root/arch/powerpc/include/asm/kvm_book3s_64.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. kvmhv_on_pseries
  2. kvmhv_on_pseries
  3. svcpu_get
  4. svcpu_put
  5. kvm_is_radix
  6. kvmhv_vcpu_is_radix
  7. try_lock_hpte
  8. unlock_hpte
  9. __unlock_hpte
  10. kvmppc_hpte_page_shifts
  11. kvmppc_hpte_base_page_shift
  12. kvmppc_hpte_actual_page_shift
  13. kvmppc_actual_pgsz
  14. kvmppc_pgsize_lp_encoding
  15. compute_tlbie_rb
  16. hpte_rpn
  17. hpte_is_writable
  18. hpte_make_readonly
  19. hpte_cache_flags_ok
  20. kvmppc_read_update_linux_pte
  21. hpte_read_permission
  22. hpte_write_permission
  23. hpte_get_skey_perm
  24. lock_rmap
  25. unlock_rmap
  26. slot_is_aligned
  27. slb_pgsize_encoding
  28. is_vrma_hpte
  29. note_hpte_modification
  30. kvm_memslots_raw
  31. kvmppc_hpt_npte
  32. kvmppc_hpt_mask
  33. set_dirty_bits
  34. set_dirty_bits_atomic
  35. sanitize_msr
  36. copy_from_checkpoint
  37. copy_to_checkpoint

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /*
   3  *
   4  * Copyright SUSE Linux Products GmbH 2010
   5  *
   6  * Authors: Alexander Graf <agraf@suse.de>
   7  */
   8 
   9 #ifndef __ASM_KVM_BOOK3S_64_H__
  10 #define __ASM_KVM_BOOK3S_64_H__
  11 
  12 #include <linux/string.h>
  13 #include <asm/bitops.h>
  14 #include <asm/book3s/64/mmu-hash.h>
  15 #include <asm/cpu_has_feature.h>
  16 #include <asm/ppc-opcode.h>
  17 
  18 #ifdef CONFIG_PPC_PSERIES
  19 static inline bool kvmhv_on_pseries(void)
  20 {
  21         return !cpu_has_feature(CPU_FTR_HVMODE);
  22 }
  23 #else
  24 static inline bool kvmhv_on_pseries(void)
  25 {
  26         return false;
  27 }
  28 #endif
  29 
  30 /*
  31  * Structure for a nested guest, that is, for a guest that is managed by
  32  * one of our guests.
  33  */
  34 struct kvm_nested_guest {
  35         struct kvm *l1_host;            /* L1 VM that owns this nested guest */
  36         int l1_lpid;                    /* lpid L1 guest thinks this guest is */
  37         int shadow_lpid;                /* real lpid of this nested guest */
  38         pgd_t *shadow_pgtable;          /* our page table for this guest */
  39         u64 l1_gr_to_hr;                /* L1's addr of part'n-scoped table */
  40         u64 process_table;              /* process table entry for this guest */
  41         long refcnt;                    /* number of pointers to this struct */
  42         struct mutex tlb_lock;          /* serialize page faults and tlbies */
  43         struct kvm_nested_guest *next;
  44         cpumask_t need_tlb_flush;
  45         cpumask_t cpu_in_guest;
  46         short prev_cpu[NR_CPUS];
  47         u8 radix;                       /* is this nested guest radix */
  48 };
  49 
  50 /*
  51  * We define a nested rmap entry as a single 64-bit quantity
  52  * 0xFFF0000000000000   12-bit lpid field
  53  * 0x000FFFFFFFFFF000   40-bit guest 4k page frame number
  54  * 0x0000000000000001   1-bit  single entry flag
  55  */
  56 #define RMAP_NESTED_LPID_MASK           0xFFF0000000000000UL
  57 #define RMAP_NESTED_LPID_SHIFT          (52)
  58 #define RMAP_NESTED_GPA_MASK            0x000FFFFFFFFFF000UL
  59 #define RMAP_NESTED_IS_SINGLE_ENTRY     0x0000000000000001UL
  60 
  61 /* Structure for a nested guest rmap entry */
  62 struct rmap_nested {
  63         struct llist_node list;
  64         u64 rmap;
  65 };
  66 
  67 /*
  68  * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
  69  *                           safe against removal of the list entry or NULL list
  70  * @pos:        a (struct rmap_nested *) to use as a loop cursor
  71  * @node:       pointer to the first entry
  72  *              NOTE: this can be NULL
  73  * @rmapp:      an (unsigned long *) in which to return the rmap entries on each
  74  *              iteration
  75  *              NOTE: this must point to already allocated memory
  76  *
  77  * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
  78  * rmap entry in the memslot. The list is always terminated by a "single entry"
  79  * stored in the list element of the final entry of the llist. If there is ONLY
  80  * a single entry then this is itself in the rmap entry of the memslot, not a
  81  * llist head pointer.
