root/arch/powerpc/platforms/powernv/subcore.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. wait_for_sync_step
  2. update_hid_in_slw
  3. unsplit_core
  4. split_core
  5. cpu_do_split
  6. cpu_core_split_required
  7. update_subcore_sibling_mask
  8. cpu_update_split_mode
  9. set_subcores_per_core
  10. store_subcores_per_core
  11. show_subcores_per_core
  12. subcore_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
   4  */
   5 
   6 #define pr_fmt(fmt)     "powernv: " fmt
   7 
   8 #include <linux/kernel.h>
   9 #include <linux/cpu.h>
  10 #include <linux/cpumask.h>
  11 #include <linux/device.h>
  12 #include <linux/gfp.h>
  13 #include <linux/smp.h>
  14 #include <linux/stop_machine.h>
  15 
  16 #include <asm/cputhreads.h>
  17 #include <asm/cpuidle.h>
  18 #include <asm/kvm_ppc.h>
  19 #include <asm/machdep.h>
  20 #include <asm/opal.h>
  21 #include <asm/smp.h>
  22 
  23 #include "subcore.h"
  24 #include "powernv.h"
  25 
  26 
  27 /*
  28  * Split/unsplit procedure:
  29  *
  30  * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
  31  *
  32  * The mapping to subcores_per_core is simple:
  33  *
  34  *  State       | subcores_per_core
  35  *  ------------|------------------
  36  *  Unsplit     |        1
  37  *  2-way split |        2
  38  *  4-way split |        4
  39  *
  40  * The core is split along thread boundaries, the mapping between subcores and
  41  * threads is as follows:
  42  *
  43  *  Unsplit:
  44  *          ----------------------------
  45  *  Subcore |            0             |
  46  *          ----------------------------
  47  *  Thread  |  0  1  2  3  4  5  6  7  |
  48  *          ----------------------------
  49  *
  50  *  2-way split:
  51  *          -------------------------------------
  52  *  Subcore |        0        |        1        |
  53  *          -------------------------------------
  54  *  Thread  |  0   1   2   3  |  4   5   6   7  |
  55  *          -------------------------------------
  56  *
  57  *  4-way split:
  58  *          -----------------------------------------
  59  *  Subcore |    0    |    1    |    2    |    3    |
  60  *          -----------------------------------------
  61  *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
  62  *          -----------------------------------------
  63  *
  64  *
  65  * Transitions
  66  * -----------
  67  *
  68  * It is not possible to transition between either of the split states, the
  69  * core must first be unsplit. The legal transitions are:
  70  *
  71  *  -----------          ---------------
  72  *  |         |  <---->  | 2-way split |
  73  *  |         |          ---------------
  74  *  | Unsplit |
  75  *  |         |          ---------------
  76  *  |         |  <---->  | 4-way split |
  77  *  -----------          ---------------
  78  *
  79  * Unsplitting
  80  * -----------
  81  *
  82  * Unsplitting is the simpler procedure. It requires thread 0 to request the
  83  * unsplit while all other threads NAP.
  84  *
  85  * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
  86  * the hardware that if all threads except 0 are napping, the hardware should
  87  * unsplit the core.
  88  *
  89  * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
  90  * see the core unsplit.
  91  *
  92  * Core 0 spins waiting for the hardware to see all the other threads napping
  93  * and perform the unsplit.
  94  *
  95  * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
  96  * out of NAP. They will then see the core unsplit and exit the NAP loop.
  97  *
  98  * Splitting
  99  * ---------
 100  *
 101  * The basic splitting procedure is fairly straight forward. However it is
 102  * complicated by the fact that after the split occurs, the newly created
 103  * subcores are not in a fully initialised state.
 104  *
 105  * Most notably the subcores do not have the correct value for SDR1, which
 106  * means they must not be running in virtual mode when the split occurs. The
 107  * subcores have separate timebases SPRs but these are pre-synchronised by
 108  * opal.
 109  *
 110  * To begin with secondary threads are sent to an assembly routine. There they
 111  * switch to real mode, so they are immune to the uninitialised SDR1 value.
 112  * Once in real mode they indicate that they are in real mode, and spin waiting
 113  * to see the core split.
 114  *
 115  * Thread 0 waits to see that all secondaries are in real mode, and then begins
 116  * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
 117  * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
 118  * to request the split, and spins waiting to see that the split has happened.
 119  *
 120  * Concurrently the secondaries will notice the split. When they do they set up
 121  * their SPRs, notably SDR1, and then they can return to virtual mode and exit
 122  * the procedure.
 123  */
 124 
 125 /* Initialised at boot by subcore_init() */
 126 static int subcores_per_core;
 127 
 128 /*
 129  * Used to communicate to offline cpus that we want them to pop out of the
 130  * offline loop and do a split or unsplit.
