root/mm/rmap.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. anon_vma_alloc
  2. anon_vma_free
  3. anon_vma_chain_alloc
  4. anon_vma_chain_free
  5. anon_vma_chain_link
  6. __anon_vma_prepare
  7. lock_anon_vma_root
  8. unlock_anon_vma_root
  9. anon_vma_clone
  10. anon_vma_fork
  11. unlink_anon_vmas
  12. anon_vma_ctor
  13. anon_vma_init
  14. page_get_anon_vma
  15. page_lock_anon_vma_read
  16. page_unlock_anon_vma_read
  17. try_to_unmap_flush
  18. try_to_unmap_flush_dirty
  19. set_tlb_ubc_flush_pending
  20. should_defer_flush
  21. flush_tlb_batched_pending
  22. set_tlb_ubc_flush_pending
  23. should_defer_flush
  24. page_address_in_vma
  25. mm_find_pmd
  26. page_referenced_one
  27. invalid_page_referenced_vma
  28. page_referenced
  29. page_mkclean_one
  30. invalid_mkclean_vma
  31. page_mkclean
  32. page_move_anon_rmap
  33. __page_set_anon_rmap
  34. __page_check_anon_rmap
  35. page_add_anon_rmap
  36. do_page_add_anon_rmap
  37. page_add_new_anon_rmap
  38. page_add_file_rmap
  39. page_remove_file_rmap
  40. page_remove_anon_compound_rmap
  41. page_remove_rmap
  42. try_to_unmap_one
  43. is_vma_temporary_stack
  44. invalid_migration_vma
  45. page_mapcount_is_zero
  46. try_to_unmap
  47. page_not_mapped
  48. try_to_munlock
  49. __put_anon_vma
  50. rmap_walk_anon_lock
  51. rmap_walk_anon
  52. rmap_walk_file
  53. rmap_walk
  54. rmap_walk_locked
  55. hugepage_add_anon_rmap
  56. hugepage_add_new_anon_rmap

   1 /*
   2  * mm/rmap.c - physical to virtual reverse mappings
   3  *
   4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5  * Released under the General Public License (GPL).
   6  *
   7  * Simple, low overhead reverse mapping scheme.
   8  * Please try to keep this thing as modular as possible.
   9  *
  10  * Provides methods for unmapping each kind of mapped page:
  11  * the anon methods track anonymous pages, and
  12  * the file methods track pages belonging to an inode.
  13  *
  14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17  * Contributions by Hugh Dickins 2003, 2004
  18  */
  19 
  20 /*
  21  * Lock ordering in mm:
  22  *
  23  * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24  *   mm->mmap_sem
  25  *     page->flags PG_locked (lock_page)
  26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27  *         mapping->i_mmap_rwsem
  28  *           anon_vma->rwsem
  29  *             mm->page_table_lock or pte_lock
  30  *               pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
  31  *               swap_lock (in swap_duplicate, swap_info_get)
  32  *                 mmlist_lock (in mmput, drain_mmlist and others)
  33  *                 mapping->private_lock (in __set_page_dirty_buffers)
  34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35  *                     i_pages lock (widely used)
  36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39  *                   i_pages lock (widely used, in set_page_dirty,
  40  *                             in arch-dependent flush_dcache_mmap_lock,
  41  *                             within bdi.wb->list_lock in __sync_single_inode)
  42  *
  43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44  *   ->tasklist_lock
  45  *     pte map lock
  46  */
  47 
  48 #include <linux/mm.h>
  49 #include <linux/sched/mm.h>
  50 #include <linux/sched/task.h>
  51 #include <linux/pagemap.h>
  52 #include <linux/swap.h>
  53 #include <linux/swapops.h>
  54 #include <linux/slab.h>
  55 #include <linux/init.h>
  56 #include <linux/ksm.h>
  57 #include <linux/rmap.h>
  58 #include <linux/rcupdate.h>
  59 #include <linux/export.h>
  60 #include <linux/memcontrol.h>
  61 #include <linux/mmu_notifier.h>
  62 #include <linux/migrate.h>
  63 #include <linux/hugetlb.h>
  64 #include <linux/huge_mm.h>
  65 #include <linux/backing-dev.h>
  66 #include <linux/page_idle.h>
  67 #include <linux/memremap.h>
  68 #include <linux/userfaultfd_k.h>
  69 
  70 #include <asm/tlbflush.h>
  71 
  72 #include <trace/events/tlb.h>
  73 
  74 #include "internal.h"
  75 
  76 static struct kmem_cache *anon_vma_cachep;
  77 static struct kmem_cache *anon_vma_chain_cachep;
  78 
  79 static inline struct anon_vma *anon_vma_alloc(void)
  80 {
  81         struct anon_vma *anon_vma;
  82 
  83         anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  84         if (anon_vma) {
  85                 atomic_set(&anon_vma->refcount, 1);
  86                 anon_vma->degree = 1;   /* Reference for first vma */
  87                 anon_vma->parent = anon_vma;
  88                 /*
  89                  * Initialise the anon_vma root to point to itself. If called
  90                  * from fork, the root will be reset to the parents anon_vma.
  91                  */
  92                 anon_vma->root = anon_vma;
  93         }
  94 
  95         return anon_vma;
  96 }
  97 
  98 static inline void anon_vma_free(struct anon_vma *anon_vma)
  99 {
 100         VM_BUG_ON(atomic_read(&anon_vma->refcount));
 101 
 102         /*
 103          * Synchronize against page_lock_anon_vma_read() such that
 104          * we can safely hold the lock without the anon_vma getting
 105          * freed.
 106          *
 107          * Relies on the full mb implied by the atomic_dec_and_test() from
 108          * put_anon_vma() against the acquire barrier implied by
 109          * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 110          *
 111          * page_lock_anon_vma_read()    VS      put_anon_vma()
 112          *   down_read_trylock()                  atomic_dec_and_test()
 113          *   LOCK                                 MB
 114          *   atomic_read()                        rwsem_is_locked()
 115          *
 116          * LOCK should suffice since the actual taking of the lock must
 117          * happen _before_ what follows.
 118          */
 119         might_sleep();
 120         if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 121                 anon_vma_lock_write(anon_vma);
 122                 anon_vma_unlock_write(anon_vma);
 123         }
 124 
 125         kmem_cache_free(anon_vma_cachep, anon_vma);
 126 }
 127 
 128 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 129 {
 130         return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 131 }
 132 
 133 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 134 {
 135         kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 136 }
 137 
 138 static void anon_vma_chain_link(struct vm_area_struct *vma,
 139                                 struct anon_vma_chain *avc,
 140                                 struct anon_vma *anon_vma)
 141 {
 142         avc->vma = vma;
 143         avc->anon_vma = anon_vma;
 144         list_add(&avc->same_vma, &vma->anon_vma_chain);
 145         anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 146 }
 147 
 148 /**
 149  * __anon_vma_prepare - attach an anon_vma to a memory region
 150  * @vma: the memory region in question
 151  *
 152  * This makes sure the memory mapping described by 'vma' has
 153  * an 'anon_vma' attached to it, so that we can associate the
 154  * anonymous pages mapped into it with that anon_vma.
 155  *
 156  * The common case will be that we already have one, which
 157  * is handled inline by anon_vma_prepare(). But if
 158  * not we either need to find an adjacent mapping that we
 159  * can re-use the anon_vma from (very common when the only
 160  * reason for splitting a vma has been mprotect()), or we
 161  * allocate a new one.
 162  *
 163  * Anon-vma allocations are very subtle, because we may have
 164  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 165  * and that may actually touch the spinlock even in the newly
 166  * allocated vma (it depends on RCU to make sure that the
 167  * anon_vma isn't actually destroyed).
 168  *
 169  * As a result, we need to do proper anon_vma locking even
 170  * for the new allocation. At the same time, we do not want
 171  * to do any locking for the common case of already having
 172  * an anon_vma.
 173  *
 174  * This must be called with the mmap_sem held for reading.
