root/mm/page-writeback.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mdtc_valid
  2. dtc_dom
  3. mdtc_gdtc
  4. wb_memcg_completions
  5. wb_min_max_ratio
  6. mdtc_valid
  7. dtc_dom
  8. mdtc_gdtc
  9. wb_memcg_completions
  10. wb_min_max_ratio
  11. node_dirtyable_memory
  12. highmem_dirtyable_memory
  13. global_dirtyable_memory
  14. domain_dirty_limits
  15. global_dirty_limits
  16. node_dirty_limit
  17. node_dirty_ok
  18. dirty_background_ratio_handler
  19. dirty_background_bytes_handler
  20. dirty_ratio_handler
  21. dirty_bytes_handler
  22. wp_next_time
  23. wb_domain_writeout_inc
  24. __wb_writeout_inc
  25. wb_writeout_inc
  26. writeout_period
  27. wb_domain_init
  28. wb_domain_exit
  29. bdi_set_min_ratio
  30. bdi_set_max_ratio
  31. dirty_freerun_ceiling
  32. hard_dirty_limit
  33. mdtc_calc_avail
  34. __wb_calc_thresh
  35. wb_calc_thresh
  36. pos_ratio_polynom
  37. wb_position_ratio
  38. wb_update_write_bandwidth
  39. update_dirty_limit
  40. domain_update_bandwidth
  41. wb_update_dirty_ratelimit
  42. __wb_update_bandwidth
  43. wb_update_bandwidth
  44. dirty_poll_interval
  45. wb_max_pause
  46. wb_min_pause
  47. wb_dirty_limits
  48. balance_dirty_pages
  49. balance_dirty_pages_ratelimited
  50. wb_over_bg_thresh
  51. dirty_writeback_centisecs_handler
  52. laptop_mode_timer_fn
  53. laptop_io_completion
  54. laptop_sync_completion
  55. writeback_set_ratelimit
  56. page_writeback_cpu_online
  57. page_writeback_init
  58. tag_pages_for_writeback
  59. write_cache_pages
  60. __writepage
  61. generic_writepages
  62. do_writepages
  63. write_one_page
  64. __set_page_dirty_no_writeback
  65. account_page_dirtied
  66. account_page_cleaned
  67. __set_page_dirty_nobuffers
  68. account_page_redirty
  69. redirty_page_for_writepage
  70. set_page_dirty
  71. set_page_dirty_lock
  72. __cancel_dirty_page
  73. clear_page_dirty_for_io
  74. test_clear_page_writeback
  75. __test_set_page_writeback
  76. wait_on_page_writeback
  77. wait_for_stable_page

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * mm/page-writeback.c
   4  *
   5  * Copyright (C) 2002, Linus Torvalds.
   6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7  *
   8  * Contains functions related to writing back dirty pages at the
   9  * address_space level.
  10  *
  11  * 10Apr2002    Andrew Morton
  12  *              Initial version
  13  */
  14 
  15 #include <linux/kernel.h>
  16 #include <linux/export.h>
  17 #include <linux/spinlock.h>
  18 #include <linux/fs.h>
  19 #include <linux/mm.h>
  20 #include <linux/swap.h>
  21 #include <linux/slab.h>
  22 #include <linux/pagemap.h>
  23 #include <linux/writeback.h>
  24 #include <linux/init.h>
  25 #include <linux/backing-dev.h>
  26 #include <linux/task_io_accounting_ops.h>
  27 #include <linux/blkdev.h>
  28 #include <linux/mpage.h>
  29 #include <linux/rmap.h>
  30 #include <linux/percpu.h>
  31 #include <linux/smp.h>
  32 #include <linux/sysctl.h>
  33 #include <linux/cpu.h>
  34 #include <linux/syscalls.h>
  35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36 #include <linux/pagevec.h>
  37 #include <linux/timer.h>
  38 #include <linux/sched/rt.h>
  39 #include <linux/sched/signal.h>
  40 #include <linux/mm_inline.h>
  41 #include <trace/events/writeback.h>
  42 
  43 #include "internal.h"
  44 
  45 /*
  46  * Sleep at most 200ms at a time in balance_dirty_pages().
  47  */
  48 #define MAX_PAUSE               max(HZ/5, 1)
  49 
  50 /*
  51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52  * by raising pause time to max_pause when falls below it.
  53  */
  54 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  55 
  56 /*
  57  * Estimate write bandwidth at 200ms intervals.
  58  */
  59 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  60 
  61 #define RATELIMIT_CALC_SHIFT    10
  62 
  63 /*
  64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65  * will look to see if it needs to force writeback or throttling.
  66  */
  67 static long ratelimit_pages = 32;
  68 
  69 /* The following parameters are exported via /proc/sys/vm */
  70 
  71 /*
  72  * Start background writeback (via writeback threads) at this percentage
  73  */
  74 int dirty_background_ratio = 10;
  75 
  76 /*
  77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78  * dirty_background_ratio * the amount of dirtyable memory
  79  */
  80 unsigned long dirty_background_bytes;
  81 
  82 /*
  83  * free highmem will not be subtracted from the total free memory
  84  * for calculating free ratios if vm_highmem_is_dirtyable is true
  85  */
  86 int vm_highmem_is_dirtyable;
  87 
  88 /*
  89  * The generator of dirty data starts writeback at this percentage
  90  */
  91 int vm_dirty_ratio = 20;
  92 
  93 /*
  94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95  * vm_dirty_ratio * the amount of dirtyable memory
  96  */
  97 unsigned long vm_dirty_bytes;
  98 
  99 /*
 100  * The interval between `kupdate'-style writebacks
 101  */
 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103 
 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105 
 106 /*
 107  * The longest time for which data is allowed to remain dirty
 108  */
 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110 
 111 /*
 112  * Flag that makes the machine dump writes/reads and block dirtyings.
 113  */
 114 int block_dump;
 115 
 116 /*
 117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 118  * a full sync is triggered after this time elapses without any disk activity.
 119  */
 120 int laptop_mode;
 121 
 122 EXPORT_SYMBOL(laptop_mode);
 123 
 124 /* End of sysctl-exported parameters */
 125 
 126 struct wb_domain global_wb_domain;
 127 
 128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
 129 struct dirty_throttle_control {
 130 #ifdef CONFIG_CGROUP_WRITEBACK
 131         struct wb_domain        *dom;
 132         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 133 #endif
 134         struct bdi_writeback    *wb;
 135         struct fprop_local_percpu *wb_completions;
 136 
 137         unsigned long           avail;          /* dirtyable */
 138         unsigned long           dirty;          /* file_dirty + write + nfs */
 139         unsigned long           thresh;         /* dirty threshold */
 140         unsigned long           bg_thresh;      /* dirty background threshold */
 141 
 142         unsigned long           wb_dirty;       /* per-wb counterparts */
 143         unsigned long           wb_thresh;
 144         unsigned long           wb_bg_thresh;
 145 
 146         unsigned long           pos_ratio;
 147 };
 148 
 149 /*
 150  * Length of period for aging writeout fractions of bdis. This is an
 151  * arbitrarily chosen number. The longer the period, the slower fractions will
 152  * reflect changes in current writeout rate.
 153  */
 154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 155 
 156 #ifdef CONFIG_CGROUP_WRITEBACK
 157 
 158 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
 159                                 .dom = &global_wb_domain,               \
 160                                 .wb_completions = &(__wb)->completions
 161 
 162 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 163 
 164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 165                                 .dom = mem_cgroup_wb_domain(__wb),      \
 166                                 .wb_completions = &(__wb)->memcg_completions, \
 167                                 .gdtc = __gdtc
 168 
 169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
 170 {
 171         return dtc->dom;
 172 }
 173 
 174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 175 {
 176         return dtc->dom;
 177 }
 178 
 179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 180 {
 181         return mdtc->gdtc;
 182 }
 183 
 184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 185 {
 186         return &wb->memcg_completions;
 187 }
 188 
 189 static void wb_min_max_ratio(struct bdi_writeback *wb,
 190                              unsigned long *minp, unsigned long *maxp)
 191 {
 192         unsigned long this_bw = wb->avg_write_bandwidth;
 193         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 194         unsigned long long min = wb->bdi->min_ratio;
 195         unsigned long long max = wb->bdi->max_ratio;
 196 
 197         /*
 198          * @wb may already be clean by the time control reaches here and
 199          * the total may not include its bw.
 200          */
 201         if (this_bw < tot_bw) {
 202                 if (min) {
 203                         min *= this_bw;
 204                         min = div64_ul(min, tot_bw);
 205                 }
 206                 if (max < 100) {
 207                         max *= this_bw;
 208                         max = div64_ul(max, tot_bw);
 209                 }
 210         }
 211 
 212         *minp = min;
 213         *maxp = max;
 214 }
 215 
 216 #else   /* CONFIG_CGROUP_WRITEBACK */
 217 
 218 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
 219                                 .wb_completions = &(__wb)->completions
 220 #define GDTC_INIT_NO_WB
 221 #define MDTC_INIT(__wb, __gdtc)
 222 
 223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
 224 {
 225         return false;
 226 }
 227 
 228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 229 {
 230         return &global_wb_domain;
 231 }
 232 
 233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 234 {
 235         return NULL;
 236 }
 237 
 238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 239 {
 240         return NULL;
 241 }
 242 
 243 static void wb_min_max_ratio(struct bdi_writeback *wb,
 244                              unsigned long *minp, unsigned long *maxp)
 245 {
 246         *minp = wb->bdi->min_ratio;
 247         *maxp = wb->bdi->max_ratio;
 248 }
 249 
 250 #endif  /* CONFIG_CGROUP_WRITEBACK */
 251 
 252 /*
 253  * In a memory zone, there is a certain amount of pages we consider
 254  * available for the page cache, which is essentially the number of
 255  * free and reclaimable pages, minus some zone reserves to protect
 256  * lowmem and the ability to uphold the zone's watermarks without
 257  * requiring writeback.
 258  *
 259  * This number of dirtyable pages is the base value of which the
 260  * user-configurable dirty ratio is the effictive number of pages that
 261  * are allowed to be actually dirtied.  Per individual zone, or
 262  * globally by using the sum of dirtyable pages over all zones.
 263  *
 264  * Because the user is allowed to specify the dirty limit globally as
 265  * absolute number of bytes, calculating the per-zone dirty limit can
 266  * require translating the configured limit into a percentage of
 267  * global dirtyable memory first.
 268  */
 269 
 270 /**
 271  * node_dirtyable_memory - number of dirtyable pages in a node
 272  * @pgdat: the node
 273  *
 274  * Return: the node's number of pages potentially available for dirty
 275  * page cache.  This is the base value for the per-node dirty limits.
 276  */
 277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 278 {
 279         unsigned long nr_pages = 0;
 280         int z;
 281 
 282         for (z = 0; z < MAX_NR_ZONES; z++) {
 283                 struct zone *zone = pgdat->node_zones + z;
 284 
 285                 if (!populated_zone(zone))
 286                         continue;
 287 
 288                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 289         }
 290 
 291         /*
 292          * Pages reserved for the kernel should not be considered
 293          * dirtyable, to prevent a situation where reclaim has to
 294          * clean pages in order to balance the zones.
 295          */
 296         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 297 
 298         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 299         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 300 
 301         return nr_pages;
 302 }
 303 
 304 static unsigned long highmem_dirtyable_memory(unsigned long total)
 305 {
 306 #ifdef CONFIG_HIGHMEM
 307         int node;
 308         unsigned long x = 0;
 309         int i;
 310 
 311         for_each_node_state(node, N_HIGH_MEMORY) {
 312                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 313                         struct zone *z;
 314                         unsigned long nr_pages;
 315 
 316                         if (!is_highmem_idx(i))
 317                                 continue;
 318 
 319                         z = &NODE_DATA(node)->node_zones[i];
 320                         if (!populated_zone(z))
 321                                 continue;
 322 
 323                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
 324                         /* watch for underflows */
 325                         nr_pages -= min(nr_pages, high_wmark_pages(z));
 326                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 327                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 328                         x += nr_pages;
 329                 }
 330         }
 331 
 332         /*
 333          * Unreclaimable memory (kernel memory or anonymous memory
 334          * without swap) can bring down the dirtyable pages below
 335          * the zone's dirty balance reserve and the above calculation
 336          * will underflow.  However we still want to add in nodes
 337          * which are below threshold (negative values) to get a more
 338          * accurate calculation but make sure that the total never
 339          * underflows.