 131  *
 132  * 0 - no split happening
 133  * 1 - unsplit in progress
 134  * 2 - split to 2 in progress
 135  * 4 - split to 4 in progress
 136  */
 137 static int new_split_mode;
 138 
 139 static cpumask_var_t cpu_offline_mask;
 140 
 141 struct split_state {
 142         u8 step;
 143         u8 master;
 144 };
 145 
 146 static DEFINE_PER_CPU(struct split_state, split_state);
 147 
 148 static void wait_for_sync_step(int step)
 149 {
 150         int i, cpu = smp_processor_id();
 151 
 152         for (i = cpu + 1; i < cpu + threads_per_core; i++)
 153                 while(per_cpu(split_state, i).step < step)
 154                         barrier();
 155 
 156         /* Order the wait loop vs any subsequent loads/stores. */
 157         mb();
 158 }
 159 
 160 static void update_hid_in_slw(u64 hid0)
 161 {
 162         u64 idle_states = pnv_get_supported_cpuidle_states();
 163 
 164         if (idle_states & OPAL_PM_WINKLE_ENABLED) {
 165                 /* OPAL call to patch slw with the new HID0 value */
 166                 u64 cpu_pir = hard_smp_processor_id();
 167 
 168                 opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
 169         }
 170 }
 171 
 172 static void unsplit_core(void)
 173 {
 174         u64 hid0, mask;
 175         int i, cpu;
 176 
 177         mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
 178 
 179         cpu = smp_processor_id();
 180         if (cpu_thread_in_core(cpu) != 0) {
 181                 while (mfspr(SPRN_HID0) & mask)
 182                         power7_idle_type(PNV_THREAD_NAP);
 183 
 184                 per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
 185                 return;
 186         }
 187 
 188         hid0 = mfspr(SPRN_HID0);
 189         hid0 &= ~HID0_POWER8_DYNLPARDIS;
 190         update_power8_hid0(hid0);
 191         update_hid_in_slw(hid0);
 192 
 193         while (mfspr(SPRN_HID0) & mask)
 194                 cpu_relax();
 195 
 196         /* Wake secondaries out of NAP */
 197         for (i = cpu + 1; i < cpu + threads_per_core; i++)
 198                 smp_send_reschedule(i);
 199 
 200         wait_for_sync_step(SYNC_STEP_UNSPLIT);
 201 }
 202 
 203 static void split_core(int new_mode)
 204 {
 205         struct {  u64 value; u64 mask; } split_parms[2] = {
 206                 { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
 207                 { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
 208         };
 209         int i, cpu;
 210         u64 hid0;
 211 
 212         /* Convert new_mode (2 or 4) into an index into our parms array */
 213         i = (new_mode >> 1) - 1;
 214         BUG_ON(i < 0 || i > 1);
 215 
 216         cpu = smp_processor_id();
 217         if (cpu_thread_in_core(cpu) != 0) {
 218                 split_core_secondary_loop(&per_cpu(split_state, cpu).step);
 219                 return;
 220         }
 221 
 222         wait_for_sync_step(SYNC_STEP_REAL_MODE);
 223 
 224         /* Write new mode */
 225         hid0  = mfspr(SPRN_HID0);
 226         hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
 227         update_power8_hid0(hid0);
 228         update_hid_in_slw(hid0);
 229 
 230         /* Wait for it to happen */
 231         while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
 232                 cpu_relax();
 233 }
 234 
 235 static void cpu_do_split(int new_mode)
 236 {
 237         /*
 238          * At boot subcores_per_core will be 0, so we will always unsplit at
 239          * boot. In the usual case where the core is already unsplit it's a
 240          * nop, and this just ensures the kernel's notion of the mode is
 241          * consistent with the hardware.
 242          */
 243         if (subcores_per_core != 1)
 244                 unsplit_core();
 245 
 246         if (new_mode != 1)
 247                 split_core(new_mode);
 248 
 249         mb();
 250         per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
 251 }
 252 
 253 bool cpu_core_split_required(void)
 254 {
 255         smp_rmb();
 256 
 257         if (!new_split_mode)
 258                 return false;
 259 
 260         cpu_do_split(new_split_mode);
 261 
 262         return true;
 263 }
 264 
 265 void update_subcore_sibling_mask(void)
 266 {
 267         int cpu;
 268         /*
 269          * sibling mask for the first cpu. Left shift this by required bits
 270          * to get sibling mask for the rest of the cpus.