 175  */
 176 int __anon_vma_prepare(struct vm_area_struct *vma)
 177 {
 178         struct mm_struct *mm = vma->vm_mm;
 179         struct anon_vma *anon_vma, *allocated;
 180         struct anon_vma_chain *avc;
 181 
 182         might_sleep();
 183 
 184         avc = anon_vma_chain_alloc(GFP_KERNEL);
 185         if (!avc)
 186                 goto out_enomem;
 187 
 188         anon_vma = find_mergeable_anon_vma(vma);
 189         allocated = NULL;
 190         if (!anon_vma) {
 191                 anon_vma = anon_vma_alloc();
 192                 if (unlikely(!anon_vma))
 193                         goto out_enomem_free_avc;
 194                 allocated = anon_vma;
 195         }
 196 
 197         anon_vma_lock_write(anon_vma);
 198         /* page_table_lock to protect against threads */
 199         spin_lock(&mm->page_table_lock);
 200         if (likely(!vma->anon_vma)) {
 201                 vma->anon_vma = anon_vma;
 202                 anon_vma_chain_link(vma, avc, anon_vma);
 203                 /* vma reference or self-parent link for new root */
 204                 anon_vma->degree++;
 205                 allocated = NULL;
 206                 avc = NULL;
 207         }
 208         spin_unlock(&mm->page_table_lock);
 209         anon_vma_unlock_write(anon_vma);
 210 
 211         if (unlikely(allocated))
 212                 put_anon_vma(allocated);
 213         if (unlikely(avc))
 214                 anon_vma_chain_free(avc);
 215 
 216         return 0;
 217 
 218  out_enomem_free_avc:
 219         anon_vma_chain_free(avc);
 220  out_enomem:
 221         return -ENOMEM;
 222 }
 223 
 224 /*
 225  * This is a useful helper function for locking the anon_vma root as
 226  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 227  * have the same vma.
 228  *
 229  * Such anon_vma's should have the same root, so you'd expect to see
 230  * just a single mutex_lock for the whole traversal.
 231  */
 232 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 233 {
 234         struct anon_vma *new_root = anon_vma->root;
 235         if (new_root != root) {
 236                 if (WARN_ON_ONCE(root))
 237                         up_write(&root->rwsem);
 238                 root = new_root;
 239                 down_write(&root->rwsem);
 240         }
 241         return root;
 242 }
 243 
 244 static inline void unlock_anon_vma_root(struct anon_vma *root)
 245 {
 246         if (root)
 247                 up_write(&root->rwsem);
 248 }
 249 
 250 /*
 251  * Attach the anon_vmas from src to dst.
 252  * Returns 0 on success, -ENOMEM on failure.
 253  *
 254  * If dst->anon_vma is NULL this function tries to find and reuse existing
 255  * anon_vma which has no vmas and only one child anon_vma. This prevents
 256  * degradation of anon_vma hierarchy to endless linear chain in case of
 257  * constantly forking task. On the other hand, an anon_vma with more than one
 258  * child isn't reused even if there was no alive vma, thus rmap walker has a
 259  * good chance of avoiding scanning the whole hierarchy when it searches where
 260  * page is mapped.
 261  */
 262 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 263 {
 264         struct anon_vma_chain *avc, *pavc;
 265         struct anon_vma *root = NULL;
 266 
 267         list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 268                 struct anon_vma *anon_vma;
 269 
 270                 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 271                 if (unlikely(!avc)) {
 272                         unlock_anon_vma_root(root);
 273                         root = NULL;
 274                         avc = anon_vma_chain_alloc(GFP_KERNEL);
 275                         if (!avc)
 276                                 goto enomem_failure;
 277                 }
 278                 anon_vma = pavc->anon_vma;
 279                 root = lock_anon_vma_root(root, anon_vma);
 280                 anon_vma_chain_link(dst, avc, anon_vma);
 281 
 282                 /*
 283                  * Reuse existing anon_vma if its degree lower than two,
 284                  * that means it has no vma and only one anon_vma child.
 285                  *
 286                  * Do not chose parent anon_vma, otherwise first child
 287                  * will always reuse it. Root anon_vma is never reused:
 288                  * it has self-parent reference and at least one child.
 289                  */
 290                 if (!dst->anon_vma && anon_vma != src->anon_vma &&
 291                                 anon_vma->degree < 2)
 292                         dst->anon_vma = anon_vma;
 293         }
 294         if (dst->anon_vma)
 295                 dst->anon_vma->degree++;
 296         unlock_anon_vma_root(root);
 297         return 0;
 298 
 299  enomem_failure:
 300         /*
 301          * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 302          * decremented in unlink_anon_vmas().
 303          * We can safely do this because callers of anon_vma_clone() don't care
 304          * about dst->anon_vma if anon_vma_clone() failed.
 305          */
 306         dst->anon_vma = NULL;
 307         unlink_anon_vmas(dst);
 308         return -ENOMEM;
 309 }
 310 
 311 /*
 312  * Attach vma to its own anon_vma, as well as to the anon_vmas that
 313  * the corresponding VMA in the parent process is attached to.
 314  * Returns 0 on success, non-zero on failure.
 315  */
 316 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 317 {
 318         struct anon_vma_chain *avc;
 319         struct anon_vma *anon_vma;
 320         int error;
 321 
 322         /* Don't bother if the parent process has no anon_vma here. */
 323         if (!pvma->anon_vma)
 324                 return 0;
 325 
 326         /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 327         vma->anon_vma = NULL;
 328 
 329         /*
 330          * First, attach the new VMA to the parent VMA's anon_vmas,
 331          * so rmap can find non-COWed pages in child processes.
 332          */
 333         error = anon_vma_clone(vma, pvma);
 334         if (error)
 335                 return error;
 336 
 337         /* An existing anon_vma has been reused, all done then. */
 338         if (vma->anon_vma)
 339                 return 0;
 340 
 341         /* Then add our own anon_vma. */
 342         anon_vma = anon_vma_alloc();
 343         if (!anon_vma)
 344                 goto out_error;
 345         avc = anon_vma_chain_alloc(GFP_KERNEL);
 346         if (!avc)
 347                 goto out_error_free_anon_vma;
 348 
 349         /*
 350          * The root anon_vma's spinlock is the lock actually used when we
 351          * lock any of the anon_vmas in this anon_vma tree.
 352          */
 353         anon_vma->root = pvma->anon_vma->root;
 354         anon_vma->parent = pvma->anon_vma;
 355         /*
 356          * With refcounts, an anon_vma can stay around longer than the
 357          * process it belongs to. The root anon_vma needs to be pinned until
 358          * this anon_vma is freed, because the lock lives in the root.
 359          */
 360         get_anon_vma(anon_vma->root);
 361         /* Mark this anon_vma as the one where our new (COWed) pages go. */
 362         vma->anon_vma = anon_vma;
 363         anon_vma_lock_write(anon_vma);
 364         anon_vma_chain_link(vma, avc, anon_vma);
 365         anon_vma->parent->degree++;
 366         anon_vma_unlock_write(anon_vma);
 367 
 368         return 0;
 369 
 370  out_error_free_anon_vma:
 371         put_anon_vma(anon_vma);
 372  out_error:
 373         unlink_anon_vmas(vma);
 374         return -ENOMEM;
 375 }
 376 
 377 void unlink_anon_vmas(struct vm_area_struct *vma)
 378 {
 379         struct anon_vma_chain *avc, *next;
 380         struct anon_vma *root = NULL;
 381 
 382         /*
 383          * Unlink each anon_vma chained to the VMA.  This list is ordered
 384          * from newest to oldest, ensuring the root anon_vma gets freed last.
 385          */
 386         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 387                 struct anon_vma *anon_vma = avc->anon_vma;
 388 
 389                 root = lock_anon_vma_root(root, anon_vma);
 390                 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 391 
 392                 /*
 393                  * Leave empty anon_vmas on the list - we'll need
 394                  * to free them outside the lock.
 395                  */
 396                 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 397                         anon_vma->parent->degree--;
 398                         continue;
 399                 }
 400 
 401                 list_del(&avc->same_vma);
 402                 anon_vma_chain_free(avc);
 403         }
 404         if (vma->anon_vma)
 405                 vma->anon_vma->degree--;
 406         unlock_anon_vma_root(root);
 407 
 408         /*
 409          * Iterate the list once more, it now only contains empty and unlinked
 410          * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 411          * needing to write-acquire the anon_vma->root->rwsem.