 340          */
 341         if ((long)x < 0)
 342                 x = 0;
 343 
 344         /*
 345          * Make sure that the number of highmem pages is never larger
 346          * than the number of the total dirtyable memory. This can only
 347          * occur in very strange VM situations but we want to make sure
 348          * that this does not occur.
 349          */
 350         return min(x, total);
 351 #else
 352         return 0;
 353 #endif
 354 }
 355 
 356 /**
 357  * global_dirtyable_memory - number of globally dirtyable pages
 358  *
 359  * Return: the global number of pages potentially available for dirty
 360  * page cache.  This is the base value for the global dirty limits.
 361  */
 362 static unsigned long global_dirtyable_memory(void)
 363 {
 364         unsigned long x;
 365 
 366         x = global_zone_page_state(NR_FREE_PAGES);
 367         /*
 368          * Pages reserved for the kernel should not be considered
 369          * dirtyable, to prevent a situation where reclaim has to
 370          * clean pages in order to balance the zones.
 371          */
 372         x -= min(x, totalreserve_pages);
 373 
 374         x += global_node_page_state(NR_INACTIVE_FILE);
 375         x += global_node_page_state(NR_ACTIVE_FILE);
 376 
 377         if (!vm_highmem_is_dirtyable)
 378                 x -= highmem_dirtyable_memory(x);
 379 
 380         return x + 1;   /* Ensure that we never return 0 */
 381 }
 382 
 383 /**
 384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 385  * @dtc: dirty_throttle_control of interest
 386  *
 387  * Calculate @dtc->thresh and ->bg_thresh considering
 388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 389  * must ensure that @dtc->avail is set before calling this function.  The
 390  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 391  * real-time tasks.
 392  */
 393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 394 {
 395         const unsigned long available_memory = dtc->avail;
 396         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 397         unsigned long bytes = vm_dirty_bytes;
 398         unsigned long bg_bytes = dirty_background_bytes;
 399         /* convert ratios to per-PAGE_SIZE for higher precision */
 400         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 401         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 402         unsigned long thresh;
 403         unsigned long bg_thresh;
 404         struct task_struct *tsk;
 405 
 406         /* gdtc is !NULL iff @dtc is for memcg domain */
 407         if (gdtc) {
 408                 unsigned long global_avail = gdtc->avail;
 409 
 410                 /*
 411                  * The byte settings can't be applied directly to memcg
 412                  * domains.  Convert them to ratios by scaling against
 413                  * globally available memory.  As the ratios are in
 414                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
 415                  * number of pages.
 416                  */
 417                 if (bytes)
 418                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
 419                                     PAGE_SIZE);
 420                 if (bg_bytes)
 421                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 422                                        PAGE_SIZE);
 423                 bytes = bg_bytes = 0;
 424         }
 425 
 426         if (bytes)
 427                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 428         else
 429                 thresh = (ratio * available_memory) / PAGE_SIZE;
 430 
 431         if (bg_bytes)
 432                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 433         else
 434                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 435 
 436         if (bg_thresh >= thresh)
 437                 bg_thresh = thresh / 2;
 438         tsk = current;
 439         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 440                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 441                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 442         }
 443         dtc->thresh = thresh;
 444         dtc->bg_thresh = bg_thresh;
 445 
 446         /* we should eventually report the domain in the TP */
 447         if (!gdtc)
 448                 trace_global_dirty_state(bg_thresh, thresh);
 449 }
 450 
 451 /**
 452  * global_dirty_limits - background-writeback and dirty-throttling thresholds
 453  * @pbackground: out parameter for bg_thresh
 454  * @pdirty: out parameter for thresh
 455  *
 456  * Calculate bg_thresh and thresh for global_wb_domain.  See
 457  * domain_dirty_limits() for details.
 458  */
 459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 460 {
 461         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 462 
 463         gdtc.avail = global_dirtyable_memory();
 464         domain_dirty_limits(&gdtc);
 465 
 466         *pbackground = gdtc.bg_thresh;
 467         *pdirty = gdtc.thresh;
 468 }
 469 
 470 /**
 471  * node_dirty_limit - maximum number of dirty pages allowed in a node
 472  * @pgdat: the node
 473  *
 474  * Return: the maximum number of dirty pages allowed in a node, based
 475  * on the node's dirtyable memory.
 476  */
 477 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 478 {
 479         unsigned long node_memory = node_dirtyable_memory(pgdat);
 480         struct task_struct *tsk = current;
 481         unsigned long dirty;
 482 
 483         if (vm_dirty_bytes)
 484                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 485                         node_memory / global_dirtyable_memory();
 486         else
 487                 dirty = vm_dirty_ratio * node_memory / 100;
 488 
 489         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 490                 dirty += dirty / 4;
 491 
 492         return dirty;
 493 }
 494 
 495 /**
 496  * node_dirty_ok - tells whether a node is within its dirty limits
 497  * @pgdat: the node to check
 498  *
 499  * Return: %true when the dirty pages in @pgdat are within the node's
 500  * dirty limit, %false if the limit is exceeded.
 501  */
 502 bool node_dirty_ok(struct pglist_data *pgdat)
 503 {
 504         unsigned long limit = node_dirty_limit(pgdat);
 505         unsigned long nr_pages = 0;
 506 
 507         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 508         nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 509         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 510 
 511         return nr_pages <= limit;
 512 }
 513 
 514 int dirty_background_ratio_handler(struct ctl_table *table, int write,
 515                 void __user *buffer, size_t *lenp,
 516                 loff_t *ppos)
 517 {
 518         int ret;
 519 
 520         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 521         if (ret == 0 && write)
 522                 dirty_background_bytes = 0;
 523         return ret;
 524 }
 525 
 526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
 527                 void __user *buffer, size_t *lenp,
 528                 loff_t *ppos)
 529 {
 530         int ret;
 531 
 532         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 533         if (ret == 0 && write)
 534                 dirty_background_ratio = 0;
 535         return ret;
 536 }
 537 
 538 int dirty_ratio_handler(struct ctl_table *table, int write,
 539                 void __user *buffer, size_t *lenp,
 540                 loff_t *ppos)
 541 {
 542         int old_ratio = vm_dirty_ratio;
 543         int ret;
 544 
 545         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 546         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 547                 writeback_set_ratelimit();
 548                 vm_dirty_bytes = 0;
 549         }
 550         return ret;
 551 }
 552 
 553 int dirty_bytes_handler(struct ctl_table *table, int write,
 554                 void __user *buffer, size_t *lenp,
 555                 loff_t *ppos)
 556 {
 557         unsigned long old_bytes = vm_dirty_bytes;
 558         int ret;
 559 
 560         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 561         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 562                 writeback_set_ratelimit();
 563                 vm_dirty_ratio = 0;
 564         }
 565         return ret;
 566 }
 567 
 568 static unsigned long wp_next_time(unsigned long cur_time)
 569 {
 570         cur_time += VM_COMPLETIONS_PERIOD_LEN;
 571         /* 0 has a special meaning... */
 572         if (!cur_time)
 573                 return 1;
 574         return cur_time;
 575 }
 576 
 577 static void wb_domain_writeout_inc(struct wb_domain *dom,
 578                                    struct fprop_local_percpu *completions,
 579                                    unsigned int max_prop_frac)
 580 {
 581         __fprop_inc_percpu_max(&dom->completions, completions,
 582                                max_prop_frac);
 583         /* First event after period switching was turned off? */
 584         if (unlikely(!dom->period_time)) {
 585                 /*
 586                  * We can race with other __bdi_writeout_inc calls here but
 587                  * it does not cause any harm since the resulting time when
 588                  * timer will fire and what is in writeout_period_time will be
 589                  * roughly the same.
 590                  */
 591                 dom->period_time = wp_next_time(jiffies);
 592                 mod_timer(&dom->period_timer, dom->period_time);
 593         }
 594 }
 595 
 596 /*
 597  * Increment @wb's writeout completion count and the global writeout
 598  * completion count. Called from test_clear_page_writeback().
 599  */
 600 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 601 {
 602         struct wb_domain *cgdom;
 603 
 604         inc_wb_stat(wb, WB_WRITTEN);
 605         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 606                                wb->bdi->max_prop_frac);
 607 
 608         cgdom = mem_cgroup_wb_domain(wb);
 609         if (cgdom)
 610                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 611                                        wb->bdi->max_prop_frac);
 612 }
 613 
 614 void wb_writeout_inc(struct bdi_writeback *wb)
 615 {
 616         unsigned long flags;
 617 
 618         local_irq_save(flags);
 619         __wb_writeout_inc(wb);
 620         local_irq_restore(flags);
 621 }
 622 EXPORT_SYMBOL_GPL(wb_writeout_inc);
 623 
 624 /*
 625  * On idle system, we can be called long after we scheduled because we use
 626  * deferred timers so count with missed periods.
 627  */
 628 static void writeout_period(struct timer_list *t)
 629 {
 630         struct wb_domain *dom = from_timer(dom, t, period_timer);
 631         int miss_periods = (jiffies - dom->period_time) /
 632                                                  VM_COMPLETIONS_PERIOD_LEN;
 633 
 634         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 635                 dom->period_time = wp_next_time(dom->period_time +
 636                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 637                 mod_timer(&dom->period_timer, dom->period_time);
 638         } else {
 639                 /*
 640                  * Aging has zeroed all fractions. Stop wasting CPU on period
 641                  * updates.
 642                  */
 643                 dom->period_time = 0;
 644         }
 645 }
 646 
 647 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 648 {
 649         memset(dom, 0, sizeof(*dom));
 650 
 651         spin_lock_init(&dom->lock);
 652 
 653         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 654 
 655         dom->dirty_limit_tstamp = jiffies;
 656 
 657         return fprop_global_init(&dom->completions, gfp);
 658 }
 659 
 660 #ifdef CONFIG_CGROUP_WRITEBACK
 661 void wb_domain_exit(struct wb_domain *dom)
 662 {
 663         del_timer_sync(&dom->period_timer);
 664         fprop_global_destroy(&dom->completions);
 665 }
 666 #endif
 667 
 668 /*
 669  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 670  * registered backing devices, which, for obvious reasons, can not
 671  * exceed 100%.
 672  */
 673 static unsigned int bdi_min_ratio;
 674 
 675 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 676 {
 677         int ret = 0;
 678 
 679         spin_lock_bh(&bdi_lock);
 680         if (min_ratio > bdi->max_ratio) {
 681                 ret = -EINVAL;
 682         } else {
 683                 min_ratio -= bdi->min_ratio;
 684                 if (bdi_min_ratio + min_ratio < 100) {
 685                         bdi_min_ratio += min_ratio;
 686                         bdi->min_ratio += min_ratio;
 687                 } else {
 688                         ret = -EINVAL;
 689                 }
 690         }
 691         spin_unlock_bh(&bdi_lock);
 692 
 693         return ret;
 694 }
 695 
 696 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 697 {
 698         int ret = 0;
 699 
 700         if (max_ratio > 100)
 701                 return -EINVAL;
 702 
 703         spin_lock_bh(&bdi_lock);
 704         if (bdi->min_ratio > max_ratio) {
 705                 ret = -EINVAL;
 706         } else {
 707                 bdi->max_ratio = max_ratio;
 708                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 709         }
 710         spin_unlock_bh(&bdi_lock);
 711 
 712         return ret;
 713 }
 714 EXPORT_SYMBOL(bdi_set_max_ratio);
 715 
 716 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 717                                            unsigned long bg_thresh)
 718 {
 719         return (thresh + bg_thresh) / 2;
 720 }
 721 
 722 static unsigned long hard_dirty_limit(struct wb_domain *dom,
 723                                       unsigned long thresh)
 724 {
 725         return max(thresh, dom->dirty_limit);
 726 }
 727 
 728 /*
 729  * Memory which can be further allocated to a memcg domain is capped by
 730  * system-wide clean memory excluding the amount being used in the domain.
