1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _SMU_H 3 #define _SMU_H 4 5 /* 6 * Definitions for talking to the SMU chip in newer G5 PowerMacs 7 */ 8 #ifdef __KERNEL__ 9 #include <linux/list.h> 10 #endif 11 #include <linux/types.h> 12 13 /* 14 * Known SMU commands 15 * 16 * Most of what is below comes from looking at the Open Firmware driver, 17 * though this is still incomplete and could use better documentation here 18 * or there... 19 */ 20 21 22 /* 23 * Partition info commands 24 * 25 * These commands are used to retrieve the sdb-partition-XX datas from 26 * the SMU. The length is always 2. First byte is the subcommand code 27 * and second byte is the partition ID. 28 * 29 * The reply is 6 bytes: 30 * 31 * - 0..1 : partition address 32 * - 2 : a byte containing the partition ID 33 * - 3 : length (maybe other bits are rest of header ?) 34 * 35 * The data must then be obtained with calls to another command: 36 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below). 37 */ 38 #define SMU_CMD_PARTITION_COMMAND 0x3e 39 #define SMU_CMD_PARTITION_LATEST 0x01 40 #define SMU_CMD_PARTITION_BASE 0x02 41 #define SMU_CMD_PARTITION_UPDATE 0x03 42 43 44 /* 45 * Fan control 46 * 47 * This is a "mux" for fan control commands. The command seem to 48 * act differently based on the number of arguments. With 1 byte 49 * of argument, this seem to be queries for fans status, setpoint, 50 * etc..., while with 0xe arguments, we will set the fans speeds. 51 * 52 * Queries (1 byte arg): 53 * --------------------- 54 * 55 * arg=0x01: read RPM fans status 56 * arg=0x02: read RPM fans setpoint 57 * arg=0x11: read PWM fans status 58 * arg=0x12: read PWM fans setpoint 59 * 60 * the "status" queries return the current speed while the "setpoint" ones 61 * return the programmed/target speed. It _seems_ that the result is a bit 62 * mask in the first byte of active/available fans, followed by 6 words (16 63 * bits) containing the requested speed. 64 * 65 * Setpoint (14 bytes arg): 66 * ------------------------ 67 * 68 * first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the 69 * mask of fans affected by the command. Followed by 6 words containing the 70 * setpoint value for selected fans in the mask (or 0 if mask value is 0) 71 */ 72 #define SMU_CMD_FAN_COMMAND 0x4a 73 74 75 /* 76 * Battery access 77 * 78 * Same command number as the PMU, could it be same syntax ? 79 */ 80 #define SMU_CMD_BATTERY_COMMAND 0x6f 81 #define SMU_CMD_GET_BATTERY_INFO 0x00 82 83 /* 84 * Real time clock control 85 * 86 * This is a "mux", first data byte contains the "sub" command. 87 * The "RTC" part of the SMU controls the date, time, powerup 88 * timer, but also a PRAM 89 * 90 * Dates are in BCD format on 7 bytes: 91 * [sec] [min] [hour] [weekday] [month day] [month] [year] 92 * with month being 1 based and year minus 100 93 */ 94 #define SMU_CMD_RTC_COMMAND 0x8e 95 #define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */ 96 #define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */ 97 #define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02 98 #define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */ 99 #define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */ 100 #define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */ 101 #define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */ 102 #define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */ 103 #define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */ 104 #define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */ 105 #define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */ 106 #define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */ 107 108 /* 109 * i2c commands 110 * 111 * To issue an i2c command, first is to send a parameter block to the 112 * the SMU. This is a command of type 0x9a with 9 bytes of header 113 * eventually followed by data for a write: 114 * 115 * 0: bus number (from device-tree usually, SMU has lots of busses !) 