 271          */
 272         int sibling_mask_first_cpu =  (1 << threads_per_subcore) - 1;
 273 
 274         for_each_possible_cpu(cpu) {
 275                 int tid = cpu_thread_in_core(cpu);
 276                 int offset = (tid / threads_per_subcore) * threads_per_subcore;
 277                 int mask = sibling_mask_first_cpu << offset;
 278 
 279                 paca_ptrs[cpu]->subcore_sibling_mask = mask;
 280 
 281         }
 282 }
 283 
 284 static int cpu_update_split_mode(void *data)
 285 {
 286         int cpu, new_mode = *(int *)data;
 287 
 288         if (this_cpu_ptr(&split_state)->master) {
 289                 new_split_mode = new_mode;
 290                 smp_wmb();
 291 
 292                 cpumask_andnot(cpu_offline_mask, cpu_present_mask,
 293                                cpu_online_mask);
 294 
 295                 /* This should work even though the cpu is offline */
 296                 for_each_cpu(cpu, cpu_offline_mask)
 297                         smp_send_reschedule(cpu);
 298         }
 299 
 300         cpu_do_split(new_mode);
 301 
 302         if (this_cpu_ptr(&split_state)->master) {
 303                 /* Wait for all cpus to finish before we touch subcores_per_core */
 304                 for_each_present_cpu(cpu) {
 305                         if (cpu >= setup_max_cpus)
 306                                 break;
 307 
 308                         while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
 309                                 barrier();
 310                 }
 311 
 312                 new_split_mode = 0;
 313 
 314                 /* Make the new mode public */
 315                 subcores_per_core = new_mode;
 316                 threads_per_subcore = threads_per_core / subcores_per_core;
 317                 update_subcore_sibling_mask();
 318 
 319                 /* Make sure the new mode is written before we exit */
 320                 mb();
 321         }
 322 
 323         return 0;
 324 }
 325 
 326 static int set_subcores_per_core(int new_mode)
 327 {
 328         struct split_state *state;
 329         int cpu;
 330 
 331         if (kvm_hv_mode_active()) {
 332                 pr_err("Unable to change split core mode while KVM active.\n");
 333                 return -EBUSY;
 334         }
 335 
 336         /*
 337          * We are only called at boot, or from the sysfs write. If that ever
 338          * changes we'll need a lock here.
 339          */
 340         BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
 341 
 342         for_each_present_cpu(cpu) {
 343                 state = &per_cpu(split_state, cpu);
 344                 state->step = SYNC_STEP_INITIAL;
 345                 state->master = 0;
 346         }
 347 
 348         cpus_read_lock();
 349 
 350         /* This cpu will update the globals before exiting stop machine */
 351         this_cpu_ptr(&split_state)->master = 1;
 352 
 353         /* Ensure state is consistent before we call the other cpus */
 354         mb();
 355 
 356         stop_machine_cpuslocked(cpu_update_split_mode, &new_mode,
 357                                 cpu_online_mask);
 358 
 359         cpus_read_unlock();
 360 
 361         return 0;
 362 }
 363 
 364 static ssize_t __used store_subcores_per_core(struct device *dev,
 365                 struct device_attribute *attr, const char *buf,
 366                 size_t count)
 367 {
 368         unsigned long val;
 369         int rc;
 370 
 371         /* We are serialised by the attribute lock */
 372 
 373         rc = sscanf(buf, "%lx", &val);
 374         if (rc != 1)
 375                 return -EINVAL;
 376 
 377         switch (val) {
 378         case 1:
 379         case 2:
 380         case 4:
 381                 if (subcores_per_core == val)
 382                         /* Nothing to do */
 383                         goto out;
 384                 break;
 385         default:
 386                 return -EINVAL;
 387         }
 388 
 389         rc = set_subcores_per_core(val);
 390         if (rc)
 391                 return rc;
 392 
 393 out:
 394         return count;
 395 }
 396 
 397 static ssize_t show_subcores_per_core(struct device *dev,
 398                 struct device_attribute *attr, char *buf)
 399 {
 400         return sprintf(buf, "%x\n", subcores_per_core);
 401 }
 402 
 403 static DEVICE_ATTR(subcores_per_core, 0644,
 404                 show_subcores_per_core, store_subcores_per_core);
 405 
 406 static int subcore_init(void)
 407 {
 408         unsigned pvr_ver;
 409 
 410         pvr_ver = PVR_VER(mfspr(SPRN_PVR));
 411 
 412         if (pvr_ver != PVR_POWER8 &&
 413             pvr_ver != PVR_POWER8E &&
 414             pvr_ver != PVR_POWER8NVL)
 415                 return 0;
 416 
 417         /*
 418          * We need all threads in a core to be present to split/unsplit so
 419          * continue only if max_cpus are aligned to threads_per_core.
 420          */
 421         if (setup_max_cpus % threads_per_core)
 422                 return 0;
 423 
 424         BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
 425 
 426         set_subcores_per_core(1);
 427 
 428         return device_create_file(cpu_subsys.dev_root,
 429                                   &dev_attr_subcores_per_core);
 430 }
 431 machine_device_initcall(powernv, subcore_init);

/* [<][>][^][v][top][bottom][index][help] */