 412          */
 413         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 414                 struct anon_vma *anon_vma = avc->anon_vma;
 415 
 416                 VM_WARN_ON(anon_vma->degree);
 417                 put_anon_vma(anon_vma);
 418 
 419                 list_del(&avc->same_vma);
 420                 anon_vma_chain_free(avc);
 421         }
 422 }
 423 
 424 static void anon_vma_ctor(void *data)
 425 {
 426         struct anon_vma *anon_vma = data;
 427 
 428         init_rwsem(&anon_vma->rwsem);
 429         atomic_set(&anon_vma->refcount, 0);
 430         anon_vma->rb_root = RB_ROOT_CACHED;
 431 }
 432 
 433 void __init anon_vma_init(void)
 434 {
 435         anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 436                         0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 437                         anon_vma_ctor);
 438         anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 439                         SLAB_PANIC|SLAB_ACCOUNT);
 440 }
 441 
 442 /*
 443  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 444  *
 445  * Since there is no serialization what so ever against page_remove_rmap()
 446  * the best this function can do is return a locked anon_vma that might
 447  * have been relevant to this page.
 448  *
 449  * The page might have been remapped to a different anon_vma or the anon_vma
 450  * returned may already be freed (and even reused).
 451  *
 452  * In case it was remapped to a different anon_vma, the new anon_vma will be a
 453  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 454  * ensure that any anon_vma obtained from the page will still be valid for as
 455  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 456  *
 457  * All users of this function must be very careful when walking the anon_vma
 458  * chain and verify that the page in question is indeed mapped in it
 459  * [ something equivalent to page_mapped_in_vma() ].
 460  *
 461  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 462  * that the anon_vma pointer from page->mapping is valid if there is a
 463  * mapcount, we can dereference the anon_vma after observing those.
 464  */
 465 struct anon_vma *page_get_anon_vma(struct page *page)
 466 {
 467         struct anon_vma *anon_vma = NULL;
 468         unsigned long anon_mapping;
 469 
 470         rcu_read_lock();
 471         anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 472         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 473                 goto out;
 474         if (!page_mapped(page))
 475                 goto out;
 476 
 477         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 478         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 479                 anon_vma = NULL;
 480                 goto out;
 481         }
 482 
 483         /*
 484          * If this page is still mapped, then its anon_vma cannot have been
 485          * freed.  But if it has been unmapped, we have no security against the
 486          * anon_vma structure being freed and reused (for another anon_vma:
 487          * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 488          * above cannot corrupt).
 489          */
 490         if (!page_mapped(page)) {
 491                 rcu_read_unlock();
 492                 put_anon_vma(anon_vma);
 493                 return NULL;
 494         }
 495 out:
 496         rcu_read_unlock();
 497 
 498         return anon_vma;
 499 }
 500 
 501 /*
 502  * Similar to page_get_anon_vma() except it locks the anon_vma.
 503  *
 504  * Its a little more complex as it tries to keep the fast path to a single
 505  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 506  * reference like with page_get_anon_vma() and then block on the mutex.
 507  */
 508 struct anon_vma *page_lock_anon_vma_read(struct page *page)
 509 {
 510         struct anon_vma *anon_vma = NULL;
 511         struct anon_vma *root_anon_vma;
 512         unsigned long anon_mapping;
 513 
 514         rcu_read_lock();
 515         anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 516         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 517                 goto out;
 518         if (!page_mapped(page))
 519                 goto out;
 520 
 521         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 522         root_anon_vma = READ_ONCE(anon_vma->root);
 523         if (down_read_trylock(&root_anon_vma->rwsem)) {
 524                 /*
 525                  * If the page is still mapped, then this anon_vma is still
 526                  * its anon_vma, and holding the mutex ensures that it will
 527                  * not go away, see anon_vma_free().
 528                  */
 529                 if (!page_mapped(page)) {
 530                         up_read(&root_anon_vma->rwsem);
 531                         anon_vma = NULL;
 532                 }
 533                 goto out;
 534         }
 535 
 536         /* trylock failed, we got to sleep */
 537         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 538                 anon_vma = NULL;
 539                 goto out;
 540         }
 541 
 542         if (!page_mapped(page)) {
 543                 rcu_read_unlock();
 544                 put_anon_vma(anon_vma);
 545                 return NULL;
 546         }
 547 
 548         /* we pinned the anon_vma, its safe to sleep */
 549         rcu_read_unlock();
 550         anon_vma_lock_read(anon_vma);
 551 
 552         if (atomic_dec_and_test(&anon_vma->refcount)) {
 553                 /*
 554                  * Oops, we held the last refcount, release the lock
 555                  * and bail -- can't simply use put_anon_vma() because
 556                  * we'll deadlock on the anon_vma_lock_write() recursion.
 557                  */
 558                 anon_vma_unlock_read(anon_vma);
 559                 __put_anon_vma(anon_vma);
 560                 anon_vma = NULL;
 561         }
 562 
 563         return anon_vma;
 564 
 565 out:
 566         rcu_read_unlock();
 567         return anon_vma;
 568 }
 569 
 570 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 571 {
 572         anon_vma_unlock_read(anon_vma);
 573 }
 574 
 575 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 576 /*
 577  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 578  * important if a PTE was dirty when it was unmapped that it's flushed
 579  * before any IO is initiated on the page to prevent lost writes. Similarly,
 580  * it must be flushed before freeing to prevent data leakage.
 581  */
 582 void try_to_unmap_flush(void)
 583 {
 584         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 585 
 586         if (!tlb_ubc->flush_required)
 587                 return;
 588 
 589         arch_tlbbatch_flush(&tlb_ubc->arch);
 590         tlb_ubc->flush_required = false;
 591         tlb_ubc->writable = false;
 592 }
 593 
 594 /* Flush iff there are potentially writable TLB entries that can race with IO */
 595 void try_to_unmap_flush_dirty(void)
 596 {
 597         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 598 
 599         if (tlb_ubc->writable)
 600                 try_to_unmap_flush();
 601 }
 602 
 603 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 604 {
 605         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 606 
 607         arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 608         tlb_ubc->flush_required = true;
 609 
 610         /*
 611          * Ensure compiler does not re-order the setting of tlb_flush_batched
 612          * before the PTE is cleared.
 613          */
 614         barrier();
 615         mm->tlb_flush_batched = true;
 616 
 617         /*
 618          * If the PTE was dirty then it's best to assume it's writable. The
 619          * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 620          * before the page is queued for IO.
 621          */
 622         if (writable)
 623                 tlb_ubc->writable = true;
 624 }
 625 
 626 /*
 627  * Returns true if the TLB flush should be deferred to the end of a batch of
 628  * unmap operations to reduce IPIs.
 629  */
 630 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 631 {
 632         bool should_defer = false;
 633 
 634         if (!(flags & TTU_BATCH_FLUSH))
 635                 return false;
 636 
 637         /* If remote CPUs need to be flushed then defer batch the flush */
 638         if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 639                 should_defer = true;
 640         put_cpu();
 641 
 642         return should_defer;
 643 }
 644 
 645 /*
 646  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 647  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 648  * operation such as mprotect or munmap to race between reclaim unmapping
 649  * the page and flushing the page. If this race occurs, it potentially allows
 650  * access to data via a stale TLB entry. Tracking all mm's that have TLB
 651  * batching in flight would be expensive during reclaim so instead track
 652  * whether TLB batching occurred in the past and if so then do a flush here
 653  * if required. This will cost one additional flush per reclaim cycle paid
 654  * by the first operation at risk such as mprotect and mumap.
 655  *
 656  * This must be called under the PTL so that an access to tlb_flush_batched
 657  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 658  * via the PTL.
 659  */
 660 void flush_tlb_batched_pending(struct mm_struct *mm)
 661 {
 662         if (mm->tlb_flush_batched) {
 663                 flush_tlb_mm(mm);
 664 
 665                 /*
 666                  * Do not allow the compiler to re-order the clearing of
 667                  * tlb_flush_batched before the tlb is flushed.
 668                  */
 669                 barrier();
 670                 mm->tlb_flush_batched = false;
 671         }
 672 }
 673 #else
 674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 675 {
 676 }
 677 
 678 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 679 {
 680         return false;
 681 }
 682 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 683 
 684 /*
 685  * At what user virtual address is page expected in vma?
 686  * Caller should check the page is actually part of the vma.
 687  */
 688 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 689 {
 690         unsigned long address;
 691         if (PageAnon(page)) {
 692                 struct anon_vma *page__anon_vma = page_anon_vma(page);
 693                 /*
 694                  * Note: swapoff's unuse_vma() is more efficient with this
 695                  * check, and needs it to match anon_vma when KSM is active.
