root/arch/powerpc/platforms/cell/spu_manage.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. spu_devnode
  2. find_spu_unit_number
  3. spu_unmap
  4. spu_map_interrupts_old
  5. spu_map_prop_old
  6. spu_map_device_old
  7. spu_map_interrupts
  8. spu_map_resource
  9. spu_map_device
  10. of_enumerate_spus
  11. of_create_spu
  12. of_destroy_spu
  13. enable_spu_by_master_run
  14. disable_spu_by_master_run
  15. spu_lookup_reg
  16. init_affinity_qs20_harcoded
  17. of_has_vicinity
  18. devnode_spu
  19. neighbour_spu
  20. init_affinity_node
  21. init_affinity_fw
  22. init_affinity

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * spu management operations for of based platforms
   4  *
   5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
   6  * Copyright 2006 Sony Corp.
   7  * (C) Copyright 2007 TOSHIBA CORPORATION
   8  */
   9 
  10 #include <linux/interrupt.h>
  11 #include <linux/list.h>
  12 #include <linux/export.h>
  13 #include <linux/ptrace.h>
  14 #include <linux/wait.h>
  15 #include <linux/mm.h>
  16 #include <linux/io.h>
  17 #include <linux/mutex.h>
  18 #include <linux/device.h>
  19 
  20 #include <asm/spu.h>
  21 #include <asm/spu_priv1.h>
  22 #include <asm/firmware.h>
  23 #include <asm/prom.h>
  24 
  25 #include "spufs/spufs.h"
  26 #include "interrupt.h"
  27 
  28 struct device_node *spu_devnode(struct spu *spu)
  29 {
  30         return spu->devnode;
  31 }
  32 
  33 EXPORT_SYMBOL_GPL(spu_devnode);
  34 
  35 static u64 __init find_spu_unit_number(struct device_node *spe)
  36 {
  37         const unsigned int *prop;
  38         int proplen;
  39 
  40         /* new device trees should provide the physical-id attribute */
  41         prop = of_get_property(spe, "physical-id", &proplen);
  42         if (proplen == 4)
  43                 return (u64)*prop;
  44 
  45         /* celleb device tree provides the unit-id */
  46         prop = of_get_property(spe, "unit-id", &proplen);
  47         if (proplen == 4)
  48                 return (u64)*prop;
  49 
  50         /* legacy device trees provide the id in the reg attribute */
  51         prop = of_get_property(spe, "reg", &proplen);
  52         if (proplen == 4)
  53                 return (u64)*prop;
  54 
  55         return 0;
  56 }
  57 
  58 static void spu_unmap(struct spu *spu)
  59 {
  60         if (!firmware_has_feature(FW_FEATURE_LPAR))
  61                 iounmap(spu->priv1);
  62         iounmap(spu->priv2);
  63         iounmap(spu->problem);
  64         iounmap((__force u8 __iomem *)spu->local_store);
  65 }
  66 
  67 static int __init spu_map_interrupts_old(struct spu *spu,
  68         struct device_node *np)
  69 {
  70         unsigned int isrc;
  71         const u32 *tmp;
  72         int nid;
  73 
  74         /* Get the interrupt source unit from the device-tree */
  75         tmp = of_get_property(np, "isrc", NULL);
  76         if (!tmp)
  77                 return -ENODEV;
  78         isrc = tmp[0];
  79 
  80         tmp = of_get_property(np->parent->parent, "node-id", NULL);
  81         if (!tmp) {
  82                 printk(KERN_WARNING "%s: can't find node-id\n", __func__);
  83                 nid = spu->node;
  84         } else
  85                 nid = tmp[0];
  86 
  87         /* Add the node number */
  88         isrc |= nid << IIC_IRQ_NODE_SHIFT;
  89 
  90         /* Now map interrupts of all 3 classes */
  91         spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
  92         spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
  93         spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
  94 
  95         /* Right now, we only fail if class 2 failed */
  96         if (!spu->irqs[2])
  97                 return -EINVAL;
  98 
  99         return 0;
 100 }
 101 
 102 static void __iomem * __init spu_map_prop_old(struct spu *spu,
 103                                               struct device_node *n,
 104                                               const char *name)
 105 {
 106         const struct address_prop {
 107                 unsigned long address;
 108                 unsigned int len;
 109         } __attribute__((packed)) *prop;
 110         int proplen;
 111 
 112         prop = of_get_property(n, name, &proplen);
 113         if (prop == NULL || proplen != sizeof (struct address_prop))
 114                 return NULL;
 115 
 116         return ioremap(prop->address, prop->len);
 117 }
 118 
 119 static int __init spu_map_device_old(struct spu *spu)
 120 {
 121         struct device_node *node = spu->devnode;
 122         const char *prop;
 123         int ret;
 124 
 125         ret = -ENODEV;
 126         spu->name = of_get_property(node, "name", NULL);
 127         if (!spu->name)
 128                 goto out;
 129 
 130         prop = of_get_property(node, "local-store", NULL);