 731  */
 732 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 733                             unsigned long filepages, unsigned long headroom)
 734 {
 735         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 736         unsigned long clean = filepages - min(filepages, mdtc->dirty);
 737         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 738         unsigned long other_clean = global_clean - min(global_clean, clean);
 739 
 740         mdtc->avail = filepages + min(headroom, other_clean);
 741 }
 742 
 743 /**
 744  * __wb_calc_thresh - @wb's share of dirty throttling threshold
 745  * @dtc: dirty_throttle_context of interest
 746  *
 747  * Note that balance_dirty_pages() will only seriously take it as a hard limit
 748  * when sleeping max_pause per page is not enough to keep the dirty pages under
 749  * control. For example, when the device is completely stalled due to some error
 750  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 751  * In the other normal situations, it acts more gently by throttling the tasks
 752  * more (rather than completely block them) when the wb dirty pages go high.
 753  *
 754  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 755  * - starving fast devices
 756  * - piling up dirty pages (that will take long time to sync) on slow devices
 757  *
 758  * The wb's share of dirty limit will be adapting to its throughput and
 759  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 760  *
 761  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 762  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 763  */
 764 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 765 {
 766         struct wb_domain *dom = dtc_dom(dtc);
 767         unsigned long thresh = dtc->thresh;
 768         u64 wb_thresh;
 769         long numerator, denominator;
 770         unsigned long wb_min_ratio, wb_max_ratio;
 771 
 772         /*
 773          * Calculate this BDI's share of the thresh ratio.
 774          */
 775         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 776                               &numerator, &denominator);
 777 
 778         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 779         wb_thresh *= numerator;
 780         do_div(wb_thresh, denominator);
 781 
 782         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 783 
 784         wb_thresh += (thresh * wb_min_ratio) / 100;
 785         if (wb_thresh > (thresh * wb_max_ratio) / 100)
 786                 wb_thresh = thresh * wb_max_ratio / 100;
 787 
 788         return wb_thresh;
 789 }
 790 
 791 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 792 {
 793         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 794                                                .thresh = thresh };
 795         return __wb_calc_thresh(&gdtc);
 796 }
 797 
 798 /*
 799  *                           setpoint - dirty 3
 800  *        f(dirty) := 1.0 + (----------------)
 801  *                           limit - setpoint
 802  *
 803  * it's a 3rd order polynomial that subjects to
 804  *
 805  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 806  * (2) f(setpoint) = 1.0 => the balance point
 807  * (3) f(limit)    = 0   => the hard limit
 808  * (4) df/dx      <= 0   => negative feedback control
 809  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 810  *     => fast response on large errors; small oscillation near setpoint
 811  */
 812 static long long pos_ratio_polynom(unsigned long setpoint,
 813                                           unsigned long dirty,
 814                                           unsigned long limit)
 815 {
 816         long long pos_ratio;
 817         long x;
 818 
 819         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 820                       (limit - setpoint) | 1);
 821         pos_ratio = x;
 822         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 823         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 824         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 825 
 826         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 827 }
 828 
 829 /*
 830  * Dirty position control.
 831  *
 832  * (o) global/bdi setpoints
 833  *
 834  * We want the dirty pages be balanced around the global/wb setpoints.
 835  * When the number of dirty pages is higher/lower than the setpoint, the
 836  * dirty position control ratio (and hence task dirty ratelimit) will be
 837  * decreased/increased to bring the dirty pages back to the setpoint.
 838  *
 839  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 840  *
 841  *     if (dirty < setpoint) scale up   pos_ratio
 842  *     if (dirty > setpoint) scale down pos_ratio
 843  *
 844  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 845  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 846  *
 847  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 848  *
 849  * (o) global control line
 850  *
 851  *     ^ pos_ratio
 852  *     |
 853  *     |            |<===== global dirty control scope ======>|
 854  * 2.0 .............*
 855  *     |            .*
 856  *     |            . *
 857  *     |            .   *
 858  *     |            .     *
 859  *     |            .        *
 860  *     |            .            *
 861  * 1.0 ................................*
 862  *     |            .                  .     *
 863  *     |            .                  .          *
 864  *     |            .                  .              *
 865  *     |            .                  .                 *
 866  *     |            .                  .                    *
 867  *   0 +------------.------------------.----------------------*------------->
 868  *           freerun^          setpoint^                 limit^   dirty pages
 869  *
 870  * (o) wb control line
 871  *
 872  *     ^ pos_ratio
 873  *     |
 874  *     |            *
 875  *     |              *
 876  *     |                *
 877  *     |                  *
 878  *     |                    * |<=========== span ============>|
 879  * 1.0 .......................*
 880  *     |                      . *
 881  *     |                      .   *
 882  *     |                      .     *
 883  *     |                      .       *
 884  *     |                      .         *
 885  *     |                      .           *
 886  *     |                      .             *
 887  *     |                      .               *
 888  *     |                      .                 *
 889  *     |                      .                   *
 890  *     |                      .                     *
 891  * 1/4 ...............................................* * * * * * * * * * * *
 892  *     |                      .                         .
 893  *     |                      .                           .
 894  *     |                      .                             .
 895  *   0 +----------------------.-------------------------------.------------->
 896  *                wb_setpoint^                    x_intercept^
 897  *
 898  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 899  * be smoothly throttled down to normal if it starts high in situations like
 900  * - start writing to a slow SD card and a fast disk at the same time. The SD
 901  *   card's wb_dirty may rush to many times higher than wb_setpoint.
 902  * - the wb dirty thresh drops quickly due to change of JBOD workload
 903  */
 904 static void wb_position_ratio(struct dirty_throttle_control *dtc)
 905 {
 906         struct bdi_writeback *wb = dtc->wb;
 907         unsigned long write_bw = wb->avg_write_bandwidth;
 908         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 909         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 910         unsigned long wb_thresh = dtc->wb_thresh;
 911         unsigned long x_intercept;
 912         unsigned long setpoint;         /* dirty pages' target balance point */
 913         unsigned long wb_setpoint;
 914         unsigned long span;
 915         long long pos_ratio;            /* for scaling up/down the rate limit */
 916         long x;
 917 
 918         dtc->pos_ratio = 0;
 919 
 920         if (unlikely(dtc->dirty >= limit))
 921                 return;
 922 
 923         /*
 924          * global setpoint
 925          *
 926          * See comment for pos_ratio_polynom().
 927          */
 928         setpoint = (freerun + limit) / 2;
 929         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 930 
 931         /*
 932          * The strictlimit feature is a tool preventing mistrusted filesystems
 933          * from growing a large number of dirty pages before throttling. For
 934          * such filesystems balance_dirty_pages always checks wb counters
 935          * against wb limits. Even if global "nr_dirty" is under "freerun".
 936          * This is especially important for fuse which sets bdi->max_ratio to
 937          * 1% by default. Without strictlimit feature, fuse writeback may
 938          * consume arbitrary amount of RAM because it is accounted in
 939          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 940          *
 941          * Here, in wb_position_ratio(), we calculate pos_ratio based on
 942          * two values: wb_dirty and wb_thresh. Let's consider an example:
 943          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 944          * limits are set by default to 10% and 20% (background and throttle).
 945          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 946          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 947          * about ~6K pages (as the average of background and throttle wb
 948          * limits). The 3rd order polynomial will provide positive feedback if
 949          * wb_dirty is under wb_setpoint and vice versa.
 950          *
 951          * Note, that we cannot use global counters in these calculations
 952          * because we want to throttle process writing to a strictlimit wb
 953          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 954          * in the example above).
 955          */
 956         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 957                 long long wb_pos_ratio;
 958 
 959                 if (dtc->wb_dirty < 8) {
 960                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 961                                            2 << RATELIMIT_CALC_SHIFT);
 962                         return;
 963                 }
 964 
 965                 if (dtc->wb_dirty >= wb_thresh)
 966                         return;
 967 
 968                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 969                                                     dtc->wb_bg_thresh);
 970 
 971                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 972                         return;
 973 
 974                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 975                                                  wb_thresh);
 976 
 977                 /*
 978                  * Typically, for strictlimit case, wb_setpoint << setpoint
 979                  * and pos_ratio >> wb_pos_ratio. In the other words global
 980                  * state ("dirty") is not limiting factor and we have to
 981                  * make decision based on wb counters. But there is an
 982                  * important case when global pos_ratio should get precedence:
 983                  * global limits are exceeded (e.g. due to activities on other
 984                  * wb's) while given strictlimit wb is below limit.
 985                  *
 986                  * "pos_ratio * wb_pos_ratio" would work for the case above,
 987                  * but it would look too non-natural for the case of all
 988                  * activity in the system coming from a single strictlimit wb
 989                  * with bdi->max_ratio == 100%.
 990                  *
 991                  * Note that min() below somewhat changes the dynamics of the
 992                  * control system. Normally, pos_ratio value can be well over 3
 993                  * (when globally we are at freerun and wb is well below wb
 994                  * setpoint). Now the maximum pos_ratio in the same situation
 995                  * is 2. We might want to tweak this if we observe the control
 996                  * system is too slow to adapt.
 997                  */
 998                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 999                 return;
1000         }
1001 
1002         /*
1003          * We have computed basic pos_ratio above based on global situation. If
1004          * the wb is over/under its share of dirty pages, we want to scale
1005          * pos_ratio further down/up. That is done by the following mechanism.
1006          */
1007 
1008         /*
1009          * wb setpoint
1010          *
1011          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1012          *
1013          *                        x_intercept - wb_dirty
1014          *                     := --------------------------
1015          *                        x_intercept - wb_setpoint
1016          *
1017          * The main wb control line is a linear function that subjects to
1018          *
1019          * (1) f(wb_setpoint) = 1.0
1020          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1021          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1022          *
1023          * For single wb case, the dirty pages are observed to fluctuate
1024          * regularly within range
1025          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1026          * for various filesystems, where (2) can yield in a reasonable 12.5%
1027          * fluctuation range for pos_ratio.
1028          *
1029          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1030          * own size, so move the slope over accordingly and choose a slope that
1031          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1032          */
1033         if (unlikely(wb_thresh > dtc->thresh))
1034                 wb_thresh = dtc->thresh;
1035         /*
1036          * It's very possible that wb_thresh is close to 0 not because the
1037          * device is slow, but that it has remained inactive for long time.
1038          * Honour such devices a reasonable good (hopefully IO efficient)
1039          * threshold, so that the occasional writes won't be blocked and active
1040          * writes can rampup the threshold quickly.
1041          */
1042         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1043         /*
1044          * scale global setpoint to wb's:
1045          *      wb_setpoint = setpoint * wb_thresh / thresh
1046          */
1047         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1048         wb_setpoint = setpoint * (u64)x >> 16;
1049         /*
1050          * Use span=(8*write_bw) in single wb case as indicated by
1051          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1052          *
1053          *        wb_thresh                    thresh - wb_thresh
1054          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1055          *         thresh                           thresh
1056          */
1057         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1058         x_intercept = wb_setpoint + span;
1059 
1060         if (dtc->wb_dirty < x_intercept - span / 4) {
1061                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1062                                       (x_intercept - wb_setpoint) | 1);
1063         } else
1064                 pos_ratio /= 4;
1065 
1066         /*
1067          * wb reserve area, safeguard against dirty pool underrun and disk idle
1068          * It may push the desired control point of global dirty pages higher
1069          * than setpoint.