 696                  */
 697                 if (!vma->anon_vma || !page__anon_vma ||
 698                     vma->anon_vma->root != page__anon_vma->root)
 699                         return -EFAULT;
 700         } else if (page->mapping) {
 701                 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 702                         return -EFAULT;
 703         } else
 704                 return -EFAULT;
 705         address = __vma_address(page, vma);
 706         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 707                 return -EFAULT;
 708         return address;
 709 }
 710 
 711 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 712 {
 713         pgd_t *pgd;
 714         p4d_t *p4d;
 715         pud_t *pud;
 716         pmd_t *pmd = NULL;
 717         pmd_t pmde;
 718 
 719         pgd = pgd_offset(mm, address);
 720         if (!pgd_present(*pgd))
 721                 goto out;
 722 
 723         p4d = p4d_offset(pgd, address);
 724         if (!p4d_present(*p4d))
 725                 goto out;
 726 
 727         pud = pud_offset(p4d, address);
 728         if (!pud_present(*pud))
 729                 goto out;
 730 
 731         pmd = pmd_offset(pud, address);
 732         /*
 733          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 734          * without holding anon_vma lock for write.  So when looking for a
 735          * genuine pmde (in which to find pte), test present and !THP together.
 736          */
 737         pmde = *pmd;
 738         barrier();
 739         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 740                 pmd = NULL;
 741 out:
 742         return pmd;
 743 }
 744 
 745 struct page_referenced_arg {
 746         int mapcount;
 747         int referenced;
 748         unsigned long vm_flags;
 749         struct mem_cgroup *memcg;
 750 };
 751 /*
 752  * arg: page_referenced_arg will be passed
 753  */
 754 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 755                         unsigned long address, void *arg)
 756 {
 757         struct page_referenced_arg *pra = arg;
 758         struct page_vma_mapped_walk pvmw = {
 759                 .page = page,
 760                 .vma = vma,
 761                 .address = address,
 762         };
 763         int referenced = 0;
 764 
 765         while (page_vma_mapped_walk(&pvmw)) {
 766                 address = pvmw.address;
 767 
 768                 if (vma->vm_flags & VM_LOCKED) {
 769                         page_vma_mapped_walk_done(&pvmw);
 770                         pra->vm_flags |= VM_LOCKED;
 771                         return false; /* To break the loop */
 772                 }
 773 
 774                 if (pvmw.pte) {
 775                         if (ptep_clear_flush_young_notify(vma, address,
 776                                                 pvmw.pte)) {
 777                                 /*
 778                                  * Don't treat a reference through
 779                                  * a sequentially read mapping as such.
 780                                  * If the page has been used in another mapping,
 781                                  * we will catch it; if this other mapping is
 782                                  * already gone, the unmap path will have set
 783                                  * PG_referenced or activated the page.
 784                                  */
 785                                 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 786                                         referenced++;
 787                         }
 788                 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 789                         if (pmdp_clear_flush_young_notify(vma, address,
 790                                                 pvmw.pmd))
 791                                 referenced++;
 792                 } else {
 793                         /* unexpected pmd-mapped page? */
 794                         WARN_ON_ONCE(1);
 795                 }
 796 
 797                 pra->mapcount--;
 798         }
 799 
 800         if (referenced)
 801                 clear_page_idle(page);
 802         if (test_and_clear_page_young(page))
 803                 referenced++;
 804 
 805         if (referenced) {
 806                 pra->referenced++;
 807                 pra->vm_flags |= vma->vm_flags;
 808         }
 809 
 810         if (!pra->mapcount)
 811                 return false; /* To break the loop */
 812 
 813         return true;
 814 }
 815 
 816 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 817 {
 818         struct page_referenced_arg *pra = arg;
 819         struct mem_cgroup *memcg = pra->memcg;
 820 
 821         if (!mm_match_cgroup(vma->vm_mm, memcg))
 822                 return true;
 823 
 824         return false;
 825 }
 826 
 827 /**
 828  * page_referenced - test if the page was referenced
 829  * @page: the page to test
 830  * @is_locked: caller holds lock on the page
 831  * @memcg: target memory cgroup
 832  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 833  *
 834  * Quick test_and_clear_referenced for all mappings to a page,
 835  * returns the number of ptes which referenced the page.
 836  */
 837 int page_referenced(struct page *page,
 838                     int is_locked,
 839                     struct mem_cgroup *memcg,
 840                     unsigned long *vm_flags)
 841 {
 842         int we_locked = 0;
 843         struct page_referenced_arg pra = {
 844                 .mapcount = total_mapcount(page),
 845                 .memcg = memcg,
 846         };
 847         struct rmap_walk_control rwc = {
 848                 .rmap_one = page_referenced_one,
 849                 .arg = (void *)&pra,
 850                 .anon_lock = page_lock_anon_vma_read,
 851         };
 852 
 853         *vm_flags = 0;
 854         if (!pra.mapcount)
 855                 return 0;
 856 
 857         if (!page_rmapping(page))
 858                 return 0;
 859 
 860         if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 861                 we_locked = trylock_page(page);
 862                 if (!we_locked)
 863                         return 1;
 864         }
 865 
 866         /*
 867          * If we are reclaiming on behalf of a cgroup, skip
 868          * counting on behalf of references from different
 869          * cgroups
 870          */
 871         if (memcg) {
 872                 rwc.invalid_vma = invalid_page_referenced_vma;
 873         }
 874 
 875         rmap_walk(page, &rwc);
 876         *vm_flags = pra.vm_flags;
 877 
 878         if (we_locked)
 879                 unlock_page(page);
 880 
 881         return pra.referenced;
 882 }
 883 
 884 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 885                             unsigned long address, void *arg)
 886 {
 887         struct page_vma_mapped_walk pvmw = {
 888                 .page = page,
 889                 .vma = vma,
 890                 .address = address,
 891                 .flags = PVMW_SYNC,
 892         };
 893         struct mmu_notifier_range range;
 894         int *cleaned = arg;
 895 
 896         /*
 897          * We have to assume the worse case ie pmd for invalidation. Note that
 898          * the page can not be free from this function.
 899          */
 900         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 901                                 0, vma, vma->vm_mm, address,
 902                                 min(vma->vm_end, address + page_size(page)));
 903         mmu_notifier_invalidate_range_start(&range);
 904 
 905         while (page_vma_mapped_walk(&pvmw)) {
 906                 int ret = 0;
 907 
 908                 address = pvmw.address;
 909                 if (pvmw.pte) {
 910                         pte_t entry;
 911                         pte_t *pte = pvmw.pte;
 912 
 913                         if (!pte_dirty(*pte) && !pte_write(*pte))
 914                                 continue;
 915 
 916                         flush_cache_page(vma, address, pte_pfn(*pte));
 917                         entry = ptep_clear_flush(vma, address, pte);
 918                         entry = pte_wrprotect(entry);
 919                         entry = pte_mkclean(entry);
 920                         set_pte_at(vma->vm_mm, address, pte, entry);
 921                         ret = 1;
 922                 } else {
 923 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 924                         pmd_t *pmd = pvmw.pmd;
 925                         pmd_t entry;
 926 
 927                         if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 928                                 continue;
 929 
 930                         flush_cache_page(vma, address, page_to_pfn(page));
 931                         entry = pmdp_invalidate(vma, address, pmd);
 932                         entry = pmd_wrprotect(entry);
 933                         entry = pmd_mkclean(entry);
 934                         set_pmd_at(vma->vm_mm, address, pmd, entry);
 935                         ret = 1;
 936 #else
 937                         /* unexpected pmd-mapped page? */
 938                         WARN_ON_ONCE(1);
 939 #endif
 940                 }
 941 
 942                 /*
 943                  * No need to call mmu_notifier_invalidate_range() as we are
 944                  * downgrading page table protection not changing it to point
 945                  * to a new page.