  82  *
  83  * Note that the iterator below assumes that a nested rmap entry is always
  84  * non-zero.  This is true for our usage because the LPID field is always
  85  * non-zero (zero is reserved for the host).
  86  *
  87  * This should be used to iterate over the list of rmap_nested entries with
  88  * processing done on the u64 rmap value given by each iteration. This is safe
  89  * against removal of list entries and it is always safe to call free on (pos).
  90  *
  91  * e.g.
  92  * struct rmap_nested *cursor;
  93  * struct llist_node *first;
  94  * unsigned long rmap;
  95  * for_each_nest_rmap_safe(cursor, first, &rmap) {
  96  *      do_something(rmap);
  97  *      free(cursor);
  98  * }
  99  */
 100 #define for_each_nest_rmap_safe(pos, node, rmapp)                              \
 101         for ((pos) = llist_entry((node), typeof(*(pos)), list);                \
 102              (node) &&                                                         \
 103              (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
 104                           ((u64) (node)) : ((pos)->rmap))) &&                  \
 105              (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
 106                          ((struct llist_node *) ((pos) = NULL)) :              \
 107                          (pos)->list.next)), true);                            \
 108              (pos) = llist_entry((node), typeof(*(pos)), list))
 109 
 110 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
 111                                           bool create);
 112 void kvmhv_put_nested(struct kvm_nested_guest *gp);
 113 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
 114 
 115 /* Encoding of first parameter for H_TLB_INVALIDATE */
 116 #define H_TLBIE_P1_ENC(ric, prs, r)     (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
 117                                          ___PPC_R(r))
 118 
 119 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
 120 #define PPC_MIN_HPT_ORDER       18
 121 #define PPC_MAX_HPT_ORDER       46
 122 
 123 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
 124 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
 125 {
 126         preempt_disable();
 127         return &get_paca()->shadow_vcpu;
 128 }
 129 
 130 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
 131 {
 132         preempt_enable();
 133 }
 134 #endif
 135 
 136 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 137 
 138 static inline bool kvm_is_radix(struct kvm *kvm)
 139 {
 140         return kvm->arch.radix;
 141 }
 142 
 143 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
 144 {
 145         bool radix;
 146 
 147         if (vcpu->arch.nested)
 148                 radix = vcpu->arch.nested->radix;
 149         else
 150                 radix = kvm_is_radix(vcpu->kvm);
 151 
 152         return radix;
 153 }
 154 
 155 #define KVM_DEFAULT_HPT_ORDER   24      /* 16MB HPT by default */
 156 #endif
 157 
 158 /*
 159  * We use a lock bit in HPTE dword 0 to synchronize updates and
 160  * accesses to each HPTE, and another bit to indicate non-present
 161  * HPTEs.
 162  */
 163 #define HPTE_V_HVLOCK   0x40UL
 164 #define HPTE_V_ABSENT   0x20UL
 165 
 166 /*
 167  * We use this bit in the guest_rpte field of the revmap entry
 168  * to indicate a modified HPTE.
 169  */
 170 #define HPTE_GR_MODIFIED        (1ul << 62)
 171 
 172 /* These bits are reserved in the guest view of the HPTE */
 173 #define HPTE_GR_RESERVED        HPTE_GR_MODIFIED
 174 
 175 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
 176 {
 177         unsigned long tmp, old;
 178         __be64 be_lockbit, be_bits;
 179 
 180         /*
 181          * We load/store in native endian, but the HTAB is in big endian. If
 182          * we byte swap all data we apply on the PTE we're implicitly correct
 183          * again.
 184          */
 185         be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
 186         be_bits = cpu_to_be64(bits);
 187 
 188         asm volatile("  ldarx   %0,0,%2\n"
 189                      "  and.    %1,%0,%3\n"
 190                      "  bne     2f\n"
 191                      "  or      %0,%0,%4\n"
 192                      "  stdcx.  %0,0,%2\n"
 193                      "  beq+    2f\n"
 194                      "  mr      %1,%3\n"
 195                      "2:        isync"
 196                      : "=&r" (tmp), "=&r" (old)
 197                      : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
 198                      : "cc", "memory");
 199         return old == 0;
 200 }
 201 
 202 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
 203 {
 204         hpte_v &= ~HPTE_V_HVLOCK;
 205         asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
 206         hpte[0] = cpu_to_be64(hpte_v);
 207 }
 208 
 209 /* Without barrier */
 210 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
 211 {
 212         hpte_v &= ~HPTE_V_HVLOCK;
 213         hpte[0] = cpu_to_be64(hpte_v);
 214 }
 215 
 216 /*
 217  * These functions encode knowledge of the POWER7/8/9 hardware
 218  * interpretations of the HPTE LP (large page size) field.