1070          */
1071         x_intercept = wb_thresh / 2;
1072         if (dtc->wb_dirty < x_intercept) {
1073                 if (dtc->wb_dirty > x_intercept / 8)
1074                         pos_ratio = div_u64(pos_ratio * x_intercept,
1075                                             dtc->wb_dirty);
1076                 else
1077                         pos_ratio *= 8;
1078         }
1079 
1080         dtc->pos_ratio = pos_ratio;
1081 }
1082 
1083 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1084                                       unsigned long elapsed,
1085                                       unsigned long written)
1086 {
1087         const unsigned long period = roundup_pow_of_two(3 * HZ);
1088         unsigned long avg = wb->avg_write_bandwidth;
1089         unsigned long old = wb->write_bandwidth;
1090         u64 bw;
1091 
1092         /*
1093          * bw = written * HZ / elapsed
1094          *
1095          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1096          * write_bandwidth = ---------------------------------------------------
1097          *                                          period
1098          *
1099          * @written may have decreased due to account_page_redirty().
1100          * Avoid underflowing @bw calculation.
1101          */
1102         bw = written - min(written, wb->written_stamp);
1103         bw *= HZ;
1104         if (unlikely(elapsed > period)) {
1105                 do_div(bw, elapsed);
1106                 avg = bw;
1107                 goto out;
1108         }
1109         bw += (u64)wb->write_bandwidth * (period - elapsed);
1110         bw >>= ilog2(period);
1111 
1112         /*
1113          * one more level of smoothing, for filtering out sudden spikes
1114          */
1115         if (avg > old && old >= (unsigned long)bw)
1116                 avg -= (avg - old) >> 3;
1117 
1118         if (avg < old && old <= (unsigned long)bw)
1119                 avg += (old - avg) >> 3;
1120 
1121 out:
1122         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1123         avg = max(avg, 1LU);
1124         if (wb_has_dirty_io(wb)) {
1125                 long delta = avg - wb->avg_write_bandwidth;
1126                 WARN_ON_ONCE(atomic_long_add_return(delta,
1127                                         &wb->bdi->tot_write_bandwidth) <= 0);
1128         }
1129         wb->write_bandwidth = bw;
1130         wb->avg_write_bandwidth = avg;
1131 }
1132 
1133 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1134 {
1135         struct wb_domain *dom = dtc_dom(dtc);
1136         unsigned long thresh = dtc->thresh;
1137         unsigned long limit = dom->dirty_limit;
1138 
1139         /*
1140          * Follow up in one step.
1141          */
1142         if (limit < thresh) {
1143                 limit = thresh;
1144                 goto update;
1145         }
1146 
1147         /*
1148          * Follow down slowly. Use the higher one as the target, because thresh
1149          * may drop below dirty. This is exactly the reason to introduce
1150          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1151          */
1152         thresh = max(thresh, dtc->dirty);
1153         if (limit > thresh) {
1154                 limit -= (limit - thresh) >> 5;
1155                 goto update;
1156         }
1157         return;
1158 update:
1159         dom->dirty_limit = limit;
1160 }
1161 
1162 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1163                                     unsigned long now)
1164 {
1165         struct wb_domain *dom = dtc_dom(dtc);
1166 
1167         /*
1168          * check locklessly first to optimize away locking for the most time
1169          */
1170         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1171                 return;
1172 
1173         spin_lock(&dom->lock);
1174         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1175                 update_dirty_limit(dtc);
1176                 dom->dirty_limit_tstamp = now;
1177         }
1178         spin_unlock(&dom->lock);
1179 }
1180 
1181 /*
1182  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1183  *
1184  * Normal wb tasks will be curbed at or below it in long term.
1185  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186  */
1187 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1188                                       unsigned long dirtied,
1189                                       unsigned long elapsed)
1190 {
1191         struct bdi_writeback *wb = dtc->wb;
1192         unsigned long dirty = dtc->dirty;
1193         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1194         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1195         unsigned long setpoint = (freerun + limit) / 2;
1196         unsigned long write_bw = wb->avg_write_bandwidth;
1197         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1198         unsigned long dirty_rate;
1199         unsigned long task_ratelimit;
1200         unsigned long balanced_dirty_ratelimit;
1201         unsigned long step;
1202         unsigned long x;
1203         unsigned long shift;
1204 
1205         /*
1206          * The dirty rate will match the writeout rate in long term, except
1207          * when dirty pages are truncated by userspace or re-dirtied by FS.
1208          */
1209         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1210 
1211         /*
1212          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213          */
1214         task_ratelimit = (u64)dirty_ratelimit *
1215                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1216         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1217 
1218         /*
1219          * A linear estimation of the "balanced" throttle rate. The theory is,
1220          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1221          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1222          * formula will yield the balanced rate limit (write_bw / N).
1223          *
1224          * Note that the expanded form is not a pure rate feedback:
1225          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1226          * but also takes pos_ratio into account:
1227          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1228          *
1229          * (1) is not realistic because pos_ratio also takes part in balancing
1230          * the dirty rate.  Consider the state
1231          *      pos_ratio = 0.5                                              (3)
1232          *      rate = 2 * (write_bw / N)                                    (4)
1233          * If (1) is used, it will stuck in that state! Because each dd will
1234          * be throttled at
1235          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1236          * yielding
1237          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1238          * put (6) into (1) we get
1239          *      rate_(i+1) = rate_(i)                                        (7)
1240          *
1241          * So we end up using (2) to always keep
1242          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1243          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1244          * pos_ratio is able to drive itself to 1.0, which is not only where
1245          * the dirty count meet the setpoint, but also where the slope of
1246          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247          */
1248         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1249                                            dirty_rate | 1);
1250         /*
1251          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252          */
1253         if (unlikely(balanced_dirty_ratelimit > write_bw))
1254                 balanced_dirty_ratelimit = write_bw;
1255 
1256         /*
1257          * We could safely do this and return immediately:
1258          *
1259          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1260          *
1261          * However to get a more stable dirty_ratelimit, the below elaborated
1262          * code makes use of task_ratelimit to filter out singular points and
1263          * limit the step size.
1264          *
1265          * The below code essentially only uses the relative value of
1266          *
1267          *      task_ratelimit - dirty_ratelimit
1268          *      = (pos_ratio - 1) * dirty_ratelimit
1269          *
1270          * which reflects the direction and size of dirty position error.
1271          */
1272 
1273         /*
1274          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1275          * task_ratelimit is on the same side of dirty_ratelimit, too.
1276          * For example, when
1277          * - dirty_ratelimit > balanced_dirty_ratelimit
1278          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1279          * lowering dirty_ratelimit will help meet both the position and rate
1280          * control targets. Otherwise, don't update dirty_ratelimit if it will
1281          * only help meet the rate target. After all, what the users ultimately
1282          * feel and care are stable dirty rate and small position error.
1283          *
1284          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1285          * and filter out the singular points of balanced_dirty_ratelimit. Which
1286          * keeps jumping around randomly and can even leap far away at times
1287          * due to the small 200ms estimation period of dirty_rate (we want to
1288          * keep that period small to reduce time lags).
1289          */
1290         step = 0;
1291 
1292         /*
1293          * For strictlimit case, calculations above were based on wb counters
1294          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1295          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1296          * Hence, to calculate "step" properly, we have to use wb_dirty as
1297          * "dirty" and wb_setpoint as "setpoint".
1298          *
1299          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1300          * it's possible that wb_thresh is close to zero due to inactivity
1301          * of backing device.
1302          */
1303         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1304                 dirty = dtc->wb_dirty;
1305                 if (dtc->wb_dirty < 8)
1306                         setpoint = dtc->wb_dirty + 1;
1307                 else
1308                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1309         }
1310 
1311         if (dirty < setpoint) {
1312                 x = min3(wb->balanced_dirty_ratelimit,
1313                          balanced_dirty_ratelimit, task_ratelimit);
1314                 if (dirty_ratelimit < x)
1315                         step = x - dirty_ratelimit;
1316         } else {
1317                 x = max3(wb->balanced_dirty_ratelimit,
1318                          balanced_dirty_ratelimit, task_ratelimit);
1319                 if (dirty_ratelimit > x)
1320                         step = dirty_ratelimit - x;
1321         }
1322 
1323         /*
1324          * Don't pursue 100% rate matching. It's impossible since the balanced
1325          * rate itself is constantly fluctuating. So decrease the track speed
1326          * when it gets close to the target. Helps eliminate pointless tremors.
1327          */
1328         shift = dirty_ratelimit / (2 * step + 1);
1329         if (shift < BITS_PER_LONG)
1330                 step = DIV_ROUND_UP(step >> shift, 8);
1331         else
1332                 step = 0;
1333 
1334         if (dirty_ratelimit < balanced_dirty_ratelimit)
1335                 dirty_ratelimit += step;
1336         else
1337                 dirty_ratelimit -= step;
1338 
1339         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1340         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1341 
1342         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1343 }
1344 
1345 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1346                                   struct dirty_throttle_control *mdtc,
1347                                   unsigned long start_time,
1348                                   bool update_ratelimit)
1349 {
1350         struct bdi_writeback *wb = gdtc->wb;
1351         unsigned long now = jiffies;
1352         unsigned long elapsed = now - wb->bw_time_stamp;
1353         unsigned long dirtied;
1354         unsigned long written;
1355 
1356         lockdep_assert_held(&wb->list_lock);
1357 
1358         /*
1359          * rate-limit, only update once every 200ms.
1360          */
1361         if (elapsed < BANDWIDTH_INTERVAL)
1362                 return;
1363 
1364         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1365         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1366 
1367         /*
1368          * Skip quiet periods when disk bandwidth is under-utilized.
1369          * (at least 1s idle time between two flusher runs)
1370          */
1371         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1372                 goto snapshot;
1373 
1374         if (update_ratelimit) {
1375                 domain_update_bandwidth(gdtc, now);
1376                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1377 
1378                 /*
1379                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1380                  * compiler has no way to figure that out.  Help it.
1381                  */
1382                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1383                         domain_update_bandwidth(mdtc, now);
1384                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1385                 }
1386         }
1387         wb_update_write_bandwidth(wb, elapsed, written);
1388 
1389 snapshot:
1390         wb->dirtied_stamp = dirtied;
1391         wb->written_stamp = written;
1392         wb->bw_time_stamp = now;
1393 }
1394 
1395 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1396 {
1397         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1398 
1399         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1400 }
1401 
1402 /*
1403  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1404  * will look to see if it needs to start dirty throttling.
1405  *
1406  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1407  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1408  * (the number of pages we may dirty without exceeding the dirty limits).
1409  */
1410 static unsigned long dirty_poll_interval(unsigned long dirty,
1411                                          unsigned long thresh)
1412 {
1413         if (thresh > dirty)
1414                 return 1UL << (ilog2(thresh - dirty) >> 1);
1415 
1416         return 1;
1417 }
1418 
1419 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1420                                   unsigned long wb_dirty)
1421 {
1422         unsigned long bw = wb->avg_write_bandwidth;
1423         unsigned long t;
1424 
1425         /*
1426          * Limit pause time for small memory systems. If sleeping for too long
1427          * time, a small pool of dirty/writeback pages may go empty and disk go
1428          * idle.
1429          *
1430          * 8 serves as the safety ratio.