116 * 1: transfer type/format (see below) 117 * 2: device address. For combined and combined4 type transfers, this 118 * is the "write" version of the address (bit 0x01 cleared) 119 * 3: subaddress length (0..3) 120 * 4: subaddress byte 0 (or only byte for subaddress length 1) 121 * 5: subaddress byte 1 122 * 6: subaddress byte 2 123 * 7: combined address (device address for combined mode data phase) 124 * 8: data length 125 * 126 * The transfer types are the same good old Apple ones it seems, 127 * that is: 128 * - 0x00: Simple transfer 129 * - 0x01: Subaddress transfer (addr write + data tx, no restart) 130 * - 0x02: Combined transfer (addr write + restart + data tx) 131 * 132 * This is then followed by actual data for a write. 133 * 134 * At this point, the OF driver seems to have a limitation on transfer 135 * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know 136 * whether this is just an OF limit due to some temporary buffer size 137 * or if this is an SMU imposed limit. This driver has the same limitation 138 * for now as I use a 0x10 bytes temporary buffer as well 139 * 140 * Once that is completed, a response is expected from the SMU. This is 141 * obtained via a command of type 0x9a with a length of 1 byte containing 142 * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's 143 * though I can't tell yet if this is actually necessary. Once this command 144 * is complete, at this point, all I can tell is what OF does. OF tests 145 * byte 0 of the reply: 146 * - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ? 147 * - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0) 148 * - on write, < 0 -> failure (immediate exit) 149 * - else, OF just exists (without error, weird) 150 * 151 * So on read, there is this wait-for-busy thing when getting a 0xfc or 152 * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and 153 * doing the above again until either the retries expire or the result 154 * is no longer 0xfe or 0xfc 155 * 156 * The Darwin I2C driver is less subtle though. On any non-success status 157 * from the response command, it waits 5ms and tries again up to 20 times, 158 * it doesn't differentiate between fatal errors or "busy" status. 159 * 160 * This driver provides an asynchronous paramblock based i2c command 161 * interface to be used either directly by low level code or by a higher 162 * level driver interfacing to the linux i2c layer. The current 163 * implementation of this relies on working timers & timer interrupts 164 * though, so be careful of calling context for now. This may be "fixed" 165 * in the future by adding a polling facility. 166 */ 167 #define SMU_CMD_I2C_COMMAND 0x9a 168 /* transfer types */ 169 #define SMU_I2C_TRANSFER_SIMPLE 0x00 170 #define SMU_I2C_TRANSFER_STDSUB 0x01 171 #define SMU_I2C_TRANSFER_COMBINED 0x02 172 173 /* 174 * Power supply control 175 * 176 * The "sub" command is an ASCII string in the data, the 177 * data length is that of the string. 178 * 179 * The VSLEW command can be used to get or set the voltage slewing. 180 * - length 5 (only "VSLEW") : it returns "DONE" and 3 bytes of 181 * reply at data offset 6, 7 and 8. 