This source file includes following definitions.
- vmemmap_section_start
- vmemmap_populated
- vmemmap_list_alloc
- vmemmap_list_populate
- altmap_cross_boundary
- vmemmap_populate
- vmemmap_list_free
- vmemmap_free
- register_page_bootmem_memmap
- parse_disable_radix
- early_check_vec5
- mmu_early_init_devtree
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 #undef DEBUG
18
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43
44 #include <asm/pgalloc.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu.h>
52 #include <linux/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/sections.h>
61 #include <asm/iommu.h>
62 #include <asm/vdso.h>
63
64 #include <mm/mmu_decl.h>
65
66 phys_addr_t memstart_addr = ~0;
67 EXPORT_SYMBOL_GPL(memstart_addr);
68 phys_addr_t kernstart_addr;
69 EXPORT_SYMBOL_GPL(kernstart_addr);
70
71 #ifdef CONFIG_SPARSEMEM_VMEMMAP
72
73
74
75
76
77
78 static unsigned long __meminit vmemmap_section_start(unsigned long page)
79 {
80 unsigned long offset = page - ((unsigned long)(vmemmap));
81
82
83 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
84 }
85
86
87
88
89
90
91 static int __meminit vmemmap_populated(unsigned long start, int page_size)
92 {
93 unsigned long end = start + page_size;
94 start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
95
96 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
97 if (pfn_valid(page_to_pfn((struct page *)start)))
98 return 1;
99
100 return 0;
101 }
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116 struct vmemmap_backing *vmemmap_list;
117 static struct vmemmap_backing *next;
118
119
120
121
122
123
124
125
126 static int num_left;
127 static int num_freed;
128
129 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
130 {
131 struct vmemmap_backing *vmem_back;
132
133 if (num_freed) {
134 num_freed--;
135 vmem_back = next;
136 next = next->list;
137
138 return vmem_back;
139 }
140
141
142 if (!num_left) {
143 next = vmemmap_alloc_block(PAGE_SIZE, node);
144 if (unlikely(!next)) {
145 WARN_ON(1);
146 return NULL;
147 }
148 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
149 }
150
151 num_left--;
152
153 return next++;
154 }
155
156 static __meminit void vmemmap_list_populate(unsigned long phys,
157 unsigned long start,
158 int node)
159 {
160 struct vmemmap_backing *vmem_back;
161
162 vmem_back = vmemmap_list_alloc(node);
163 if (unlikely(!vmem_back)) {
164 WARN_ON(1);
165 return;
166 }
167
168 vmem_back->phys = phys;
169 vmem_back->virt_addr = start;
170 vmem_back->list = vmemmap_list;
171
172 vmemmap_list = vmem_back;
173 }
174
175 static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
176 unsigned long page_size)
177 {
178 unsigned long nr_pfn = page_size / sizeof(struct page);
179 unsigned long start_pfn = page_to_pfn((struct page *)start);
180
181 if ((start_pfn + nr_pfn) > altmap->end_pfn)
182 return true;
183
184 if (start_pfn < altmap->base_pfn)
185 return true;
186
187 return false;
188 }
189
190 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
191 struct vmem_altmap *altmap)
192 {
193 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
194
195
196 start = _ALIGN_DOWN(start, page_size);
197
198 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
199
200 for (; start < end; start += page_size) {
201 void *p = NULL;
202 int rc;
203
204 if (vmemmap_populated(start, page_size))
205 continue;
206
207
208
209
210
211
212 if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
213 p = altmap_alloc_block_buf(page_size, altmap);
214 if (!p)
215 pr_debug("altmap block allocation failed, falling back to system memory");
216 }
217 if (!p)
218 p = vmemmap_alloc_block_buf(page_size, node);
219 if (!p)
220 return -ENOMEM;
221
222 vmemmap_list_populate(__pa(p), start, node);
223
224 pr_debug(" * %016lx..%016lx allocated at %p\n",
225 start, start + page_size, p);
226
227 rc = vmemmap_create_mapping(start, page_size, __pa(p));
228 if (rc < 0) {
229 pr_warn("%s: Unable to create vmemmap mapping: %d\n",
230 __func__, rc);
231 return -EFAULT;
232 }
233 }
234
235 return 0;
236 }
237
238 #ifdef CONFIG_MEMORY_HOTPLUG