 131         if (!prop)
 132                 goto out;
 133         spu->local_store_phys = *(unsigned long *)prop;
 134 
 135         /* we use local store as ram, not io memory */
 136         spu->local_store = (void __force *)
 137                 spu_map_prop_old(spu, node, "local-store");
 138         if (!spu->local_store)
 139                 goto out;
 140 
 141         prop = of_get_property(node, "problem", NULL);
 142         if (!prop)
 143                 goto out_unmap;
 144         spu->problem_phys = *(unsigned long *)prop;
 145 
 146         spu->problem = spu_map_prop_old(spu, node, "problem");
 147         if (!spu->problem)
 148                 goto out_unmap;
 149 
 150         spu->priv2 = spu_map_prop_old(spu, node, "priv2");
 151         if (!spu->priv2)
 152                 goto out_unmap;
 153 
 154         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 155                 spu->priv1 = spu_map_prop_old(spu, node, "priv1");
 156                 if (!spu->priv1)
 157                         goto out_unmap;
 158         }
 159 
 160         ret = 0;
 161         goto out;
 162 
 163 out_unmap:
 164         spu_unmap(spu);
 165 out:
 166         return ret;
 167 }
 168 
 169 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
 170 {
 171         int i;
 172 
 173         for (i=0; i < 3; i++) {
 174                 spu->irqs[i] = irq_of_parse_and_map(np, i);
 175                 if (!spu->irqs[i])
 176                         goto err;
 177         }
 178         return 0;
 179 
 180 err:
 181         pr_debug("failed to map irq %x for spu %s\n", i, spu->name);
 182         for (; i >= 0; i--) {
 183                 if (spu->irqs[i])
 184                         irq_dispose_mapping(spu->irqs[i]);
 185         }
 186         return -EINVAL;
 187 }
 188 
 189 static int spu_map_resource(struct spu *spu, int nr,
 190                             void __iomem** virt, unsigned long *phys)
 191 {
 192         struct device_node *np = spu->devnode;
 193         struct resource resource = { };
 194         unsigned long len;
 195         int ret;
 196 
 197         ret = of_address_to_resource(np, nr, &resource);
 198         if (ret)
 199                 return ret;
 200         if (phys)
 201                 *phys = resource.start;
 202         len = resource_size(&resource);
 203         *virt = ioremap(resource.start, len);
 204         if (!*virt)
 205                 return -EINVAL;
 206         return 0;
 207 }
 208 
 209 static int __init spu_map_device(struct spu *spu)
 210 {
 211         struct device_node *np = spu->devnode;
 212         int ret = -ENODEV;
 213 
 214         spu->name = of_get_property(np, "name", NULL);
 215         if (!spu->name)
 216                 goto out;
 217 
 218         ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
 219                                &spu->local_store_phys);
 220         if (ret) {
 221                 pr_debug("spu_new: failed to map %pOF resource 0\n",
 222                          np);
 223                 goto out;
 224         }
 225         ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
 226                                &spu->problem_phys);
 227         if (ret) {
 228                 pr_debug("spu_new: failed to map %pOF resource 1\n",
 229                          np);
 230                 goto out_unmap;
 231         }
 232         ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
 233         if (ret) {
 234                 pr_debug("spu_new: failed to map %pOF resource 2\n",
 235                          np);
 236                 goto out_unmap;
 237         }
 238         if (!firmware_has_feature(FW_FEATURE_LPAR))
 239                 ret = spu_map_resource(spu, 3,
 240                                (void __iomem**)&spu->priv1, NULL);
 241         if (ret) {
 242                 pr_debug("spu_new: failed to map %pOF resource 3\n",
 243                          np);
 244                 goto out_unmap;
 245         }
 246         pr_debug("spu_new: %pOF maps:\n", np);
 247         pr_debug("  local store   : 0x%016lx -> 0x%p\n",
 248                  spu->local_store_phys, spu->local_store);
 249         pr_debug("  problem state : 0x%016lx -> 0x%p\n",
 250                  spu->problem_phys, spu->problem);
 251         pr_debug("  priv2         :                       0x%p\n", spu->priv2);
 252         pr_debug("  priv1         :                       0x%p\n", spu->priv1);
 253 
 254         return 0;
 255 
 256 out_unmap:
 257         spu_unmap(spu);
 258 out:
 259         pr_debug("failed to map spe %s: %d\n", spu->name, ret);
 260         return ret;
 261 }
 262 
 263 static int __init of_enumerate_spus(int (*fn)(void *data))
 264 {
 265         int ret;
 266         struct device_node *node;
 267         unsigned int n = 0;
 268 
 269         ret = -ENODEV;