182 * - length 8 ("VSLEWxyz") has 3 additional bytes appended, and is 183 * used to set the voltage slewing point. The SMU replies with "DONE" 184 * I yet have to figure out their exact meaning of those 3 bytes in 185 * both cases. They seem to be: 186 * x = processor mask 187 * y = op. point index 188 * z = processor freq. step index 189 * I haven't yet deciphered result codes 190 * 191 */ 192 #define SMU_CMD_POWER_COMMAND 0xaa 193 #define SMU_CMD_POWER_RESTART "RESTART" 194 #define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN" 195 #define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW" 196 197 /* 198 * Read ADC sensors 199 * 200 * This command takes one byte of parameter: the sensor ID (or "reg" 201 * value in the device-tree) and returns a 16 bits value 202 */ 203 #define SMU_CMD_READ_ADC 0xd8 204 205 206 /* Misc commands 207 * 208 * This command seem to be a grab bag of various things 209 * 210 * Parameters: 211 * 1: subcommand 212 */ 213 #define SMU_CMD_MISC_df_COMMAND 0xdf 214 215 /* 216 * Sets "system ready" status 217 * 218 * I did not yet understand how it exactly works or what it does. 219 * 220 * Guessing from OF code, 0x02 activates the display backlight. Apple uses/used 221 * the same codebase for all OF versions. On PowerBooks, this command would 222 * enable the backlight. For the G5s, it only activates the front LED. However, 223 * don't take this for granted. 224 * 225 * Parameters: 226 * 2: status [0x00, 0x01 or 0x02] 227 */ 228 #define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02 229 230 /* 231 * Sets mode of power switch. 232 * 233 * What this actually does is not yet known. Maybe it enables some interrupt. 234 * 235 * Parameters: 236 * 2: enable power switch? [0x00 or 0x01] 237 * 3 (optional): enable nmi? [0x00 or 0x01] 238 * 239 * Returns: 240 * If parameter 2 is 0x00 and parameter 3 is not specified, returns whether 241 * NMI is enabled. Otherwise unknown. 242 */ 243 #define SMU_CMD_MISC_df_NMI_OPTION 0x04 244 245 /* Sets LED dimm offset. 246 * 247 * The front LED dimms itself during sleep. Its brightness (or, well, the PWM 248 * frequency) depends on current time. Therefore, the SMU needs to know the 249 * timezone. 250 * 251 * Parameters: 252 * 2-8: unknown (BCD coding) 253 */ 254 #define SMU_CMD_MISC_df_DIMM_OFFSET 0x99 255 256 257 /* 258 * Version info commands 259 * 260 * Parameters: 261 * 1 (optional): Specifies version part to retrieve 262 * 263 * Returns: 264 * Version value 265 */ 266 #define SMU_CMD_VERSION_COMMAND 0xea 267 #define SMU_VERSION_RUNNING 0x00 268 #define SMU_VERSION_BASE 0x01 269 #define SMU_VERSION_UPDATE 0x02 270 271 272 /* 273 * Switches 274 * 275 * These are switches whose status seems to be known to the SMU. 276 * 277 * Parameters: 278 * none 279 * 280 * Result: 281 * Switch bits (ORed, see below) 282 */ 283 #define SMU_CMD_SWITCHES 0xdc 284 285 /* Switches bits */ 286 #define SMU_SWITCH_CASE_CLOSED 0x01 287 #define SMU_SWITCH_AC_POWER 0x04 288 #define SMU_SWITCH_POWER_SWITCH 0x08 289 290 291 /* 292 * Misc commands 293 * 294 * This command seem to be a grab bag of various things 295 * 296 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to 297 * transfer blocks of data from the SMU. So far, I've decrypted it's 298 * usage to retrieve partition data. In order to do that, you have to 299 * break your transfer in "chunks" since that command cannot transfer 300 * more than a chunk at a time. The chunk size used by OF is 0xe bytes, 301 * but it seems that the darwin driver will let you do 0x1e bytes if 302 * your "PMU" version is >= 