = 0; i < PTRS_PER_PMD; i++) {
1134                 if (!pmd_none(pmd[i])) {
1135                         pte_t *pte;
1136                         pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1137 
1138                         pte_free_kernel(&init_mm, pte);
1139                 }
1140         }
1141 
1142         pmd_free(&init_mm, pmd);
1143 
1144         return 1;
1145 }
1146 
1147 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1148 {
1149         pte_t *ptep = (pte_t *)pmd;
1150         pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1151 
1152         if (!radix_enabled())
1153                 return 0;
1154 
1155         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1156 
1157         return 1;
1158 }
1159 
1160 int pmd_clear_huge(pmd_t *pmd)
1161 {
1162         if (pmd_huge(*pmd)) {
1163                 pmd_clear(pmd);
1164                 return 1;
1165         }
1166 
1167         return 0;
1168 }
1169 
1170 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1171 {
1172         pte_t *pte;
1173 
1174         pte = (pte_t *)pmd_page_vaddr(*pmd);
1175         pmd_clear(pmd);
1176 
1177         flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1178 
1179         pte_free_kernel(&init_mm, pte);
1180 
1181         return 1;
1182 }
1183 
1184 int __init arch_ioremap_p4d_supported(void)
1185 {
1186         return 0;
1187 }

/* [<][>][^][v][top][bottom][index][help] */