 270         for_each_node_by_type(node, "spe") {
 271                 ret = fn(node);
 272                 if (ret) {
 273                         printk(KERN_WARNING "%s: Error initializing %pOFn\n",
 274                                 __func__, node);
 275                         of_node_put(node);
 276                         break;
 277                 }
 278                 n++;
 279         }
 280         return ret ? ret : n;
 281 }
 282 
 283 static int __init of_create_spu(struct spu *spu, void *data)
 284 {
 285         int ret;
 286         struct device_node *spe = (struct device_node *)data;
 287         static int legacy_map = 0, legacy_irq = 0;
 288 
 289         spu->devnode = of_node_get(spe);
 290         spu->spe_id = find_spu_unit_number(spe);
 291 
 292         spu->node = of_node_to_nid(spe);
 293         if (spu->node >= MAX_NUMNODES) {
 294                 printk(KERN_WARNING "SPE %pOF on node %d ignored,"
 295                        " node number too big\n", spe, spu->node);
 296                 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
 297                 ret = -ENODEV;
 298                 goto out;
 299         }
 300 
 301         ret = spu_map_device(spu);
 302         if (ret) {
 303                 if (!legacy_map) {
 304                         legacy_map = 1;
 305                         printk(KERN_WARNING "%s: Legacy device tree found, "
 306                                 "trying to map old style\n", __func__);
 307                 }
 308                 ret = spu_map_device_old(spu);
 309                 if (ret) {
 310                         printk(KERN_ERR "Unable to map %s\n",
 311                                 spu->name);
 312                         goto out;
 313                 }
 314         }
 315 
 316         ret = spu_map_interrupts(spu, spe);
 317         if (ret) {
 318                 if (!legacy_irq) {
 319                         legacy_irq = 1;
 320                         printk(KERN_WARNING "%s: Legacy device tree found, "
 321                                 "trying old style irq\n", __func__);
 322                 }
 323                 ret = spu_map_interrupts_old(spu, spe);
 324                 if (ret) {
 325                         printk(KERN_ERR "%s: could not map interrupts\n",
 326                                 spu->name);
 327                         goto out_unmap;
 328                 }
 329         }
 330 
 331         pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
 332                 spu->local_store, spu->problem, spu->priv1,
 333                 spu->priv2, spu->number);
 334         goto out;
 335 
 336 out_unmap:
 337         spu_unmap(spu);
 338 out:
 339         return ret;
 340 }
 341 
 342 static int of_destroy_spu(struct spu *spu)
 343 {
 344         spu_unmap(spu);
 345         of_node_put(spu->devnode);
 346         return 0;
 347 }
 348 
 349 static void enable_spu_by_master_run(struct spu_context *ctx)
 350 {
 351         ctx->ops->master_start(ctx);
 352 }
 353 
 354 static void disable_spu_by_master_run(struct spu_context *ctx)
 355 {
 356         ctx->ops->master_stop(ctx);
 357 }
 358 
 359 /* Hardcoded affinity idxs for qs20 */
 360 #define QS20_SPES_PER_BE 8
 361 static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
 362 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
 363 
 364 static struct spu *spu_lookup_reg(int node, u32 reg)
 365 {
 366         struct spu *spu;
 367         const u32 *spu_reg;
 368 
 369         list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 370                 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
 371                 if (*spu_reg == reg)
 372                         return spu;
 373         }
 374         return NULL;
 375 }
 376 
 377 static void init_affinity_qs20_harcoded(void)
 378 {
 379         int node, i;
 380         struct spu *last_spu, *spu;
 381         u32 reg;
 382 
 383         for (node = 0; node < MAX_NUMNODES; node++) {
 384                 last_spu = NULL;
 385                 for (i = 0; i < QS20_SPES_PER_BE; i++) {
 386                         reg = qs20_reg_idxs[i];
 387                         spu = spu_lookup_reg(node, reg);
 388                         if (!spu)
 389                                 continue;
 390                         spu->has_mem_affinity = qs20_reg_memory[reg];
 391                         if (last_spu)
 392                                 list_add_tail(&spu->aff_list,
 393                                                 &last_spu->aff_list);
 394                         last_spu = spu;
 395                 }
 396         }
 397 }
 398 
 399 static int of_has_vicinity(void)
 400 {
 401         struct device_node *dn;
 402 
 403         for_each_node_by_type(dn, "spe") {
 404                 if (of_find_property(dn, "vicinity", NULL))  {
 405                         of_node_put(dn);