1431          */
1432         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1433         t++;
1434 
1435         return min_t(unsigned long, t, MAX_PAUSE);
1436 }
1437 
1438 static long wb_min_pause(struct bdi_writeback *wb,
1439                          long max_pause,
1440                          unsigned long task_ratelimit,
1441                          unsigned long dirty_ratelimit,
1442                          int *nr_dirtied_pause)
1443 {
1444         long hi = ilog2(wb->avg_write_bandwidth);
1445         long lo = ilog2(wb->dirty_ratelimit);
1446         long t;         /* target pause */
1447         long pause;     /* estimated next pause */
1448         int pages;      /* target nr_dirtied_pause */
1449 
1450         /* target for 10ms pause on 1-dd case */
1451         t = max(1, HZ / 100);
1452 
1453         /*
1454          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1455          * overheads.
1456          *
1457          * (N * 10ms) on 2^N concurrent tasks.
1458          */
1459         if (hi > lo)
1460                 t += (hi - lo) * (10 * HZ) / 1024;
1461 
1462         /*
1463          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1464          * on the much more stable dirty_ratelimit. However the next pause time
1465          * will be computed based on task_ratelimit and the two rate limits may
1466          * depart considerably at some time. Especially if task_ratelimit goes
1467          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1468          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1469          * result task_ratelimit won't be executed faithfully, which could
1470          * eventually bring down dirty_ratelimit.
1471          *
1472          * We apply two rules to fix it up:
1473          * 1) try to estimate the next pause time and if necessary, use a lower
1474          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1475          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1476          * 2) limit the target pause time to max_pause/2, so that the normal
1477          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1478          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1479          */
1480         t = min(t, 1 + max_pause / 2);
1481         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482 
1483         /*
1484          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1485          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1486          * When the 16 consecutive reads are often interrupted by some dirty
1487          * throttling pause during the async writes, cfq will go into idles
1488          * (deadline is fine). So push nr_dirtied_pause as high as possible
1489          * until reaches DIRTY_POLL_THRESH=32 pages.
1490          */
1491         if (pages < DIRTY_POLL_THRESH) {
1492                 t = max_pause;
1493                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1494                 if (pages > DIRTY_POLL_THRESH) {
1495                         pages = DIRTY_POLL_THRESH;
1496                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1497                 }
1498         }
1499 
1500         pause = HZ * pages / (task_ratelimit + 1);
1501         if (pause > max_pause) {
1502                 t = max_pause;
1503                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1504         }
1505 
1506         *nr_dirtied_pause = pages;
1507         /*
1508          * The minimal pause time will normally be half the target pause time.
1509          */
1510         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1511 }
1512 
1513 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1514 {
1515         struct bdi_writeback *wb = dtc->wb;
1516         unsigned long wb_reclaimable;
1517 
1518         /*
1519          * wb_thresh is not treated as some limiting factor as
1520          * dirty_thresh, due to reasons
1521          * - in JBOD setup, wb_thresh can fluctuate a lot
1522          * - in a system with HDD and USB key, the USB key may somehow
1523          *   go into state (wb_dirty >> wb_thresh) either because
1524          *   wb_dirty starts high, or because wb_thresh drops low.
1525          *   In this case we don't want to hard throttle the USB key
1526          *   dirtiers for 100 seconds until wb_dirty drops under
1527          *   wb_thresh. Instead the auxiliary wb control line in
1528          *   wb_position_ratio() will let the dirtier task progress
1529          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1530          */
1531         dtc->wb_thresh = __wb_calc_thresh(dtc);
1532         dtc->wb_bg_thresh = dtc->thresh ?
1533                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1534 
1535         /*
1536          * In order to avoid the stacked BDI deadlock we need
1537          * to ensure we accurately count the 'dirty' pages when
1538          * the threshold is low.
1539          *
1540          * Otherwise it would be possible to get thresh+n pages
1541          * reported dirty, even though there are thresh-m pages
1542          * actually dirty; with m+n sitting in the percpu
1543          * deltas.
1544          */
1545         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1546                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1547                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1548         } else {
1549                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1550                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1551         }
1552 }
1553 
1554 /*
1555  * balance_dirty_pages() must be called by processes which are generating dirty
1556  * data.  It looks at the number of dirty pages in the machine and will force
1557  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1558  * If we're over `background_thresh' then the writeback threads are woken to
1559  * perform some writeout.
1560  */
1561 static void balance_dirty_pages(struct bdi_writeback *wb,
1562                                 unsigned long pages_dirtied)
1563 {
1564         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1565         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1566         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1567         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1568                                                      &mdtc_stor : NULL;
1569         struct dirty_throttle_control *sdtc;
1570         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1571         long period;
1572         long pause;
1573         long max_pause;
1574         long min_pause;
1575         int nr_dirtied_pause;
1576         bool dirty_exceeded = false;
1577         unsigned long task_ratelimit;
1578         unsigned long dirty_ratelimit;
1579         struct backing_dev_info *bdi = wb->bdi;
1580         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1581         unsigned long start_time = jiffies;
1582 
1583         for (;;) {
1584                 unsigned long now = jiffies;
1585                 unsigned long dirty, thresh, bg_thresh;
1586                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1587                 unsigned long m_thresh = 0;
1588                 unsigned long m_bg_thresh = 0;
1589 
1590                 /*
1591                  * Unstable writes are a feature of certain networked
1592                  * filesystems (i.e. NFS) in which data may have been
1593                  * written to the server's write cache, but has not yet
1594                  * been flushed to permanent storage.
1595                  */
1596                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1597                                         global_node_page_state(NR_UNSTABLE_NFS);
1598                 gdtc->avail = global_dirtyable_memory();
1599                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1600 
1601                 domain_dirty_limits(gdtc);
1602 
1603                 if (unlikely(strictlimit)) {
1604                         wb_dirty_limits(gdtc);
1605 
1606                         dirty = gdtc->wb_dirty;
1607                         thresh = gdtc->wb_thresh;
1608                         bg_thresh = gdtc->wb_bg_thresh;
1609                 } else {
1610                         dirty = gdtc->dirty;
1611                         thresh = gdtc->thresh;
1612                         bg_thresh = gdtc->bg_thresh;
1613                 }
1614 
1615                 if (mdtc) {
1616                         unsigned long filepages, headroom, writeback;
1617 
1618                         /*
1619                          * If @wb belongs to !root memcg, repeat the same
1620                          * basic calculations for the memcg domain.
1621                          */
1622                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1623                                             &mdtc->dirty, &writeback);
1624                         mdtc->dirty += writeback;
1625                         mdtc_calc_avail(mdtc, filepages, headroom);
1626 
1627                         domain_dirty_limits(mdtc);
1628 
1629                         if (unlikely(strictlimit)) {
1630                                 wb_dirty_limits(mdtc);
1631                                 m_dirty = mdtc->wb_dirty;
1632                                 m_thresh = mdtc->wb_thresh;
1633                                 m_bg_thresh = mdtc->wb_bg_thresh;
1634                         } else {
1635                                 m_dirty = mdtc->dirty;
1636                                 m_thresh = mdtc->thresh;
1637                                 m_bg_thresh = mdtc->bg_thresh;
1638                         }
1639                 }
1640 
1641                 /*
1642                  * Throttle it only when the background writeback cannot
1643                  * catch-up. This avoids (excessively) small writeouts
1644                  * when the wb limits are ramping up in case of !strictlimit.
1645                  *
1646                  * In strictlimit case make decision based on the wb counters
1647                  * and limits. Small writeouts when the wb limits are ramping
1648                  * up are the price we consciously pay for strictlimit-ing.
1649                  *
1650                  * If memcg domain is in effect, @dirty should be under
1651                  * both global and memcg freerun ceilings.
1652                  */
1653                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1654                     (!mdtc ||
1655                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1656                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1657                         unsigned long m_intv = ULONG_MAX;
1658 
1659                         current->dirty_paused_when = now;
1660                         current->nr_dirtied = 0;
1661                         if (mdtc)
1662                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1663                         current->nr_dirtied_pause = min(intv, m_intv);
1664                         break;
1665                 }
1666 
1667                 if (unlikely(!writeback_in_progress(wb)))
1668                         wb_start_background_writeback(wb);
1669 
1670                 mem_cgroup_flush_foreign(wb);
1671 
1672                 /*
1673                  * Calculate global domain's pos_ratio and select the
1674                  * global dtc by default.
1675                  */
1676                 if (!strictlimit)
1677                         wb_dirty_limits(gdtc);
1678 
1679                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1681 
1682                 wb_position_ratio(gdtc);
1683                 sdtc = gdtc;
1684 
1685                 if (mdtc) {
1686                         /*
1687                          * If memcg domain is in effect, calculate its
1688                          * pos_ratio.  @wb should satisfy constraints from
1689                          * both global and memcg domains.  Choose the one
1690                          * w/ lower pos_ratio.
1691                          */
1692                         if (!strictlimit)
1693                                 wb_dirty_limits(mdtc);
1694 
1695                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1697 
1698                         wb_position_ratio(mdtc);
1699                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1700                                 sdtc = mdtc;
1701                 }
1702 
1703                 if (dirty_exceeded && !wb->dirty_exceeded)
1704                         wb->dirty_exceeded = 1;
1705 
1706                 if (time_is_before_jiffies(wb->bw_time_stamp +
1707                                            BANDWIDTH_INTERVAL)) {
1708                         spin_lock(&wb->list_lock);
1709                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710                         spin_unlock(&wb->list_lock);
1711                 }
1712 
1713                 /* throttle according to the chosen dtc */
1714                 dirty_ratelimit = wb->dirty_ratelimit;
1715                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716                                                         RATELIMIT_CALC_SHIFT;
1717                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718                 min_pause = wb_min_pause(wb, max_pause,
1719                                          task_ratelimit, dirty_ratelimit,
1720                                          &nr_dirtied_pause);
1721 
1722                 if (unlikely(task_ratelimit == 0)) {
1723                         period = max_pause;
1724                         pause = max_pause;
1725                         goto pause;
1726                 }
1727                 period = HZ * pages_dirtied / task_ratelimit;
1728                 pause = period;
1729                 if (current->dirty_paused_when)
1730                         pause -= now - current->dirty_paused_when;
1731                 /*
1732                  * For less than 1s think time (ext3/4 may block the dirtier
1733                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1734                  * however at much less frequency), try to compensate it in
1735                  * future periods by updating the virtual time; otherwise just
1736                  * do a reset, as it may be a light dirtier.
1737                  */
1738                 if (pause < min_pause) {
1739                         trace_balance_dirty_pages(wb,
1740                                                   sdtc->thresh,
1741                                                   sdtc->bg_thresh,
1742                                                   sdtc->dirty,
1743                                                   sdtc->wb_thresh,
1744                                                   sdtc->wb_dirty,
1745                                                   dirty_ratelimit,
1746                                                   task_ratelimit,
1747                                                   pages_dirtied,
1748                                                   period,
1749                                                   min(pause, 0L),
1750                                                   start_time);
1751                         if (pause < -HZ) {
1752                                 current->dirty_paused_when = now;
1753                                 current->nr_dirtied = 0;
1754                         } else if (period) {
1755                                 current->dirty_paused_when += period;
1756                                 current->nr_dirtied = 0;
1757                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1758                                 current->nr_dirtied_pause += pages_dirtied;
1759                         break;
1760                 }
1761                 if (unlikely(pause > max_pause)) {
1762                         /* for occasional dropped task_ratelimit */
1763                         now += min(pause - max_pause, max_pause);
1764                         pause = max_pause;
1765                 }
1766 
1767 pause:
1768                 trace_balance_dirty_pages(wb,
1769                                           sdtc->thresh,
1770                                           sdtc->bg_thresh,
1771                                           sdtc->dirty,
1772                                           sdtc->wb_thresh,
1773                                           sdtc->wb_dirty,
1774                                           dirty_ratelimit,
1775                                           task_ratelimit,
1776                                           pages_dirtied,
1777                                           period,
1778                                           pause,
1779                                           start_time);
1780                 __set_current_state(TASK_KILLABLE);
1781                 wb->dirty_sleep = now;
1782                 io_schedule_timeout(pause);
1783 
1784                 current->dirty_paused_when = now + pause;
1785                 current->nr_dirtied = 0;
1786                 current->nr_dirtied_pause = nr_dirtied_pause;
1787 
1788                 /*
1789                  * This is typically equal to (dirty < thresh) and can also
1790                  * keep "1000+ dd on a slow USB stick" under control.