 946                  *
 947                  * See Documentation/vm/mmu_notifier.rst
 948                  */
 949                 if (ret)
 950                         (*cleaned)++;
 951         }
 952 
 953         mmu_notifier_invalidate_range_end(&range);
 954 
 955         return true;
 956 }
 957 
 958 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 959 {
 960         if (vma->vm_flags & VM_SHARED)
 961                 return false;
 962 
 963         return true;
 964 }
 965 
 966 int page_mkclean(struct page *page)
 967 {
 968         int cleaned = 0;
 969         struct address_space *mapping;
 970         struct rmap_walk_control rwc = {
 971                 .arg = (void *)&cleaned,
 972                 .rmap_one = page_mkclean_one,
 973                 .invalid_vma = invalid_mkclean_vma,
 974         };
 975 
 976         BUG_ON(!PageLocked(page));
 977 
 978         if (!page_mapped(page))
 979                 return 0;
 980 
 981         mapping = page_mapping(page);
 982         if (!mapping)
 983                 return 0;
 984 
 985         rmap_walk(page, &rwc);
 986 
 987         return cleaned;
 988 }
 989 EXPORT_SYMBOL_GPL(page_mkclean);
 990 
 991 /**
 992  * page_move_anon_rmap - move a page to our anon_vma
 993  * @page:       the page to move to our anon_vma
 994  * @vma:        the vma the page belongs to
 995  *
 996  * When a page belongs exclusively to one process after a COW event,
 997  * that page can be moved into the anon_vma that belongs to just that
 998  * process, so the rmap code will not search the parent or sibling
 999  * processes.
1000  */
1001 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1002 {
1003         struct anon_vma *anon_vma = vma->anon_vma;
1004 
1005         page = compound_head(page);
1006 
1007         VM_BUG_ON_PAGE(!PageLocked(page), page);
1008         VM_BUG_ON_VMA(!anon_vma, vma);
1009 
1010         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1011         /*
1012          * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1013          * simultaneously, so a concurrent reader (eg page_referenced()'s
1014          * PageAnon()) will not see one without the other.
1015          */
1016         WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1017 }
1018 
1019 /**
1020  * __page_set_anon_rmap - set up new anonymous rmap
1021  * @page:       Page or Hugepage to add to rmap
1022  * @vma:        VM area to add page to.
1023  * @address:    User virtual address of the mapping     
1024  * @exclusive:  the page is exclusively owned by the current process
1025  */
1026 static void __page_set_anon_rmap(struct page *page,
1027         struct vm_area_struct *vma, unsigned long address, int exclusive)
1028 {
1029         struct anon_vma *anon_vma = vma->anon_vma;
1030 
1031         BUG_ON(!anon_vma);
1032 
1033         if (PageAnon(page))
1034                 return;
1035 
1036         /*
1037          * If the page isn't exclusively mapped into this vma,
1038          * we must use the _oldest_ possible anon_vma for the
1039          * page mapping!
1040          */
1041         if (!exclusive)
1042                 anon_vma = anon_vma->root;
1043 
1044         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1045         page->mapping = (struct address_space *) anon_vma;
1046         page->index = linear_page_index(vma, address);
1047 }
1048 
1049 /**
1050  * __page_check_anon_rmap - sanity check anonymous rmap addition
1051  * @page:       the page to add the mapping to
1052  * @vma:        the vm area in which the mapping is added
1053  * @address:    the user virtual address mapped
1054  */
1055 static void __page_check_anon_rmap(struct page *page,
1056         struct vm_area_struct *vma, unsigned long address)
1057 {
1058 #ifdef CONFIG_DEBUG_VM
1059         /*
1060          * The page's anon-rmap details (mapping and index) are guaranteed to
1061          * be set up correctly at this point.
1062          *
1063          * We have exclusion against page_add_anon_rmap because the caller
1064          * always holds the page locked, except if called from page_dup_rmap,
1065          * in which case the page is already known to be setup.
1066          *
1067          * We have exclusion against page_add_new_anon_rmap because those pages
1068          * are initially only visible via the pagetables, and the pte is locked
1069          * over the call to page_add_new_anon_rmap.
1070          */
1071         BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1072         BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1073 #endif
1074 }
1075 
1076 /**
1077  * page_add_anon_rmap - add pte mapping to an anonymous page
1078  * @page:       the page to add the mapping to
1079  * @vma:        the vm area in which the mapping is added
1080  * @address:    the user virtual address mapped
1081  * @compound:   charge the page as compound or small page
1082  *
1083  * The caller needs to hold the pte lock, and the page must be locked in
1084  * the anon_vma case: to serialize mapping,index checking after setting,
1085  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1086  * (but PageKsm is never downgraded to PageAnon).
1087  */
1088 void page_add_anon_rmap(struct page *page,
1089         struct vm_area_struct *vma, unsigned long address, bool compound)
1090 {
1091         do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1092 }
1093 
1094 /*
1095  * Special version of the above for do_swap_page, which often runs
1096  * into pages that are exclusively owned by the current process.
1097  * Everybody else should continue to use page_add_anon_rmap above.
1098  */
1099 void do_page_add_anon_rmap(struct page *page,
1100         struct vm_area_struct *vma, unsigned long address, int flags)
1101 {
1102         bool compound = flags & RMAP_COMPOUND;
1103         bool first;
1104 
1105         if (compound) {
1106                 atomic_t *mapcount;
1107                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1108                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1109                 mapcount = compound_mapcount_ptr(page);
1110                 first = atomic_inc_and_test(mapcount);
1111         } else {
1112                 first = atomic_inc_and_test(&page->_mapcount);
1113         }
1114 
1115         if (first) {
1116                 int nr = compound ? hpage_nr_pages(page) : 1;
1117                 /*
1118                  * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1119                  * these counters are not modified in interrupt context, and
1120                  * pte lock(a spinlock) is held, which implies preemption
1121                  * disabled.
1122                  */
1123                 if (compound)
1124                         __inc_node_page_state(page, NR_ANON_THPS);
1125                 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1126         }
1127         if (unlikely(PageKsm(page)))
1128                 return;
1129 
1130         VM_BUG_ON_PAGE(!PageLocked(page), page);
1131 
1132         /* address might be in next vma when migration races vma_adjust */
1133         if (first)
1134                 __page_set_anon_rmap(page, vma, address,
1135                                 flags & RMAP_EXCLUSIVE);
1136         else
1137                 __page_check_anon_rmap(page, vma, address);
1138 }
1139 
1140 /**
1141  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1142  * @page:       the page to add the mapping to
1143  * @vma:        the vm area in which the mapping is added
1144  * @address:    the user virtual address mapped
1145  * @compound:   charge the page as compound or small page
1146  *
1147  * Same as page_add_anon_rmap but must only be called on *new* pages.
1148  * This means the inc-and-test can be bypassed.
1149  * Page does not have to be locked.
1150  */
1151 void page_add_new_anon_rmap(struct page *page,
1152         struct vm_area_struct *vma, unsigned long address, bool compound)
1153 {
1154         int nr = compound ? hpage_nr_pages(page) : 1;
1155 
1156         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1157         __SetPageSwapBacked(page);
1158         if (compound) {
1159                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1160                 /* increment count (starts at -1) */
1161                 atomic_set(compound_mapcount_ptr(page), 0);
1162                 __inc_node_page_state(page, NR_ANON_THPS);
1163         } else {
1164                 /* Anon THP always mapped first with PMD */
1165                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1166                 /* increment count (starts at -1) */
1167                 atomic_set(&page->_mapcount, 0);
1168         }
1169         __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1170         __page_set_anon_rmap(page, vma, address, 1);
1171 }
1172 
1173 /**
1174  * page_add_file_rmap - add pte mapping to a file page
1175  * @page: the page to add the mapping to
1176  * @compound: charge the page as compound or small page
1177  *
1178  * The caller needs to hold the pte lock.
1179  */
1180 void page_add_file_rmap(struct page *page, bool compound)
1181 {
1182         int i, nr = 1;
1183 
1184         VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1185         lock_page_memcg(page);
1186         if (compound && PageTransHuge(page)) {
1187                 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1188                         if (atomic_inc_and_test(&page[i]._mapcount))
1189                                 nr++;
1190                 }
1191                 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1192                         goto out;
1193                 if (PageSwapBacked(page))
1194                         __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1195                 else
1196                         __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1197         } else {
1198                 if (PageTransCompound(page) && page_mapping(page)) {
1199                         VM_WARN_ON_ONCE(!PageLocked(page));
1200 
1201                         SetPageDoubleMap(compound_head(page));
1202                         if (PageMlocked(page))
1203                                 clear_page_mlock(compound_head(page));
1204                 }
1205                 if (!atomic_inc_and_test(&page->_mapcount))
1206                         goto out;
1207         }
1208         __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1209 out:
1210         unlock_page_memcg(page);
1211 }
1212 
1213 static void page_remove_file_rmap(struct page *page, bool compound)
1214 {
1215         int i, nr = 1;
1216 
1217         VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1218         lock_page_memcg(page);
1219 
1220         /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1221         if (unlikely(PageHuge(page))) {
1222                 /* hugetlb pages are always mapped with pmds */
1223                 atomic_dec(compound_mapcount_ptr(page));
1224                 goto out;
1225         }
1226 
1227         /* page still mapped by someone else? */
1228         if (compound && PageTransHuge(page)) {
1229                 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1230                         if (atomic_add_negative(-1, &page[i]._mapcount))
1231                                 nr++;
1232                 }
1233                 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1234                         goto out;
1235                 if (PageSwapBacked(page))
1236                         __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1237                 else
1238                         __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1239         } else {
1240                 if (!atomic_add_negative(-1, &page->_mapcount))
1241                         goto out;
1242         }
1243 
1244         /*
1245          * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1246          * these counters are not modified in interrupt context, and
1247          * pte lock(a spinlock) is held, which implies preemption disabled.