0x30. You can get the "PMU" version apparently 303 * either in the last 16 bits of property "smu-version-pmu" or as the 16 304 * bytes at offset 1 of "smu-version-info" 305 * 306 * For each chunk, the command takes 7 bytes of arguments: 307 * byte 0: subcommand code (0x02) 308 * byte 1: 0x04 (always, I don't know what it means, maybe the address 309 * space to use or some other nicety. It's hard coded in OF) 310 * byte 2..5: SMU address of the chunk (big endian 32 bits) 311 * byte 6: size to transfer (up to max chunk size) 312 * 313 * The data is returned directly 314 */ 315 #define SMU_CMD_MISC_ee_COMMAND 0xee 316 #define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02 317 318 /* Retrieves currently used watts. 319 * 320 * Parameters: 321 * 1: 0x03 (Meaning unknown) 322 */ 323 #define SMU_CMD_MISC_ee_GET_WATTS 0x03 324 325 #define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */ 326 #define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */ 327 328 329 /* 330 * Power related commands 331 * 332 * Parameters: 333 * 1: subcommand 334 */ 335 #define SMU_CMD_POWER_EVENTS_COMMAND 0x8f 336 337 /* SMU_POWER_EVENTS subcommands */ 338 enum { 339 SMU_PWR_GET_POWERUP_EVENTS = 0x00, 340 SMU_PWR_SET_POWERUP_EVENTS = 0x01, 341 SMU_PWR_CLR_POWERUP_EVENTS = 0x02, 342 SMU_PWR_GET_WAKEUP_EVENTS = 0x03, 343 SMU_PWR_SET_WAKEUP_EVENTS = 0x04, 344 SMU_PWR_CLR_WAKEUP_EVENTS = 0x05, 345 346 /* 347 * Get last shutdown cause 348 * 349 * Returns: 350 * 1 byte (signed char): Last shutdown cause. Exact meaning unknown. 351 */ 352 SMU_PWR_LAST_SHUTDOWN_CAUSE = 0x07, 353 354 /* 355 * Sets or gets server ID. Meaning or use is unknown. 356 * 357 * Parameters: 358 * 2 (optional): Set server ID (1 byte) 359 * 360 * Returns: 361 * 1 byte (server ID?) 362 */ 363 SMU_PWR_SERVER_ID = 0x08, 364 }; 365 366 /* Power events wakeup bits */ 367 enum { 368 SMU_PWR_WAKEUP_KEY = 0x01, /* Wake on key press */ 369 SMU_PWR_WAKEUP_AC_INSERT = 0x02, /* Wake on AC adapter plug */ 370 SMU_PWR_WAKEUP_AC_CHANGE = 0x04, 371 SMU_PWR_WAKEUP_LID_OPEN = 0x08, 372 SMU_PWR_WAKEUP_RING = 0x10, 373 }; 374 375 376 /* 377 * - Kernel side interface - 378 */ 379 380 #ifdef __KERNEL__ 381 382 /* 383 * Asynchronous SMU commands 384 * 385 * Fill up this structure and submit it via smu_queue_command(), 386 * and get notified by the optional done() callback, or because 387 * status becomes != 1 388 */ 389 390 struct smu_cmd; 391 392 struct smu_cmd 393 { 394 /* public */ 395 u8 cmd; /* command */ 396 int data_len; /* data len */ 397 int reply_len; /* reply len */ 398 void *data_buf; /* data buffer */ 399 void *reply_buf; /* reply buffer */ 400 int status; /* command status */ 401 void (*done)(struct smu_cmd *cmd, void *misc); 402 void *misc; 403 404 /* private */ 405 struct list_head link; 406 }; 407 408 /* 409 * Queues an SMU command, all fields have to be initialized 410 */ 411 extern int smu_queue_cmd(struct smu_cmd *cmd); 412 413 /* 414 * Simple command wrapper. This structure embeds a small buffer 415 * to ease sending simple SMU commands from the stack 416 */ 417 struct smu_simple_cmd 418 { 419 struct smu_cmd cmd; 420 u8 buffer[16]; 421 }; 422 423 /* 424 * Queues a simple command. All fields will be initialized by that 425 * function 426 */ 427 extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command, 428 unsigned int data_len, 429 void (*done)(struct smu_cmd *cmd, void *misc), 430 void *misc, 431 ...); 432 433 /* 434 * Completion helper. Pass it to smu_queue_simple or as 'done' 435 * member to smu_queue_cmd, it will call complete() on the struct 436 * completion passed in the "misc" argument 437 */ 438 extern void smu_done_complete(struct smu_cmd *cmd, void *misc); 439 440 /* 441 * Synchronous helpers. Will spin-wait for completion of a command 442 */ 443 extern void smu_spinwait_cmd(struct smu_cmd *cmd); 444 445 static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd) 446 { 447 smu_spinwait_cmd(&scmd->cmd); 448 } 449 450 /* 451 * Poll routine to call if blocked with irqs off 452 */ 453 extern void smu_poll(void); 454 455 456 /* 457 * Init routine, presence check.... 