1791                  */
1792                 if (task_ratelimit)
1793                         break;
1794 
1795                 /*
1796                  * In the case of an unresponding NFS server and the NFS dirty
1797                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1798                  * to go through, so that tasks on them still remain responsive.
1799                  *
1800                  * In theory 1 page is enough to keep the consumer-producer
1801                  * pipe going: the flusher cleans 1 page => the task dirties 1
1802                  * more page. However wb_dirty has accounting errors.  So use
1803                  * the larger and more IO friendly wb_stat_error.
1804                  */
1805                 if (sdtc->wb_dirty <= wb_stat_error())
1806                         break;
1807 
1808                 if (fatal_signal_pending(current))
1809                         break;
1810         }
1811 
1812         if (!dirty_exceeded && wb->dirty_exceeded)
1813                 wb->dirty_exceeded = 0;
1814 
1815         if (writeback_in_progress(wb))
1816                 return;
1817 
1818         /*
1819          * In laptop mode, we wait until hitting the higher threshold before
1820          * starting background writeout, and then write out all the way down
1821          * to the lower threshold.  So slow writers cause minimal disk activity.
1822          *
1823          * In normal mode, we start background writeout at the lower
1824          * background_thresh, to keep the amount of dirty memory low.
1825          */
1826         if (laptop_mode)
1827                 return;
1828 
1829         if (nr_reclaimable > gdtc->bg_thresh)
1830                 wb_start_background_writeback(wb);
1831 }
1832 
1833 static DEFINE_PER_CPU(int, bdp_ratelimits);
1834 
1835 /*
1836  * Normal tasks are throttled by
1837  *      loop {
1838  *              dirty tsk->nr_dirtied_pause pages;
1839  *              take a snap in balance_dirty_pages();
1840  *      }
1841  * However there is a worst case. If every task exit immediately when dirtied
1842  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1843  * called to throttle the page dirties. The solution is to save the not yet
1844  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1845  * randomly into the running tasks. This works well for the above worst case,
1846  * as the new task will pick up and accumulate the old task's leaked dirty
1847  * count and eventually get throttled.
1848  */
1849 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1850 
1851 /**
1852  * balance_dirty_pages_ratelimited - balance dirty memory state
1853  * @mapping: address_space which was dirtied
1854  *
1855  * Processes which are dirtying memory should call in here once for each page
1856  * which was newly dirtied.  The function will periodically check the system's
1857  * dirty state and will initiate writeback if needed.
1858  *
1859  * On really big machines, get_writeback_state is expensive, so try to avoid
1860  * calling it too often (ratelimiting).  But once we're over the dirty memory
1861  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1862  * from overshooting the limit by (ratelimit_pages) each.
1863  */
1864 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1865 {
1866         struct inode *inode = mapping->host;
1867         struct backing_dev_info *bdi = inode_to_bdi(inode);
1868         struct bdi_writeback *wb = NULL;
1869         int ratelimit;
1870         int *p;
1871 
1872         if (!bdi_cap_account_dirty(bdi))
1873                 return;
1874 
1875         if (inode_cgwb_enabled(inode))
1876                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1877         if (!wb)
1878                 wb = &bdi->wb;
1879 
1880         ratelimit = current->nr_dirtied_pause;
1881         if (wb->dirty_exceeded)
1882                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1883 
1884         preempt_disable();
1885         /*
1886          * This prevents one CPU to accumulate too many dirtied pages without
1887          * calling into balance_dirty_pages(), which can happen when there are
1888          * 1000+ tasks, all of them start dirtying pages at exactly the same
1889          * time, hence all honoured too large initial task->nr_dirtied_pause.
1890          */
1891         p =  this_cpu_ptr(&bdp_ratelimits);
1892         if (unlikely(current->nr_dirtied >= ratelimit))
1893                 *p = 0;
1894         else if (unlikely(*p >= ratelimit_pages)) {
1895                 *p = 0;
1896                 ratelimit = 0;
1897         }
1898         /*
1899          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1900          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1901          * the dirty throttling and livelock other long-run dirtiers.
1902          */
1903         p = this_cpu_ptr(&dirty_throttle_leaks);
1904         if (*p > 0 && current->nr_dirtied < ratelimit) {
1905                 unsigned long nr_pages_dirtied;
1906                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1907                 *p -= nr_pages_dirtied;
1908                 current->nr_dirtied += nr_pages_dirtied;
1909         }
1910         preempt_enable();
1911 
1912         if (unlikely(current->nr_dirtied >= ratelimit))
1913                 balance_dirty_pages(wb, current->nr_dirtied);
1914 
1915         wb_put(wb);
1916 }
1917 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1918 
1919 /**
1920  * wb_over_bg_thresh - does @wb need to be written back?
1921  * @wb: bdi_writeback of interest
1922  *
1923  * Determines whether background writeback should keep writing @wb or it's
1924  * clean enough.
1925  *
1926  * Return: %true if writeback should continue.
1927  */
1928 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1929 {
1930         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1931         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1932         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1933         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1934                                                      &mdtc_stor : NULL;
1935 
1936         /*
1937          * Similar to balance_dirty_pages() but ignores pages being written
1938          * as we're trying to decide whether to put more under writeback.
1939          */
1940         gdtc->avail = global_dirtyable_memory();
1941         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1942                       global_node_page_state(NR_UNSTABLE_NFS);
1943         domain_dirty_limits(gdtc);
1944 
1945         if (gdtc->dirty > gdtc->bg_thresh)
1946                 return true;
1947 
1948         if (wb_stat(wb, WB_RECLAIMABLE) >
1949             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1950                 return true;
1951 
1952         if (mdtc) {
1953                 unsigned long filepages, headroom, writeback;
1954 
1955                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1956                                     &writeback);
1957                 mdtc_calc_avail(mdtc, filepages, headroom);
1958                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1959 
1960                 if (mdtc->dirty > mdtc->bg_thresh)
1961                         return true;
1962 
1963                 if (wb_stat(wb, WB_RECLAIMABLE) >
1964                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1965                         return true;
1966         }
1967 
1968         return false;
1969 }
1970 
1971 /*
1972  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973  */
1974 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1975         void __user *buffer, size_t *length, loff_t *ppos)
1976 {
1977         unsigned int old_interval = dirty_writeback_interval;
1978         int ret;
1979 
1980         ret = proc_dointvec(table, write, buffer, length, ppos);
1981 
1982         /*
1983          * Writing 0 to dirty_writeback_interval will disable periodic writeback
1984          * and a different non-zero value will wakeup the writeback threads.
1985          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1986          * iterate over all bdis and wbs.
1987          * The reason we do this is to make the change take effect immediately.
1988          */
1989         if (!ret && write && dirty_writeback_interval &&
1990                 dirty_writeback_interval != old_interval)
1991                 wakeup_flusher_threads(WB_REASON_PERIODIC);
1992 
1993         return ret;
1994 }
1995 
1996 #ifdef CONFIG_BLOCK
1997 void laptop_mode_timer_fn(struct timer_list *t)
1998 {
1999         struct backing_dev_info *backing_dev_info =
2000                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2001 
2002         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2003 }
2004 
2005 /*
2006  * We've spun up the disk and we're in laptop mode: schedule writeback
2007  * of all dirty data a few seconds from now.  If the flush is already scheduled
2008  * then push it back - the user is still using the disk.
2009  */
2010 void laptop_io_completion(struct backing_dev_info *info)
2011 {
2012         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2013 }
2014 
2015 /*
2016  * We're in laptop mode and we've just synced. The sync's writes will have
2017  * caused another writeback to be scheduled by laptop_io_completion.
2018  * Nothing needs to be written back anymore, so we unschedule the writeback.
2019  */
2020 void laptop_sync_completion(void)
2021 {
2022         struct backing_dev_info *bdi;
2023 
2024         rcu_read_lock();
2025 
2026         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2027                 del_timer(&bdi->laptop_mode_wb_timer);
2028 
2029         rcu_read_unlock();
2030 }
2031 #endif
2032 
2033 /*
2034  * If ratelimit_pages is too high then we can get into dirty-data overload
2035  * if a large number of processes all perform writes at the same time.
2036  * If it is too low then SMP machines will call the (expensive)
2037  * get_writeback_state too often.
2038  *
2039  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2040  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2041  * thresholds.
2042  */
2043 
2044 void writeback_set_ratelimit(void)
2045 {
2046         struct wb_domain *dom = &global_wb_domain;
2047         unsigned long background_thresh;
2048         unsigned long dirty_thresh;
2049 
2050         global_dirty_limits(&background_thresh, &dirty_thresh);
2051         dom->dirty_limit = dirty_thresh;
2052         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2053         if (ratelimit_pages < 16)
2054                 ratelimit_pages = 16;
2055 }
2056 
2057 static int page_writeback_cpu_online(unsigned int cpu)
2058 {
2059         writeback_set_ratelimit();
2060         return 0;
2061 }
2062 
2063 /*
2064  * Called early on to tune the page writeback dirty limits.
2065  *
2066  * We used to scale dirty pages according to how total memory
2067  * related to pages that could be allocated for buffers (by
2068  * comparing nr_free_buffer_pages() to vm_total_pages.
2069  *
2070  * However, that was when we used "dirty_ratio" to scale with
2071  * all memory, and we don't do that any more. "dirty_ratio"
2072  * is now applied to total non-HIGHPAGE memory (by subtracting
2073  * totalhigh_pages from vm_total_pages), and as such we can't
2074  * get into the old insane situation any more where we had
2075  * large amounts of dirty pages compared to a small amount of
2076  * non-HIGHMEM memory.
2077  *
2078  * But we might still want to scale the dirty_ratio by how
2079  * much memory the box has..
2080  */
2081 void __init page_writeback_init(void)
2082 {
2083         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2084 
2085         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2086                           page_writeback_cpu_online, NULL);
2087         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2088                           page_writeback_cpu_online);
2089 }
2090 
2091 /**
2092  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2093  * @mapping: address space structure to write
2094  * @start: starting page index
2095  * @end: ending page index (inclusive)
2096  *
2097  * This function scans the page range from @start to @end (inclusive) and tags
2098  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2099  * that write_cache_pages (or whoever calls this function) will then use
2100  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2101  * used to avoid livelocking of writeback by a process steadily creating new
2102  * dirty pages in the file (thus it is important for this function to be quick
2103  * so that it can tag pages faster than a dirtying process can create them).
2104  */
2105 void tag_pages_for_writeback(struct address_space *mapping,
2106                              pgoff_t start, pgoff_t end)
2107 {
2108         XA_STATE(xas, &mapping->i_pages, start);
2109         unsigned int tagged = 0;
2110         void *page;
2111 
2112         xas_lock_irq(&xas);
2113         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2114                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2115                 if (++tagged % XA_CHECK_SCHED)
2116                         continue;
2117 
2118                 xas_pause(&xas);
2119                 xas_unlock_irq(&xas);
2120                 cond_resched();
2121                 xas_lock_irq(&xas);
2122         }
2123         xas_unlock_irq(&xas);
2124 }
2125 EXPORT_SYMBOL(tag_pages_for_writeback);
2126 
2127 /**
2128  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2129  * @mapping: address space structure to write
2130  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2131  * @writepage: function called for each page
2132  * @data: data passed to writepage function
2133  *
2134  * If a page is already under I/O, write_cache_pages() skips it, even
2135  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2136  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2137  * and msync() need to guarantee that all the data which was dirty at the time
2138  * the call was made get new I/O started against them.  If wbc->sync_mode is
2139  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2140  * existing IO to complete.