 219  */
 220 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
 221 {
 222         unsigned int lphi;
 223 
 224         if (!(h & HPTE_V_LARGE))
 225                 return 12;      /* 4kB */
 226         lphi = (l >> 16) & 0xf;
 227         switch ((l >> 12) & 0xf) {
 228         case 0:
 229                 return !lphi ? 24 : 0;          /* 16MB */
 230                 break;
 231         case 1:
 232                 return 16;                      /* 64kB */
 233                 break;
 234         case 3:
 235                 return !lphi ? 34 : 0;          /* 16GB */
 236                 break;
 237         case 7:
 238                 return (16 << 8) + 12;          /* 64kB in 4kB */
 239                 break;
 240         case 8:
 241                 if (!lphi)
 242                         return (24 << 8) + 16;  /* 16MB in 64kkB */
 243                 if (lphi == 3)
 244                         return (24 << 8) + 12;  /* 16MB in 4kB */
 245                 break;
 246         }
 247         return 0;
 248 }
 249 
 250 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
 251 {
 252         return kvmppc_hpte_page_shifts(h, l) & 0xff;
 253 }
 254 
 255 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
 256 {
 257         int tmp = kvmppc_hpte_page_shifts(h, l);
 258 
 259         if (tmp >= 0x100)
 260                 tmp >>= 8;
 261         return tmp;
 262 }
 263 
 264 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
 265 {
 266         int shift = kvmppc_hpte_actual_page_shift(v, r);
 267 
 268         if (shift)
 269                 return 1ul << shift;
 270         return 0;
 271 }
 272 
 273 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
 274 {
 275         switch (base_shift) {
 276         case 12:
 277                 switch (actual_shift) {
 278                 case 12:
 279                         return 0;
 280                 case 16:
 281                         return 7;
 282                 case 24:
 283                         return 0x38;
 284                 }
 285                 break;
 286         case 16:
 287                 switch (actual_shift) {
 288                 case 16:
 289                         return 1;
 290                 case 24:
 291                         return 8;
 292                 }
 293                 break;
 294         case 24:
 295                 return 0;
 296         }
 297         return -1;
 298 }
 299 
 300 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
 301                                              unsigned long pte_index)
 302 {
 303         int a_pgshift, b_pgshift;
 304         unsigned long rb = 0, va_low, sllp;
 305 
 306         b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
 307         if (a_pgshift >= 0x100) {
 308                 b_pgshift &= 0xff;
 309                 a_pgshift >>= 8;
 310         }
 311 
 312         /*
 313          * Ignore the top 14 bits of va
 314          * v have top two bits covering segment size, hence move
 315          * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
 316          * AVA field in v also have the lower 23 bits ignored.
 317          * For base page size 4K we need 14 .. 65 bits (so need to
 318          * collect extra 11 bits)
 319          * For others we need 14..14+i
 320          */
 321         /* This covers 14..54 bits of va*/
 322         rb = (v & ~0x7fUL) << 16;               /* AVA field */
 323 
 324         /*
 325          * AVA in v had cleared lower 23 bits. We need to derive
 326          * that from pteg index
 327          */
 328         va_low = pte_index >> 3;
 329         if (v & HPTE_V_SECONDARY)
 330                 va_low = ~va_low;
 331         /*
 332          * get the vpn bits from va_low using reverse of hashing.