 406                         return 1;
 407                 }
 408         }
 409         return 0;
 410 }
 411 
 412 static struct spu *devnode_spu(int cbe, struct device_node *dn)
 413 {
 414         struct spu *spu;
 415 
 416         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
 417                 if (spu_devnode(spu) == dn)
 418                         return spu;
 419         return NULL;
 420 }
 421 
 422 static struct spu *
 423 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
 424 {
 425         struct spu *spu;
 426         struct device_node *spu_dn;
 427         const phandle *vic_handles;
 428         int lenp, i;
 429 
 430         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
 431                 spu_dn = spu_devnode(spu);
 432                 if (spu_dn == avoid)
 433                         continue;
 434                 vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
 435                 for (i=0; i < (lenp / sizeof(phandle)); i++) {
 436                         if (vic_handles[i] == target->phandle)
 437                                 return spu;
 438                 }
 439         }
 440         return NULL;
 441 }
 442 
 443 static void init_affinity_node(int cbe)
 444 {
 445         struct spu *spu, *last_spu;
 446         struct device_node *vic_dn, *last_spu_dn;
 447         phandle avoid_ph;
 448         const phandle *vic_handles;
 449         int lenp, i, added;
 450 
 451         last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
 452                                                                 cbe_list);
 453         avoid_ph = 0;
 454         for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
 455                 last_spu_dn = spu_devnode(last_spu);
 456                 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
 457 
 458                 /*
 459                  * Walk through each phandle in vicinity property of the spu
 460                  * (tipically two vicinity phandles per spe node)
 461                  */
 462                 for (i = 0; i < (lenp / sizeof(phandle)); i++) {
 463                         if (vic_handles[i] == avoid_ph)
 464                                 continue;
 465 
 466                         vic_dn = of_find_node_by_phandle(vic_handles[i]);
 467                         if (!vic_dn)
 468                                 continue;
 469 
 470                         if (of_node_name_eq(vic_dn, "spe") ) {
 471                                 spu = devnode_spu(cbe, vic_dn);
 472                                 avoid_ph = last_spu_dn->phandle;
 473                         } else {
 474                                 /*
 475                                  * "mic-tm" and "bif0" nodes do not have
 476                                  * vicinity property. So we need to find the
 477                                  * spe which has vic_dn as neighbour, but
 478                                  * skipping the one we came from (last_spu_dn)
 479                                  */
 480                                 spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
 481                                 if (!spu)
 482                                         continue;
 483                                 if (of_node_name_eq(vic_dn, "mic-tm")) {
 484                                         last_spu->has_mem_affinity = 1;
 485                                         spu->has_mem_affinity = 1;
 486                                 }
 487                                 avoid_ph = vic_dn->phandle;
 488                         }
 489 
 490                         list_add_tail(&spu->aff_list, &last_spu->aff_list);
 491                         last_spu = spu;
 492                         break;
 493                 }
 494         }
 495 }
 496 
 497 static void init_affinity_fw(void)
 498 {
 499         int cbe;
 500 
 501         for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
 502                 init_affinity_node(cbe);
 503 }
 504 
 505 static int __init init_affinity(void)
 506 {
 507         if (of_has_vicinity()) {
 508                 init_affinity_fw();
 509         } else {
 510                 if (of_machine_is_compatible("IBM,CPBW-1.0"))
 511                         init_affinity_qs20_harcoded();
 512                 else
 513                         printk("No affinity configuration found\n");
 514         }
 515 
 516         return 0;
 517 }
 518 
 519 const struct spu_management_ops spu_management_of_ops = {
 520         .enumerate_spus = of_enumerate_spus,
 521         .create_spu = of_create_spu,
 522         .destroy_spu = of_destroy_spu,
 523         .enable_spu = enable_spu_by_master_run,
 524         .disable_spu = disable_spu_by_master_run,
 525         .init_affinity = init_affinity,
 526 };

/* [<][>][^][v][top][bottom][index][help] */