2141  *
2142  * To avoid livelocks (when other process dirties new pages), we first tag
2143  * pages which should be written back with TOWRITE tag and only then start
2144  * writing them. For data-integrity sync we have to be careful so that we do
2145  * not miss some pages (e.g., because some other process has cleared TOWRITE
2146  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2147  * by the process clearing the DIRTY tag (and submitting the page for IO).
2148  *
2149  * To avoid deadlocks between range_cyclic writeback and callers that hold
2150  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2151  * we do not loop back to the start of the file. Doing so causes a page
2152  * lock/page writeback access order inversion - we should only ever lock
2153  * multiple pages in ascending page->index order, and looping back to the start
2154  * of the file violates that rule and causes deadlocks.
2155  *
2156  * Return: %0 on success, negative error code otherwise
2157  */
2158 int write_cache_pages(struct address_space *mapping,
2159                       struct writeback_control *wbc, writepage_t writepage,
2160                       void *data)
2161 {
2162         int ret = 0;
2163         int done = 0;
2164         int error;
2165         struct pagevec pvec;
2166         int nr_pages;
2167         pgoff_t uninitialized_var(writeback_index);
2168         pgoff_t index;
2169         pgoff_t end;            /* Inclusive */
2170         pgoff_t done_index;
2171         int range_whole = 0;
2172         xa_mark_t tag;
2173 
2174         pagevec_init(&pvec);
2175         if (wbc->range_cyclic) {
2176                 writeback_index = mapping->writeback_index; /* prev offset */
2177                 index = writeback_index;
2178                 end = -1;
2179         } else {
2180                 index = wbc->range_start >> PAGE_SHIFT;
2181                 end = wbc->range_end >> PAGE_SHIFT;
2182                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2183                         range_whole = 1;
2184         }
2185         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2186                 tag = PAGECACHE_TAG_TOWRITE;
2187         else
2188                 tag = PAGECACHE_TAG_DIRTY;
2189         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2190                 tag_pages_for_writeback(mapping, index, end);
2191         done_index = index;
2192         while (!done && (index <= end)) {
2193                 int i;
2194 
2195                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2196                                 tag);
2197                 if (nr_pages == 0)
2198                         break;
2199 
2200                 for (i = 0; i < nr_pages; i++) {
2201                         struct page *page = pvec.pages[i];
2202 
2203                         done_index = page->index;
2204 
2205                         lock_page(page);
2206 
2207                         /*
2208                          * Page truncated or invalidated. We can freely skip it
2209                          * then, even for data integrity operations: the page
2210                          * has disappeared concurrently, so there could be no
2211                          * real expectation of this data interity operation
2212                          * even if there is now a new, dirty page at the same
2213                          * pagecache address.
2214                          */
2215                         if (unlikely(page->mapping != mapping)) {
2216 continue_unlock:
2217                                 unlock_page(page);
2218                                 continue;
2219                         }
2220 
2221                         if (!PageDirty(page)) {
2222                                 /* someone wrote it for us */
2223                                 goto continue_unlock;
2224                         }
2225 
2226                         if (PageWriteback(page)) {
2227                                 if (wbc->sync_mode != WB_SYNC_NONE)
2228                                         wait_on_page_writeback(page);
2229                                 else
2230                                         goto continue_unlock;
2231                         }
2232 
2233                         BUG_ON(PageWriteback(page));
2234                         if (!clear_page_dirty_for_io(page))
2235                                 goto continue_unlock;
2236 
2237                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2238                         error = (*writepage)(page, wbc, data);
2239                         if (unlikely(error)) {
2240                                 /*
2241                                  * Handle errors according to the type of
2242                                  * writeback. There's no need to continue for
2243                                  * background writeback. Just push done_index
2244                                  * past this page so media errors won't choke
2245                                  * writeout for the entire file. For integrity
2246                                  * writeback, we must process the entire dirty
2247                                  * set regardless of errors because the fs may
2248                                  * still have state to clear for each page. In
2249                                  * that case we continue processing and return
2250                                  * the first error.
2251                                  */
2252                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2253                                         unlock_page(page);
2254                                         error = 0;
2255                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2256                                         ret = error;
2257                                         done_index = page->index + 1;
2258                                         done = 1;
2259                                         break;
2260                                 }
2261                                 if (!ret)
2262                                         ret = error;
2263                         }
2264 
2265                         /*
2266                          * We stop writing back only if we are not doing
2267                          * integrity sync. In case of integrity sync we have to
2268                          * keep going until we have written all the pages
2269                          * we tagged for writeback prior to entering this loop.
2270                          */
2271                         if (--wbc->nr_to_write <= 0 &&
2272                             wbc->sync_mode == WB_SYNC_NONE) {
2273                                 done = 1;
2274                                 break;
2275                         }
2276                 }
2277                 pagevec_release(&pvec);
2278                 cond_resched();
2279         }
2280 
2281         /*
2282          * If we hit the last page and there is more work to be done: wrap
2283          * back the index back to the start of the file for the next
2284          * time we are called.
2285          */
2286         if (wbc->range_cyclic && !done)
2287                 done_index = 0;
2288         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2289                 mapping->writeback_index = done_index;
2290 
2291         return ret;
2292 }
2293 EXPORT_SYMBOL(write_cache_pages);
2294 
2295 /*
2296  * Function used by generic_writepages to call the real writepage
2297  * function and set the mapping flags on error
2298  */
2299 static int __writepage(struct page *page, struct writeback_control *wbc,
2300                        void *data)
2301 {
2302         struct address_space *mapping = data;
2303         int ret = mapping->a_ops->writepage(page, wbc);
2304         mapping_set_error(mapping, ret);
2305         return ret;
2306 }
2307 
2308 /**
2309  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2310  * @mapping: address space structure to write
2311  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2312  *
2313  * This is a library function, which implements the writepages()
2314  * address_space_operation.
2315  *
2316  * Return: %0 on success, negative error code otherwise
2317  */
2318 int generic_writepages(struct address_space *mapping,
2319                        struct writeback_control *wbc)
2320 {
2321         struct blk_plug plug;
2322         int ret;
2323 
2324         /* deal with chardevs and other special file */
2325         if (!mapping->a_ops->writepage)
2326                 return 0;
2327 
2328         blk_start_plug(&plug);
2329         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2330         blk_finish_plug(&plug);
2331         return ret;
2332 }
2333 
2334 EXPORT_SYMBOL(generic_writepages);
2335 
2336 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2337 {
2338         int ret;
2339 
2340         if (wbc->nr_to_write <= 0)
2341                 return 0;
2342         while (1) {
2343                 if (mapping->a_ops->writepages)
2344                         ret = mapping->a_ops->writepages(mapping, wbc);
2345                 else
2346                         ret = generic_writepages(mapping, wbc);
2347                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2348                         break;
2349                 cond_resched();
2350                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2351         }
2352         return ret;
2353 }
2354 
2355 /**
2356  * write_one_page - write out a single page and wait on I/O
2357  * @page: the page to write
2358  *
2359  * The page must be locked by the caller and will be unlocked upon return.
2360  *
2361  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2362  * function returns.
2363  *
2364  * Return: %0 on success, negative error code otherwise
2365  */
2366 int write_one_page(struct page *page)
2367 {
2368         struct address_space *mapping = page->mapping;
2369         int ret = 0;
2370         struct writeback_control wbc = {
2371                 .sync_mode = WB_SYNC_ALL,
2372                 .nr_to_write = 1,
2373         };
2374 
2375         BUG_ON(!PageLocked(page));
2376 
2377         wait_on_page_writeback(page);
2378 
2379         if (clear_page_dirty_for_io(page)) {
2380                 get_page(page);
2381                 ret = mapping->a_ops->writepage(page, &wbc);
2382                 if (ret == 0)
2383                         wait_on_page_writeback(page);
2384                 put_page(page);
2385         } else {
2386                 unlock_page(page);
2387         }
2388 
2389         if (!ret)
2390                 ret = filemap_check_errors(mapping);
2391         return ret;
2392 }
2393 EXPORT_SYMBOL(write_one_page);
2394 
2395 /*
2396  * For address_spaces which do not use buffers nor write back.
2397  */
2398 int __set_page_dirty_no_writeback(struct page *page)
2399 {
2400         if (!PageDirty(page))
2401                 return !TestSetPageDirty(page);
2402         return 0;
2403 }
2404 
2405 /*
2406  * Helper function for set_page_dirty family.
2407  *
2408  * Caller must hold lock_page_memcg().
2409  *
2410  * NOTE: This relies on being atomic wrt interrupts.
2411  */
2412 void account_page_dirtied(struct page *page, struct address_space *mapping)
2413 {
2414         struct inode *inode = mapping->host;
2415 
2416         trace_writeback_dirty_page(page, mapping);
2417 
2418         if (mapping_cap_account_dirty(mapping)) {
2419                 struct bdi_writeback *wb;
2420 
2421                 inode_attach_wb(inode, page);
2422                 wb = inode_to_wb(inode);
2423 
2424                 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2425                 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2426                 __inc_node_page_state(page, NR_DIRTIED);
2427                 inc_wb_stat(wb, WB_RECLAIMABLE);
2428                 inc_wb_stat(wb, WB_DIRTIED);
2429                 task_io_account_write(PAGE_SIZE);
2430                 current->nr_dirtied++;
2431                 this_cpu_inc(bdp_ratelimits);
2432 
2433                 mem_cgroup_track_foreign_dirty(page, wb);
2434         }
2435 }
2436 
2437 /*
2438  * Helper function for deaccounting dirty page without writeback.
2439  *
2440  * Caller must hold lock_page_memcg().
2441  */
2442 void account_page_cleaned(struct page *page, struct address_space *mapping,
2443                           struct bdi_writeback *wb)
2444 {
2445         if (mapping_cap_account_dirty(mapping)) {
2446                 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2447                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2448                 dec_wb_stat(wb, WB_RECLAIMABLE);
2449                 task_io_account_cancelled_write(PAGE_SIZE);
2450         }
2451 }
2452 
2453 /*
2454  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2455  * the xarray.
2456  *
2457  * This is also used when a single buffer is being dirtied: we want to set the
2458  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2459  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2460  *
2461  * The caller must ensure this doesn't race with truncation.  Most will simply
2462  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2463  * the pte lock held, which also locks out truncation.
2464  */
2465 int __set_page_dirty_nobuffers(struct page *page)
2466 {
2467         lock_page_memcg(page);
2468         if (!TestSetPageDirty(page)) {
2469                 struct address_space *mapping = page_mapping(page);
2470                 unsigned long flags;
2471 
2472                 if (!mapping) {
2473                         unlock_page_memcg(page);
2474                         return 1;
2475                 }
2476 
2477                 xa_lock_irqsave(&mapping->i_pages, flags);
2478                 BUG_ON(page_mapping(page) != mapping);
2479                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2480                 account_page_dirtied(page, mapping);
2481                 __xa_set_mark(&mapping->i_pages, page_index(page),
2482                                    PAGECACHE_TAG_DIRTY);
2483                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2484                 unlock_page_memcg(page);
2485 
2486                 if (mapping->host) {
2487                         /* !PageAnon && !swapper_space */
2488                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2489                 }
2490                 return 1;
2491         }
2492         unlock_page_memcg(page);
2493         return 0;
2494 }
2495 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2496 
2497 /*
2498  * Call this whenever redirtying a page, to de-account the dirty counters
2499  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2500  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2501  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2502  * control.