458 */ 459 extern int smu_init(void); 460 extern int smu_present(void); 461 struct platform_device; 462 extern struct platform_device *smu_get_ofdev(void); 463 464 465 /* 466 * Common command wrappers 467 */ 468 extern void smu_shutdown(void); 469 extern void smu_restart(void); 470 struct rtc_time; 471 extern int smu_get_rtc_time(struct rtc_time *time, int spinwait); 472 extern int smu_set_rtc_time(struct rtc_time *time, int spinwait); 473 474 /* 475 * Kernel asynchronous i2c interface 476 */ 477 478 #define SMU_I2C_READ_MAX 0x1d 479 #define SMU_I2C_WRITE_MAX 0x15 480 481 /* SMU i2c header, exactly matches i2c header on wire */ 482 struct smu_i2c_param 483 { 484 u8 bus; /* SMU bus ID (from device tree) */ 485 u8 type; /* i2c transfer type */ 486 u8 devaddr; /* device address (includes direction) */ 487 u8 sublen; /* subaddress length */ 488 u8 subaddr[3]; /* subaddress */ 489 u8 caddr; /* combined address, filled by SMU driver */ 490 u8 datalen; /* length of transfer */ 491 u8 data[SMU_I2C_READ_MAX]; /* data */ 492 }; 493 494 struct smu_i2c_cmd 495 { 496 /* public */ 497 struct smu_i2c_param info; 498 void (*done)(struct smu_i2c_cmd *cmd, void *misc); 499 void *misc; 500 int status; /* 1 = pending, 0 = ok, <0 = fail */ 501 502 /* private */ 503 struct smu_cmd scmd; 504 int read; 505 int stage; 506 int retries; 507 u8 pdata[32]; 508 struct list_head link; 509 }; 510 511 /* 512 * Call this to queue an i2c command to the SMU. You must fill info, 513 * including info.data for a write, done and misc. 514 * For now, no polling interface is provided so you have to use completion 515 * callback. 516 */ 517 extern int smu_queue_i2c(struct smu_i2c_cmd *cmd); 518 519 520 #endif /* __KERNEL__ */ 521 522 523 /* 524 * - SMU "sdb" partitions informations - 525 */ 526 527 528 /* 529 * Partition header format 530 */ 531 struct smu_sdbp_header { 532 __u8 id; 533 __u8 len; 534 __u8 version; 535 __u8 flags; 536 }; 537 538 539 /* 540 * demangle 16 and 32 bits integer in some SMU partitions 541 * (currently, afaik, this concerns only the FVT partition 542 * (0x12) 543 */ 544 #define SMU_U16_MIX(x) le16_to_cpu(x) 545 #define SMU_U32_MIX(x) ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8)) 546 547 548 /* This is the definition of the SMU sdb-partition-0x12 table (called 549 * CPU F/V/T operating points in Darwin). The definition for all those 550 * SMU tables should be moved to some separate file 551 */ 552 #define SMU_SDB_FVT_ID 0x12 553 554 struct smu_sdbp_fvt { 555 __u32 sysclk; /* Base SysClk frequency in Hz for 556 * this operating point. Value need to 557 * be unmixed with SMU_U32_MIX() 558 */ 559 __u8 pad; 560 __u8 maxtemp; /* Max temp. supported by this 561 * operating point 562 */ 563 564 __u16 volts[3]; /* CPU core voltage for the 3 565 * PowerTune modes, a mode with 566 * 0V = not supported. Value need 567 * to be unmixed with SMU_U16_MIX() 568 */ 569 }; 570 571 /* This partition contains voltage & current sensor calibration 572 * informations 573 */ 574 #define SMU_SDB_CPUVCP_ID 0x21 