 333          * In v we have va with 23 bits dropped and then left shifted
 334          * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
 335          * right shift it with (SID_SHIFT - (23 - 7))
 336          */
 337         if (!(v & HPTE_V_1TB_SEG))
 338                 va_low ^= v >> (SID_SHIFT - 16);
 339         else
 340                 va_low ^= v >> (SID_SHIFT_1T - 16);
 341         va_low &= 0x7ff;
 342 
 343         if (b_pgshift <= 12) {
 344                 if (a_pgshift > 12) {
 345                         sllp = (a_pgshift == 16) ? 5 : 4;
 346                         rb |= sllp << 5;        /*  AP field */
 347                 }
 348                 rb |= (va_low & 0x7ff) << 12;   /* remaining 11 bits of AVA */
 349         } else {
 350                 int aval_shift;
 351                 /*
 352                  * remaining bits of AVA/LP fields
 353                  * Also contain the rr bits of LP
 354                  */
 355                 rb |= (va_low << b_pgshift) & 0x7ff000;
 356                 /*
 357                  * Now clear not needed LP bits based on actual psize
 358                  */
 359                 rb &= ~((1ul << a_pgshift) - 1);
 360                 /*
 361                  * AVAL field 58..77 - base_page_shift bits of va
 362                  * we have space for 58..64 bits, Missing bits should
 363                  * be zero filled. +1 is to take care of L bit shift
 364                  */
 365                 aval_shift = 64 - (77 - b_pgshift) + 1;
 366                 rb |= ((va_low << aval_shift) & 0xfe);
 367 
 368                 rb |= 1;                /* L field */
 369                 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
 370         }
 371         rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;   /* B field */
 372         return rb;
 373 }
 374 
 375 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
 376 {
 377         return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
 378 }
 379 
 380 static inline int hpte_is_writable(unsigned long ptel)
 381 {
 382         unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
 383 
 384         return pp != PP_RXRX && pp != PP_RXXX;
 385 }
 386 
 387 static inline unsigned long hpte_make_readonly(unsigned long ptel)
 388 {
 389         if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
 390                 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
 391         else
 392                 ptel |= PP_RXRX;
 393         return ptel;
 394 }
 395 
 396 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
 397 {
 398         unsigned int wimg = hptel & HPTE_R_WIMG;
 399 
 400         /* Handle SAO */
 401         if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
 402             cpu_has_feature(CPU_FTR_ARCH_206))
 403                 wimg = HPTE_R_M;
 404 
 405         if (!is_ci)
 406                 return wimg == HPTE_R_M;
 407         /*
 408          * if host is mapped cache inhibited, make sure hptel also have
 409          * cache inhibited.
 410          */
 411         if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
 412                 return false;
 413         return !!(wimg & HPTE_R_I);
 414 }
 415 
 416 /*
 417  * If it's present and writable, atomically set dirty and referenced bits and
 418  * return the PTE, otherwise return 0.
 419  */
 420 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
 421 {
 422         pte_t old_pte, new_pte = __pte(0);
 423 
 424         while (1) {
 425                 /*
 426                  * Make sure we don't reload from ptep
 427                  */
 428                 old_pte = READ_ONCE(*ptep);
 429                 /*
 430                  * wait until H_PAGE_BUSY is clear then set it atomically
 431                  */
 432                 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
 433                         cpu_relax();
 434                         continue;
 435                 }
 436                 /* If pte is not present return None */
 437                 if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
 438                         return __pte(0);
 439 
 440                 new_pte = pte_mkyoung(old_pte);
 441                 if (writing && pte_write(old_pte))
 442                         new_pte = pte_mkdirty(new_pte);
 443 
 444                 if (pte_xchg(ptep, old_pte, new_pte))
 445                         break;
 446         }
 447         return new_pte;
 448 }
 449 
 450 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
 451 {
 452         if (key)
 453                 return PP_RWRX <= pp && pp <= PP_RXRX;
 454         return true;
 455 }
 456 
 457 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
 458 {
 459         if (key)
 460                 return pp == PP_RWRW;
 461         return pp <= PP_RWRW;
 462 }
 463 
 464 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
 465 {
 466         unsigned long skey;
 467 
 468         skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
 469                 ((hpte_r & HPTE_R_KEY_LO) >> 9);
 470         return (amr >> (62 - 2 * skey)) & 3;
 471 }
 472 
 473 static inline void lock_rmap(unsigned long *rmap)
 474 {
 475         do {
 476                 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
 477                         cpu_relax();
 478         } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
 479 }
 480 
 481 static inline void unlock_rmap(unsigned long *rmap)
 482 {
 483         __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
 484 }
 485 
 486 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
 487                                    unsigned long pagesize)
 488 {
 489         unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
 490 
 491         if (pagesize <= PAGE_SIZE)
 492                 return true;
 493         return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
 494 }
 495 
 496 /*
 497  * This works for 4k, 64k and 16M pages on POWER7,
 498  * and 4k and 16M pages on PPC970.
 499  */
 500 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
 501 {
 502         unsigned long senc = 0;
 503 
 504         if (psize > 0x1000) {
 505                 senc = SLB_VSID_L;
 506                 if (psize == 0x10000)
 507                         senc |= SLB_VSID_LP_01;
 508         }
 509         return senc;
 510 }
 511 
 512 static inline int is_vrma_hpte(unsigned long hpte_v)
 513 {
 514         return (hpte_v & ~0xffffffUL) ==
 515                 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
 516 }
 517 
 518 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 519 /*
 520  * Note modification of an HPTE; set the HPTE modified bit
 521  * if anyone is interested.