2503  */
2504 void account_page_redirty(struct page *page)
2505 {
2506         struct address_space *mapping = page->mapping;
2507 
2508         if (mapping && mapping_cap_account_dirty(mapping)) {
2509                 struct inode *inode = mapping->host;
2510                 struct bdi_writeback *wb;
2511                 struct wb_lock_cookie cookie = {};
2512 
2513                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2514                 current->nr_dirtied--;
2515                 dec_node_page_state(page, NR_DIRTIED);
2516                 dec_wb_stat(wb, WB_DIRTIED);
2517                 unlocked_inode_to_wb_end(inode, &cookie);
2518         }
2519 }
2520 EXPORT_SYMBOL(account_page_redirty);
2521 
2522 /*
2523  * When a writepage implementation decides that it doesn't want to write this
2524  * page for some reason, it should redirty the locked page via
2525  * redirty_page_for_writepage() and it should then unlock the page and return 0
2526  */
2527 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2528 {
2529         int ret;
2530 
2531         wbc->pages_skipped++;
2532         ret = __set_page_dirty_nobuffers(page);
2533         account_page_redirty(page);
2534         return ret;
2535 }
2536 EXPORT_SYMBOL(redirty_page_for_writepage);
2537 
2538 /*
2539  * Dirty a page.
2540  *
2541  * For pages with a mapping this should be done under the page lock
2542  * for the benefit of asynchronous memory errors who prefer a consistent
2543  * dirty state. This rule can be broken in some special cases,
2544  * but should be better not to.
2545  *
2546  * If the mapping doesn't provide a set_page_dirty a_op, then
2547  * just fall through and assume that it wants buffer_heads.
2548  */
2549 int set_page_dirty(struct page *page)
2550 {
2551         struct address_space *mapping = page_mapping(page);
2552 
2553         page = compound_head(page);
2554         if (likely(mapping)) {
2555                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2556                 /*
2557                  * readahead/lru_deactivate_page could remain
2558                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2559                  * About readahead, if the page is written, the flags would be
2560                  * reset. So no problem.
2561                  * About lru_deactivate_page, if the page is redirty, the flag
2562                  * will be reset. So no problem. but if the page is used by readahead
2563                  * it will confuse readahead and make it restart the size rampup
2564                  * process. But it's a trivial problem.
2565                  */
2566                 if (PageReclaim(page))
2567                         ClearPageReclaim(page);
2568 #ifdef CONFIG_BLOCK
2569                 if (!spd)
2570                         spd = __set_page_dirty_buffers;
2571 #endif
2572                 return (*spd)(page);
2573         }
2574         if (!PageDirty(page)) {
2575                 if (!TestSetPageDirty(page))
2576                         return 1;
2577         }
2578         return 0;
2579 }
2580 EXPORT_SYMBOL(set_page_dirty);
2581 
2582 /*
2583  * set_page_dirty() is racy if the caller has no reference against
2584  * page->mapping->host, and if the page is unlocked.  This is because another
2585  * CPU could truncate the page off the mapping and then free the mapping.
2586  *
2587  * Usually, the page _is_ locked, or the caller is a user-space process which
2588  * holds a reference on the inode by having an open file.
2589  *
2590  * In other cases, the page should be locked before running set_page_dirty().
2591  */
2592 int set_page_dirty_lock(struct page *page)
2593 {
2594         int ret;
2595 
2596         lock_page(page);
2597         ret = set_page_dirty(page);
2598         unlock_page(page);
2599         return ret;
2600 }
2601 EXPORT_SYMBOL(set_page_dirty_lock);
2602 
2603 /*
2604  * This cancels just the dirty bit on the kernel page itself, it does NOT
2605  * actually remove dirty bits on any mmap's that may be around. It also
2606  * leaves the page tagged dirty, so any sync activity will still find it on
2607  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2608  * look at the dirty bits in the VM.
2609  *
2610  * Doing this should *normally* only ever be done when a page is truncated,
2611  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2612  * this when it notices that somebody has cleaned out all the buffers on a
2613  * page without actually doing it through the VM. Can you say "ext3 is
2614  * horribly ugly"? Thought you could.
2615  */
2616 void __cancel_dirty_page(struct page *page)
2617 {
2618         struct address_space *mapping = page_mapping(page);
2619 
2620         if (mapping_cap_account_dirty(mapping)) {
2621                 struct inode *inode = mapping->host;
2622                 struct bdi_writeback *wb;
2623                 struct wb_lock_cookie cookie = {};
2624 
2625                 lock_page_memcg(page);
2626                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2627 
2628                 if (TestClearPageDirty(page))
2629                         account_page_cleaned(page, mapping, wb);
2630 
2631                 unlocked_inode_to_wb_end(inode, &cookie);
2632                 unlock_page_memcg(page);
2633         } else {
2634                 ClearPageDirty(page);
2635         }
2636 }
2637 EXPORT_SYMBOL(__cancel_dirty_page);
2638 
2639 /*
2640  * Clear a page's dirty flag, while caring for dirty memory accounting.
2641  * Returns true if the page was previously dirty.
2642  *
2643  * This is for preparing to put the page under writeout.  We leave the page
2644  * tagged as dirty in the xarray so that a concurrent write-for-sync
2645  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2646  * implementation will run either set_page_writeback() or set_page_dirty(),
2647  * at which stage we bring the page's dirty flag and xarray dirty tag
2648  * back into sync.
2649  *
2650  * This incoherency between the page's dirty flag and xarray tag is
2651  * unfortunate, but it only exists while the page is locked.
2652  */
2653 int clear_page_dirty_for_io(struct page *page)
2654 {
2655         struct address_space *mapping = page_mapping(page);
2656         int ret = 0;
2657 
2658         BUG_ON(!PageLocked(page));
2659 
2660         if (mapping && mapping_cap_account_dirty(mapping)) {
2661                 struct inode *inode = mapping->host;
2662                 struct bdi_writeback *wb;
2663                 struct wb_lock_cookie cookie = {};
2664 
2665                 /*
2666                  * Yes, Virginia, this is indeed insane.
2667                  *
2668                  * We use this sequence to make sure that
2669                  *  (a) we account for dirty stats properly
2670                  *  (b) we tell the low-level filesystem to
2671                  *      mark the whole page dirty if it was
2672                  *      dirty in a pagetable. Only to then
2673                  *  (c) clean the page again and return 1 to
2674                  *      cause the writeback.
2675                  *
2676                  * This way we avoid all nasty races with the
2677                  * dirty bit in multiple places and clearing
2678                  * them concurrently from different threads.
2679                  *
2680                  * Note! Normally the "set_page_dirty(page)"
2681                  * has no effect on the actual dirty bit - since
2682                  * that will already usually be set. But we
2683                  * need the side effects, and it can help us
2684                  * avoid races.
2685                  *
2686                  * We basically use the page "master dirty bit"
2687                  * as a serialization point for all the different
2688                  * threads doing their things.
2689                  */
2690                 if (page_mkclean(page))
2691                         set_page_dirty(page);
2692                 /*
2693                  * We carefully synchronise fault handlers against
2694                  * installing a dirty pte and marking the page dirty
2695                  * at this point.  We do this by having them hold the
2696                  * page lock while dirtying the page, and pages are
2697                  * always locked coming in here, so we get the desired
2698                  * exclusion.
2699                  */
2700                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2701                 if (TestClearPageDirty(page)) {
2702                         dec_lruvec_page_state(page, NR_FILE_DIRTY);
2703                         dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2704                         dec_wb_stat(wb, WB_RECLAIMABLE);
2705                         ret = 1;
2706                 }
2707                 unlocked_inode_to_wb_end(inode, &cookie);
2708                 return ret;
2709         }
2710         return TestClearPageDirty(page);
2711 }
2712 EXPORT_SYMBOL(clear_page_dirty_for_io);
2713 
2714 int test_clear_page_writeback(struct page *page)
2715 {
2716         struct address_space *mapping = page_mapping(page);
2717         struct mem_cgroup *memcg;
2718         struct lruvec *lruvec;
2719         int ret;
2720 
2721         memcg = lock_page_memcg(page);
2722         lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2723         if (mapping && mapping_use_writeback_tags(mapping)) {
2724                 struct inode *inode = mapping->host;
2725                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2726                 unsigned long flags;
2727 
2728                 xa_lock_irqsave(&mapping->i_pages, flags);
2729                 ret = TestClearPageWriteback(page);
2730                 if (ret) {
2731                         __xa_clear_mark(&mapping->i_pages, page_index(page),
2732                                                 PAGECACHE_TAG_WRITEBACK);
2733                         if (bdi_cap_account_writeback(bdi)) {
2734                                 struct bdi_writeback *wb = inode_to_wb(inode);
2735 
2736                                 dec_wb_stat(wb, WB_WRITEBACK);
2737                                 __wb_writeout_inc(wb);
2738                         }
2739                 }
2740 
2741                 if (mapping->host && !mapping_tagged(mapping,
2742                                                      PAGECACHE_TAG_WRITEBACK))
2743                         sb_clear_inode_writeback(mapping->host);
2744 
2745                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2746         } else {
2747                 ret = TestClearPageWriteback(page);
2748         }
2749         /*
2750          * NOTE: Page might be free now! Writeback doesn't hold a page
2751          * reference on its own, it relies on truncation to wait for
2752          * the clearing of PG_writeback. The below can only access
2753          * page state that is static across allocation cycles.
2754          */
2755         if (ret) {
2756                 dec_lruvec_state(lruvec, NR_WRITEBACK);
2757                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2758                 inc_node_page_state(page, NR_WRITTEN);
2759         }
2760         __unlock_page_memcg(memcg);
2761         return ret;
2762 }
2763 
2764 int __test_set_page_writeback(struct page *page, bool keep_write)
2765 {
2766         struct address_space *mapping = page_mapping(page);
2767         int ret;
2768 
2769         lock_page_memcg(page);
2770         if (mapping && mapping_use_writeback_tags(mapping)) {
2771                 XA_STATE(xas, &mapping->i_pages, page_index(page));
2772                 struct inode *inode = mapping->host;
2773                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2774                 unsigned long flags;
2775 
2776                 xas_lock_irqsave(&xas, flags);
2777                 xas_load(&xas);
2778                 ret = TestSetPageWriteback(page);
2779                 if (!ret) {
2780                         bool on_wblist;
2781 
2782                         on_wblist = mapping_tagged(mapping,
2783                                                    PAGECACHE_TAG_WRITEBACK);
2784 
2785                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2786                         if (bdi_cap_account_writeback(bdi))
2787                                 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2788 
2789                         /*
2790                          * We can come through here when swapping anonymous
2791                          * pages, so we don't necessarily have an inode to track
2792                          * for sync.
2793                          */
2794                         if (mapping->host && !on_wblist)
2795                                 sb_mark_inode_writeback(mapping->host);
2796                 }
2797                 if (!PageDirty(page))
2798                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2799                 if (!keep_write)
2800                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2801                 xas_unlock_irqrestore(&xas, flags);
2802         } else {
2803                 ret = TestSetPageWriteback(page);
2804         }
2805         if (!ret) {
2806                 inc_lruvec_page_state(page, NR_WRITEBACK);
2807                 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2808         }
2809         unlock_page_memcg(page);
2810         return ret;
2811 
2812 }
2813 EXPORT_SYMBOL(__test_set_page_writeback);
2814 
2815 /*
2816  * Wait for a page to complete writeback
2817  */
2818 void wait_on_page_writeback(struct page *page)
2819 {
2820         if (PageWriteback(page)) {
2821                 trace_wait_on_page_writeback(page, page_mapping(page));
2822                 wait_on_page_bit(page, PG_writeback);
2823         }
2824 }
2825 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2826 
2827 /**
2828  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2829  * @page:       The page to wait on.
2830  *
2831  * This function determines if the given page is related to a backing device
2832  * that requires page contents to be held stable during writeback.  If so, then
2833  * it will wait for any pending writeback to complete.
2834  */
2835 void wait_for_stable_page(struct page *page)
2836 {
2837         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2838                 wait_on_page_writeback(page);
2839 }
2840 EXPORT_SYMBOL_GPL(wait_for_stable_page);

/* [<][>][^][v][top][bottom][index][help] */