239 static unsigned long vmemmap_list_free(unsigned long start)
240 {
241 struct vmemmap_backing *vmem_back, *vmem_back_prev;
242
243 vmem_back_prev = vmem_back = vmemmap_list;
244
245
246 for (; vmem_back; vmem_back = vmem_back->list) {
247 if (vmem_back->virt_addr == start)
248 break;
249 vmem_back_prev = vmem_back;
250 }
251
252 if (unlikely(!vmem_back)) {
253 WARN_ON(1);
254 return 0;
255 }
256
257
258 if (vmem_back == vmemmap_list)
259 vmemmap_list = vmem_back->list;
260 else
261 vmem_back_prev->list = vmem_back->list;
262
263
264 vmem_back->list = next;
265 next = vmem_back;
266 num_freed++;
267
268 return vmem_back->phys;
269 }
270
271 void __ref vmemmap_free(unsigned long start, unsigned long end,
272 struct vmem_altmap *altmap)
273 {
274 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
275 unsigned long page_order = get_order(page_size);
276 unsigned long alt_start = ~0, alt_end = ~0;
277 unsigned long base_pfn;
278
279 start = _ALIGN_DOWN(start, page_size);
280 if (altmap) {
281 alt_start = altmap->base_pfn;
282 alt_end = altmap->base_pfn + altmap->reserve +
283 altmap->free + altmap->alloc + altmap->align;
284 }
285
286 pr_debug("vmemmap_free %lx...%lx\n", start, end);
287
288 for (; start < end; start += page_size) {
289 unsigned long nr_pages, addr;
290 struct page *page;
291
292
293
294
295
296
297 if (vmemmap_populated(start, page_size))
298 continue;
299
300 addr = vmemmap_list_free(start);
301 if (!addr)
302 continue;
303
304 page = pfn_to_page(addr >> PAGE_SHIFT);
305 nr_pages = 1 << page_order;
306 base_pfn = PHYS_PFN(addr);
307
308 if (base_pfn >= alt_start && base_pfn < alt_end) {
309 vmem_altmap_free(altmap, nr_pages);
310 } else if (PageReserved(page)) {
311
312 if (page_size < PAGE_SIZE) {
313
314
315
316
317 WARN_ON_ONCE(1);
318 } else {
319 while (nr_pages--)
320 free_reserved_page(page++);
321 }
322 } else {
323 free_pages((unsigned long)(__va(addr)), page_order);
324 }
325
326 vmemmap_remove_mapping(start, page_size);
327 }
328 }
329 #endif
330 void register_page_bootmem_memmap(unsigned long section_nr,
331 struct page *start_page, unsigned long size)
332 {
333 }
334
335 #endif
336
337 #ifdef CONFIG_PPC_BOOK3S_64
338 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
339
340 static int __init parse_disable_radix(char *p)
341 {
342 bool val;
343
344 if (!p)
345 val = true;
346 else if (kstrtobool(p, &val))
347 return -EINVAL;
348
349 disable_radix = val;
350
351 return 0;
352 }
353 early_param("disable_radix", parse_disable_radix);
354
355
356
357
358
359
360 static void __init early_check_vec5(void)
361 {
362 unsigned long root, chosen;
363 int size;
364 const u8 *vec5;
365 u8 mmu_supported;
366
367 root = of_get_flat_dt_root();
368 chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
369 if (chosen == -FDT_ERR_NOTFOUND) {
370 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
371 return;
372 }
373 vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
374 if (!vec5) {
375 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
376 return;
377 }
378 if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
379 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
380 return;
381 }
382
383
384 mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
385 OV5_FEAT(OV5_MMU_SUPPORT);
386 if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
387
388 if (!early_radix_enabled()) {
389 pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
390 }
391 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
392 OV5_FEAT(OV5_RADIX_GTSE))) {
393 pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
394 }
395
396 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
397 } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
398
399 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
400 }
401 }
402
403 void __init mmu_early_init_devtree(void)
404 {
405
406 if (disable_radix)
407 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
408
409
410
411
412
413
414
415 if (!(mfmsr() & MSR_HV))
416 early_check_vec5();
417
418 if (early_radix_enabled())
419 radix__early_init_devtree();
420 else
421 hash__early_init_devtree();
422 }
423 #endif