1248          */
1249         __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1250 
1251         if (unlikely(PageMlocked(page)))
1252                 clear_page_mlock(page);
1253 out:
1254         unlock_page_memcg(page);
1255 }
1256 
1257 static void page_remove_anon_compound_rmap(struct page *page)
1258 {
1259         int i, nr;
1260 
1261         if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1262                 return;
1263 
1264         /* Hugepages are not counted in NR_ANON_PAGES for now. */
1265         if (unlikely(PageHuge(page)))
1266                 return;
1267 
1268         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1269                 return;
1270 
1271         __dec_node_page_state(page, NR_ANON_THPS);
1272 
1273         if (TestClearPageDoubleMap(page)) {
1274                 /*
1275                  * Subpages can be mapped with PTEs too. Check how many of
1276                  * themi are still mapped.
1277                  */
1278                 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1279                         if (atomic_add_negative(-1, &page[i]._mapcount))
1280                                 nr++;
1281                 }
1282         } else {
1283                 nr = HPAGE_PMD_NR;
1284         }
1285 
1286         if (unlikely(PageMlocked(page)))
1287                 clear_page_mlock(page);
1288 
1289         if (nr) {
1290                 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1291                 deferred_split_huge_page(page);
1292         }
1293 }
1294 
1295 /**
1296  * page_remove_rmap - take down pte mapping from a page
1297  * @page:       page to remove mapping from
1298  * @compound:   uncharge the page as compound or small page
1299  *
1300  * The caller needs to hold the pte lock.
1301  */
1302 void page_remove_rmap(struct page *page, bool compound)
1303 {
1304         if (!PageAnon(page))
1305                 return page_remove_file_rmap(page, compound);
1306 
1307         if (compound)
1308                 return page_remove_anon_compound_rmap(page);
1309 
1310         /* page still mapped by someone else? */
1311         if (!atomic_add_negative(-1, &page->_mapcount))
1312                 return;
1313 
1314         /*
1315          * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1316          * these counters are not modified in interrupt context, and
1317          * pte lock(a spinlock) is held, which implies preemption disabled.
1318          */
1319         __dec_node_page_state(page, NR_ANON_MAPPED);
1320 
1321         if (unlikely(PageMlocked(page)))
1322                 clear_page_mlock(page);
1323 
1324         if (PageTransCompound(page))
1325                 deferred_split_huge_page(compound_head(page));
1326 
1327         /*
1328          * It would be tidy to reset the PageAnon mapping here,
1329          * but that might overwrite a racing page_add_anon_rmap
1330          * which increments mapcount after us but sets mapping
1331          * before us: so leave the reset to free_unref_page,
1332          * and remember that it's only reliable while mapped.
1333          * Leaving it set also helps swapoff to reinstate ptes
1334          * faster for those pages still in swapcache.
1335          */
1336 }
1337 
1338 /*
1339  * @arg: enum ttu_flags will be passed to this argument
1340  */
1341 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1342                      unsigned long address, void *arg)
1343 {
1344         struct mm_struct *mm = vma->vm_mm;
1345         struct page_vma_mapped_walk pvmw = {
1346                 .page = page,
1347                 .vma = vma,
1348                 .address = address,
1349         };
1350         pte_t pteval;
1351         struct page *subpage;
1352         bool ret = true;
1353         struct mmu_notifier_range range;
1354         enum ttu_flags flags = (enum ttu_flags)arg;
1355 
1356         /* munlock has nothing to gain from examining un-locked vmas */
1357         if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1358                 return true;
1359 
1360         if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1361             is_zone_device_page(page) && !is_device_private_page(page))
1362                 return true;
1363 
1364         if (flags & TTU_SPLIT_HUGE_PMD) {
1365                 split_huge_pmd_address(vma, address,
1366                                 flags & TTU_SPLIT_FREEZE, page);
1367         }
1368 
1369         /*
1370          * For THP, we have to assume the worse case ie pmd for invalidation.
1371          * For hugetlb, it could be much worse if we need to do pud
1372          * invalidation in the case of pmd sharing.
1373          *
1374          * Note that the page can not be free in this function as call of
1375          * try_to_unmap() must hold a reference on the page.
1376          */
1377         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1378                                 address,
1379                                 min(vma->vm_end, address + page_size(page)));
1380         if (PageHuge(page)) {
1381                 /*
1382                  * If sharing is possible, start and end will be adjusted
1383                  * accordingly.
1384                  */
1385                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1386                                                      &range.end);
1387         }
1388         mmu_notifier_invalidate_range_start(&range);
1389 
1390         while (page_vma_mapped_walk(&pvmw)) {
1391 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1392                 /* PMD-mapped THP migration entry */
1393                 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1394                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1395 
1396                         set_pmd_migration_entry(&pvmw, page);
1397                         continue;
1398                 }
1399 #endif
1400 
1401                 /*
1402                  * If the page is mlock()d, we cannot swap it out.
1403                  * If it's recently referenced (perhaps page_referenced
1404                  * skipped over this mm) then we should reactivate it.
1405                  */
1406                 if (!(flags & TTU_IGNORE_MLOCK)) {
1407                         if (vma->vm_flags & VM_LOCKED) {
1408                                 /* PTE-mapped THP are never mlocked */
1409                                 if (!PageTransCompound(page)) {
1410                                         /*
1411                                          * Holding pte lock, we do *not* need
1412                                          * mmap_sem here
1413                                          */
1414                                         mlock_vma_page(page);
1415                                 }
1416                                 ret = false;
1417                                 page_vma_mapped_walk_done(&pvmw);
1418                                 break;
1419                         }
1420                         if (flags & TTU_MUNLOCK)
1421                                 continue;
1422                 }
1423 
1424                 /* Unexpected PMD-mapped THP? */
1425                 VM_BUG_ON_PAGE(!pvmw.pte, page);
1426 
1427                 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1428                 address = pvmw.address;
1429 
1430                 if (PageHuge(page)) {
1431                         if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1432                                 /*
1433                                  * huge_pmd_unshare unmapped an entire PMD
1434                                  * page.  There is no way of knowing exactly
1435                                  * which PMDs may be cached for this mm, so
1436                                  * we must flush them all.  start/end were
1437                                  * already adjusted above to cover this range.
1438                                  */
1439                                 flush_cache_range(vma, range.start, range.end);
1440                                 flush_tlb_range(vma, range.start, range.end);
1441                                 mmu_notifier_invalidate_range(mm, range.start,
1442                                                               range.end);
1443 
1444                                 /*
1445                                  * The ref count of the PMD page was dropped
1446                                  * which is part of the way map counting
1447                                  * is done for shared PMDs.  Return 'true'
1448                                  * here.  When there is no other sharing,
1449                                  * huge_pmd_unshare returns false and we will
1450                                  * unmap the actual page and drop map count
1451                                  * to zero.
1452                                  */
1453                                 page_vma_mapped_walk_done(&pvmw);
1454                                 break;
1455                         }
1456                 }
1457 
1458                 if (IS_ENABLED(CONFIG_MIGRATION) &&
1459                     (flags & TTU_MIGRATION) &&
1460                     is_zone_device_page(page)) {
1461                         swp_entry_t entry;
1462                         pte_t swp_pte;
1463 
1464                         pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1465 
1466                         /*
1467                          * Store the pfn of the page in a special migration
1468                          * pte. do_swap_page() will wait until the migration
1469                          * pte is removed and then restart fault handling.