575 576 struct smu_sdbp_cpuvcp { 577 __u16 volt_scale; /* u4.12 fixed point */ 578 __s16 volt_offset; /* s4.12 fixed point */ 579 __u16 curr_scale; /* u4.12 fixed point */ 580 __s16 curr_offset; /* s4.12 fixed point */ 581 __s32 power_quads[3]; /* s4.28 fixed point */ 582 }; 583 584 /* This partition contains CPU thermal diode calibration 585 */ 586 #define SMU_SDB_CPUDIODE_ID 0x18 587 588 struct smu_sdbp_cpudiode { 589 __u16 m_value; /* u1.15 fixed point */ 590 __s16 b_value; /* s10.6 fixed point */ 591 592 }; 593 594 /* This partition contains Slots power calibration 595 */ 596 #define SMU_SDB_SLOTSPOW_ID 0x78 597 598 struct smu_sdbp_slotspow { 599 __u16 pow_scale; /* u4.12 fixed point */ 600 __s16 pow_offset; /* s4.12 fixed point */ 601 }; 602 603 /* This partition contains machine specific version information about 604 * the sensor/control layout 605 */ 606 #define SMU_SDB_SENSORTREE_ID 0x25 607 608 struct smu_sdbp_sensortree { 609 __u8 model_id; 610 __u8 unknown[3]; 611 }; 612 613 /* This partition contains CPU thermal control PID informations. So far 614 * only single CPU machines have been seen with an SMU, so we assume this 615 * carries only informations for those 616 */ 617 #define SMU_SDB_CPUPIDDATA_ID 0x17 618 619 struct smu_sdbp_cpupiddata { 620 __u8 unknown1; 621 __u8 target_temp_delta; 622 __u8 unknown2; 623 __u8 history_len; 624 __s16 power_adj; 625 __u16 max_power; 626 __s32 gp,gr,gd; 627 }; 628 629 630 /* Other partitions without known structures */ 631 #define SMU_SDB_DEBUG_SWITCHES_ID 0x05 632 633 #ifdef __KERNEL__ 634 /* 635 * This returns the pointer to an SMU "sdb" partition data or NULL 636 * if not found. The data format is described below 637 */ 638 extern const struct smu_sdbp_header *smu_get_sdb_partition(int id, 639 unsigned int *size); 640 641 /* Get "sdb" partition data from an SMU satellite */ 642 extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id, 643 int id, unsigned int *size); 644 645 646 #endif /* __KERNEL__ */ 647 648 649 /* 650 * - Userland interface - 651 */ 652 653 /* 654 * A given instance of the device can be configured for 2 different 655 * things at the moment: 656 * 657 * - sending SMU commands (default at open() time) 658 * - receiving SMU events (not yet implemented) 659 * 660 * Commands are written with write() of a command block. They can be 661 * "driver" commands (for example to switch to event reception mode) 662 * or real SMU commands. They are made of a header followed by command 663 * data if any. 664 * 665 * For SMU commands (not for driver commands), you can then read() back 666 * a reply. The reader will be blocked or not depending on how the device 667 * file is opened. poll() isn't implemented yet. The reply will consist 668 * of a header as well, followed by the reply data if any. You should 669 * always provide a buffer large enough for the maximum reply data, I 670 * recommand one page. 671 * 672 * It is illegal to send SMU commands through a file descriptor configured 673 * for events reception 674 * 675 */ 676 struct smu_user_cmd_hdr 677 { 678 __u32 cmdtype; 679 #define SMU_CMDTYPE_SMU 0 /* SMU command */ 680 #define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */ 681 #define SMU_CMDTYPE_GET_PARTITION 2 /* retrieve an sdb partition */ 682 683 __u8 cmd; /* SMU command byte */ 684 __u8 pad[3]; /* padding */ 685 __u32 data_len; /* Length of data following */ 686 }; 687 688 struct smu_user_reply_hdr 689 { 690 __u32 status; /* Command status */ 691 __u32 reply_len; /* Length of data follwing */ 692 }; 693 694 #endif /* _SMU_H */