 522  */
 523 static inline void note_hpte_modification(struct kvm *kvm,
 524                                           struct revmap_entry *rev)
 525 {
 526         if (atomic_read(&kvm->arch.hpte_mod_interest))
 527                 rev->guest_rpte |= HPTE_GR_MODIFIED;
 528 }
 529 
 530 /*
 531  * Like kvm_memslots(), but for use in real mode when we can't do
 532  * any RCU stuff (since the secondary threads are offline from the
 533  * kernel's point of view), and we can't print anything.
 534  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
 535  */
 536 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
 537 {
 538         return rcu_dereference_raw_check(kvm->memslots[0]);
 539 }
 540 
 541 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
 542 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
 543 
 544 extern void kvmhv_rm_send_ipi(int cpu);
 545 
 546 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
 547 {
 548         /* HPTEs are 2**4 bytes long */
 549         return 1UL << (hpt->order - 4);
 550 }
 551 
 552 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
 553 {
 554         /* 128 (2**7) bytes in each HPTEG */
 555         return (1UL << (hpt->order - 7)) - 1;
 556 }
 557 
 558 /* Set bits in a dirty bitmap, which is in LE format */
 559 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
 560                                   unsigned long npages)
 561 {
 562 
 563         if (npages >= 8)
 564                 memset((char *)map + i / 8, 0xff, npages / 8);
 565         else
 566                 for (; npages; ++i, --npages)
 567                         __set_bit_le(i, map);
 568 }
 569 
 570 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
 571                                          unsigned long npages)
 572 {
 573         if (npages >= 8)
 574                 memset((char *)map + i / 8, 0xff, npages / 8);
 575         else
 576                 for (; npages; ++i, --npages)
 577                         set_bit_le(i, map);
 578 }
 579 
 580 static inline u64 sanitize_msr(u64 msr)
 581 {
 582         msr &= ~MSR_HV;
 583         msr |= MSR_ME;
 584         return msr;
 585 }
 586 
 587 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 588 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
 589 {
 590         vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
 591         vcpu->arch.regs.xer = vcpu->arch.xer_tm;
 592         vcpu->arch.regs.link  = vcpu->arch.lr_tm;
 593         vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
 594         vcpu->arch.amr = vcpu->arch.amr_tm;
 595         vcpu->arch.ppr = vcpu->arch.ppr_tm;
 596         vcpu->arch.dscr = vcpu->arch.dscr_tm;
 597         vcpu->arch.tar = vcpu->arch.tar_tm;
 598         memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
 599                sizeof(vcpu->arch.regs.gpr));
 600         vcpu->arch.fp  = vcpu->arch.fp_tm;
 601         vcpu->arch.vr  = vcpu->arch.vr_tm;
 602         vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
 603 }
 604 
 605 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
 606 {
 607         vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
 608         vcpu->arch.xer_tm = vcpu->arch.regs.xer;
 609         vcpu->arch.lr_tm  = vcpu->arch.regs.link;
 610         vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
 611         vcpu->arch.amr_tm = vcpu->arch.amr;
 612         vcpu->arch.ppr_tm = vcpu->arch.ppr;
 613         vcpu->arch.dscr_tm = vcpu->arch.dscr;
 614         vcpu->arch.tar_tm = vcpu->arch.tar;
 615         memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
 616                sizeof(vcpu->arch.regs.gpr));
 617         vcpu->arch.fp_tm  = vcpu->arch.fp;
 618         vcpu->arch.vr_tm  = vcpu->arch.vr;
 619         vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
 620 }
 621 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 622 
 623 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
 624                              unsigned long gpa, unsigned int level,
 625                              unsigned long mmu_seq, unsigned int lpid,
 626                              unsigned long *rmapp, struct rmap_nested **n_rmap);
 627 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
 628                                    struct rmap_nested **n_rmap);
 629 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
 630                                            unsigned long clr, unsigned long set,
 631                                            unsigned long hpa, unsigned long nbytes);
 632 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
 633                                 const struct kvm_memory_slot *memslot,
 634                                 unsigned long gpa, unsigned long hpa,
 635                                 unsigned long nbytes);
 636 
 637 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 638 
 639 #endif /* __ASM_KVM_BOOK3S_64_H__ */

/* [<][>][^][v][top][bottom][index][help] */