1470                          */
1471                         entry = make_migration_entry(page, 0);
1472                         swp_pte = swp_entry_to_pte(entry);
1473                         if (pte_soft_dirty(pteval))
1474                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1475                         set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1476                         /*
1477                          * No need to invalidate here it will synchronize on
1478                          * against the special swap migration pte.
1479                          *
1480                          * The assignment to subpage above was computed from a
1481                          * swap PTE which results in an invalid pointer.
1482                          * Since only PAGE_SIZE pages can currently be
1483                          * migrated, just set it to page. This will need to be
1484                          * changed when hugepage migrations to device private
1485                          * memory are supported.
1486                          */
1487                         subpage = page;
1488                         goto discard;
1489                 }
1490 
1491                 if (!(flags & TTU_IGNORE_ACCESS)) {
1492                         if (ptep_clear_flush_young_notify(vma, address,
1493                                                 pvmw.pte)) {
1494                                 ret = false;
1495                                 page_vma_mapped_walk_done(&pvmw);
1496                                 break;
1497                         }
1498                 }
1499 
1500                 /* Nuke the page table entry. */
1501                 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1502                 if (should_defer_flush(mm, flags)) {
1503                         /*
1504                          * We clear the PTE but do not flush so potentially
1505                          * a remote CPU could still be writing to the page.
1506                          * If the entry was previously clean then the
1507                          * architecture must guarantee that a clear->dirty
1508                          * transition on a cached TLB entry is written through
1509                          * and traps if the PTE is unmapped.
1510                          */
1511                         pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1512 
1513                         set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1514                 } else {
1515                         pteval = ptep_clear_flush(vma, address, pvmw.pte);
1516                 }
1517 
1518                 /* Move the dirty bit to the page. Now the pte is gone. */
1519                 if (pte_dirty(pteval))
1520                         set_page_dirty(page);
1521 
1522                 /* Update high watermark before we lower rss */
1523                 update_hiwater_rss(mm);
1524 
1525                 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1526                         pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1527                         if (PageHuge(page)) {
1528                                 hugetlb_count_sub(compound_nr(page), mm);
1529                                 set_huge_swap_pte_at(mm, address,
1530                                                      pvmw.pte, pteval,
1531                                                      vma_mmu_pagesize(vma));
1532                         } else {
1533                                 dec_mm_counter(mm, mm_counter(page));
1534                                 set_pte_at(mm, address, pvmw.pte, pteval);
1535                         }
1536 
1537                 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1538                         /*
1539                          * The guest indicated that the page content is of no
1540                          * interest anymore. Simply discard the pte, vmscan
1541                          * will take care of the rest.
1542                          * A future reference will then fault in a new zero
1543                          * page. When userfaultfd is active, we must not drop
1544                          * this page though, as its main user (postcopy
1545                          * migration) will not expect userfaults on already
1546                          * copied pages.
1547                          */
1548                         dec_mm_counter(mm, mm_counter(page));
1549                         /* We have to invalidate as we cleared the pte */
1550                         mmu_notifier_invalidate_range(mm, address,
1551                                                       address + PAGE_SIZE);
1552                 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1553                                 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1554                         swp_entry_t entry;
1555                         pte_t swp_pte;
1556 
1557                         if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1558                                 set_pte_at(mm, address, pvmw.pte, pteval);
1559                                 ret = false;
1560                                 page_vma_mapped_walk_done(&pvmw);
1561                                 break;
1562                         }
1563 
1564                         /*
1565                          * Store the pfn of the page in a special migration
1566                          * pte. do_swap_page() will wait until the migration
1567                          * pte is removed and then restart fault handling.
1568                          */
1569                         entry = make_migration_entry(subpage,
1570                                         pte_write(pteval));
1571                         swp_pte = swp_entry_to_pte(entry);
1572                         if (pte_soft_dirty(pteval))
1573                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1574                         set_pte_at(mm, address, pvmw.pte, swp_pte);
1575                         /*
1576                          * No need to invalidate here it will synchronize on
1577                          * against the special swap migration pte.
1578                          */
1579                 } else if (PageAnon(page)) {
1580                         swp_entry_t entry = { .val = page_private(subpage) };
1581                         pte_t swp_pte;
1582                         /*
1583                          * Store the swap location in the pte.
1584                          * See handle_pte_fault() ...
1585                          */
1586                         if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1587                                 WARN_ON_ONCE(1);
1588                                 ret = false;
1589                                 /* We have to invalidate as we cleared the pte */
1590                                 mmu_notifier_invalidate_range(mm, address,
1591                                                         address + PAGE_SIZE);
1592                                 page_vma_mapped_walk_done(&pvmw);
1593                                 break;
1594                         }
1595 
1596                         /* MADV_FREE page check */
1597                         if (!PageSwapBacked(page)) {
1598                                 if (!PageDirty(page)) {
1599                                         /* Invalidate as we cleared the pte */
1600                                         mmu_notifier_invalidate_range(mm,
1601                                                 address, address + PAGE_SIZE);
1602                                         dec_mm_counter(mm, MM_ANONPAGES);
1603                                         goto discard;
1604                                 }
1605 
1606                                 /*
1607                                  * If the page was redirtied, it cannot be
1608                                  * discarded. Remap the page to page table.
1609                                  */
1610                                 set_pte_at(mm, address, pvmw.pte, pteval);
1611                                 SetPageSwapBacked(page);
1612                                 ret = false;
1613                                 page_vma_mapped_walk_done(&pvmw);
1614                                 break;
1615                         }
1616 
1617                         if (swap_duplicate(entry) < 0) {
1618                                 set_pte_at(mm, address, pvmw.pte, pteval);
1619                                 ret = false;
1620                                 page_vma_mapped_walk_done(&pvmw);
1621                                 break;
1622                         }
1623                         if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1624                                 set_pte_at(mm, address, pvmw.pte, pteval);
1625                                 ret = false;
1626                                 page_vma_mapped_walk_done(&pvmw);
1627                                 break;
1628                         }
1629                         if (list_empty(&mm->mmlist)) {
1630                                 spin_lock(&mmlist_lock);
1631                                 if (list_empty(&mm->mmlist))
1632                                         list_add(&mm->mmlist, &init_mm.mmlist);
1633                                 spin_unlock(&mmlist_lock);
1634                         }
1635                         dec_mm_counter(mm, MM_ANONPAGES);
1636                         inc_mm_counter(mm, MM_SWAPENTS);
1637                         swp_pte = swp_entry_to_pte(entry);
1638                         if (pte_soft_dirty(pteval))
1639                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1640                         set_pte_at(mm, address, pvmw.pte, swp_pte);
1641                         /* Invalidate as we cleared the pte */
1642                         mmu_notifier_invalidate_range(mm, address,
1643                                                       address + PAGE_SIZE);
1644                 } else {
1645                         /*
1646                          * This is a locked file-backed page, thus it cannot
1647                          * be removed from the page cache and replaced by a new
1648                          * page before mmu_notifier_invalidate_range_end, so no
1649                          * concurrent thread might update its page table to
1650                          * point at new page while a device still is using this
1651                          * page.
1652                          *
1653                          * See Documentation/vm/mmu_notifier.rst
1654                          */
1655                         dec_mm_counter(mm, mm_counter_file(page));
1656                 }
1657 discard:
1658                 /*
1659                  * No need to call mmu_notifier_invalidate_range() it has be
1660                  * done above for all cases requiring it to happen under page
1661                  * table lock before mmu_notifier_invalidate_range_end()
1662                  *
1663                  * See Documentation/vm/mmu_notifier.rst
1664                  */
1665                 page_remove_rmap(subpage, PageHuge(page));
1666                 put_page(page);
1667         }
1668 
1669         mmu_notifier_invalidate_range_end(&range);
1670 
1671         return ret;
1672 }
1673 
1674 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1675 {
1676         int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1677 
1678         if (!maybe_stack)
1679                 return false;
1680 
1681         if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1682                                                 VM_STACK_INCOMPLETE_SETUP)
1683                 return true;
1684 
1685         return false;
1686 }
1687 
1688 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1689 {
1690         return is_vma_temporary_stack(vma);
1691 }
1692 
1693 static int page_mapcount_is_zero(struct page *page)
1694 {
1695         return !total_mapcount(page);
1696 }
1697 
1698 /**
1699  * try_to_unmap - try to remove all page table mappings to a page
1700  * @page: the page to get unmapped
1701  * @flags: action and flags
1702  *
1703  * Tries to remove all the page table entries which are mapping this
1704  * page, used in the pageout path.  Caller must hold the page lock.
1705  *
1706  * If unmap is successful, return true. Otherwise, false.
1707  */
1708 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1709 {
1710         struct rmap_walk_control rwc = {
1711                 .rmap_one = try_to_unmap_one,
1712                 .arg = (void *)flags,
1713                 .done = page_mapcount_is_zero,
1714                 .anon_lock = page_lock_anon_vma_read,
1715         };
1716 
1717         /*
1718          * During exec, a temporary VMA is setup and later moved.
1719          * The VMA is moved under the anon_vma lock but not the
1720          * page tables leading to a race where migration cannot
1721          * find the migration ptes. Rather than increasing the
1722          * locking requirements of exec(), migration skips
1723          * temporary VMAs until after exec() completes.
1724          */
1725         if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1726             && !PageKsm(page) && PageAnon(page))
1727                 rwc.invalid_vma = invalid_migration_vma;
1728 
1729         if (flags & TTU_RMAP_LOCKED)
1730                 rmap_walk_locked(page, &rwc);
1731         else
1732                 rmap_walk(page, &rwc);
1733 
1734         return !page_mapcount(page) ? true : false;
1735 }
1736 
1737 static int page_not_mapped(struct page *page)
1738 {
1739         return !page_mapped(page);
1740 };
1741 
1742 /**
1743  * try_to_munlock - try to munlock a page
1744  * @page: the page to be munlocked
1745  *
1746  * Called from munlock code.  Checks all of the VMAs mapping the page
1747  * to make sure nobody else has this page mlocked. The page will be
1748  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1749  */
1750 
1751 void try_to_munlock(struct page *page)
1752 {
1753         struct rmap_walk_control rwc = {
1754                 .rmap_one = try_to_unmap_one,
1755                 .arg = (void *)TTU_MUNLOCK,
1756                 .done = page_not_mapped,
1757                 .anon_lock = page_lock_anon_vma_read,
1758 
1759         };
1760 
1761         VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1762         VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1763 
1764         rmap_walk(page, &rwc);
1765 }
1766 
1767 void __put_anon_vma(struct anon_vma *anon_vma)
1768 {
1769         struct anon_vma *root = anon_vma->root;
1770 
1771         anon_vma_free(anon_vma);
1772         if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1773                 anon_vma_free(root);
1774 }
1775 
1776 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1777                                         struct rmap_walk_control *rwc)
1778 {
1779         struct anon_vma *anon_vma;
1780 
1781         if (rwc->anon_lock)
1782                 return rwc->anon_lock(page);
1783 
1784         /*
1785          * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1786          * because that depends on page_mapped(); but not all its usages
1787          * are holding mmap_sem. Users without mmap_sem are required to
1788          * take a reference count to prevent the anon_vma disappearing
1789          */
1790         anon_vma = page_anon_vma(page);
1791         if (!anon_vma)
1792                 return NULL;
1793 
1794         anon_vma_lock_read(anon_vma);
1795         return anon_vma;
1796 }
1797 
1798 /*
1799  * rmap_walk_anon - do something to anonymous page using the object-based
1800  * rmap method
1801  * @page: the page to be handled
1802  * @rwc: control variable according to each walk type
1803  *
1804  * Find all the mappings of a page using the mapping pointer and the vma chains
1805  * contained in the anon_vma struct it points to.
1806  *
1807  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1808  * where the page was found will be held for write.  So, we won't recheck
1809  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1810  * LOCKED.
1811  */
1812 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1813                 bool locked)
1814 {
1815         struct anon_vma *anon_vma;
1816         pgoff_t pgoff_start, pgoff_end;
1817         struct anon_vma_chain *avc;
1818 
1819         if (locked) {
1820                 anon_vma = page_anon_vma(page);
1821                 /* anon_vma disappear under us? */
1822                 VM_BUG_ON_PAGE(!anon_vma, page);
1823         } else {
1824                 anon_vma = rmap_walk_anon_lock(page, rwc);
1825         }
1826         if (!anon_vma)
1827                 return;
1828 
1829         pgoff_start = page_to_pgoff(page);
1830         pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1831         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1832                         pgoff_start, pgoff_end) {
1833                 struct vm_area_struct *vma = avc->vma;
1834                 unsigned long address = vma_address(page, vma);
1835 
1836                 cond_resched();
1837 
1838                 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1839                         continue;
1840 
1841                 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1842                         break;
1843                 if (rwc->done && rwc->done(page))
1844                         break;
1845         }
1846 
1847         if (!locked)
1848                 anon_vma_unlock_read(anon_vma);
1849 }
1850 
1851 /*
1852  * rmap_walk_file - do something to file page using the object-based rmap method
1853  * @page: the page to be handled
1854  * @rwc: control variable according to each walk type
1855  *
1856  * Find all the mappings of a page using the mapping pointer and the vma chains
1857  * contained in the address_space struct it points to.
1858  *
1859  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1860  * where the page was found will be held for write.  So, we won't recheck
1861  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1862  * LOCKED.
1863  */
1864 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1865                 bool locked)
1866 {
1867         struct address_space *mapping = page_mapping(page);
1868         pgoff_t pgoff_start, pgoff_end;
1869         struct vm_area_struct *vma;
1870 
1871         /*
1872          * The page lock not only makes sure that page->mapping cannot
1873          * suddenly be NULLified by truncation, it makes sure that the
1874          * structure at mapping cannot be freed and reused yet,
1875          * so we can safely take mapping->i_mmap_rwsem.
1876          */
1877         VM_BUG_ON_PAGE(!PageLocked(page), page);
1878 
1879         if (!mapping)
1880                 return;
1881 
1882         pgoff_start = page_to_pgoff(page);
1883         pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1884         if (!locked)
1885                 i_mmap_lock_read(mapping);
1886         vma_interval_tree_foreach(vma, &mapping->i_mmap,
1887                         pgoff_start, pgoff_end) {
1888                 unsigned long address = vma_address(page, vma);
1889 
1890                 cond_resched();
1891 
1892                 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1893                         continue;
1894 
1895                 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1896                         goto done;
1897                 if (rwc->done && rwc->done(page))
1898                         goto done;
1899         }
1900 
1901 done:
1902         if (!locked)
1903                 i_mmap_unlock_read(mapping);
1904 }
1905 
1906 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1907 {
1908         if (unlikely(PageKsm(page)))
1909                 rmap_walk_ksm(page, rwc);
1910         else if (PageAnon(page))
1911                 rmap_walk_anon(page, rwc, false);
1912         else
1913                 rmap_walk_file(page, rwc, false);
1914 }
1915 
1916 /* Like rmap_walk, but caller holds relevant rmap lock */
1917 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1918 {
1919         /* no ksm support for now */
1920         VM_BUG_ON_PAGE(PageKsm(page), page);
1921         if (PageAnon(page))
1922                 rmap_walk_anon(page, rwc, true);
1923         else
1924                 rmap_walk_file(page, rwc, true);
1925 }
1926 
1927 #ifdef CONFIG_HUGETLB_PAGE
1928 /*
1929  * The following two functions are for anonymous (private mapped) hugepages.
1930  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1931  * and no lru code, because we handle hugepages differently from common pages.
1932  */
1933 void hugepage_add_anon_rmap(struct page *page,
1934                             struct vm_area_struct *vma, unsigned long address)
1935 {
1936         struct anon_vma *anon_vma = vma->anon_vma;
1937         int first;
1938 
1939         BUG_ON(!PageLocked(page));
1940         BUG_ON(!anon_vma);
1941         /* address might be in next vma when migration races vma_adjust */
1942         first = atomic_inc_and_test(compound_mapcount_ptr(page));
1943         if (first)
1944                 __page_set_anon_rmap(page, vma, address, 0);
1945 }
1946 
1947 void hugepage_add_new_anon_rmap(struct page *page,
1948                         struct vm_area_struct *vma, unsigned long address)
1949 {
1950         BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1951         atomic_set(compound_mapcount_ptr(page), 0);
1952         __page_set_anon_rmap(page, vma, address, 1);
1953 }
1954 #endif /* CONFIG_HUGETLB_PAGE */

/* [<][>][^][v][top][bottom][index][help] */