root/mm/vmpressure.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. work_to_vmpressure
  2. vmpressure_parent
  3. vmpressure_calc_level
  4. vmpressure_event
  5. vmpressure_work_fn
  6. vmpressure
  7. vmpressure_prio
  8. vmpressure_register_event
  9. vmpressure_unregister_event
  10. vmpressure_init
  11. vmpressure_cleanup

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Linux VM pressure
   4  *
   5  * Copyright 2012 Linaro Ltd.
   6  *                Anton Vorontsov <anton.vorontsov@linaro.org>
   7  *
   8  * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
   9  * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
  10  */
  11 
  12 #include <linux/cgroup.h>
  13 #include <linux/fs.h>
  14 #include <linux/log2.h>
  15 #include <linux/sched.h>
  16 #include <linux/mm.h>
  17 #include <linux/vmstat.h>
  18 #include <linux/eventfd.h>
  19 #include <linux/slab.h>
  20 #include <linux/swap.h>
  21 #include <linux/printk.h>
  22 #include <linux/vmpressure.h>
  23 
  24 /*
  25  * The window size (vmpressure_win) is the number of scanned pages before
  26  * we try to analyze scanned/reclaimed ratio. So the window is used as a
  27  * rate-limit tunable for the "low" level notification, and also for
  28  * averaging the ratio for medium/critical levels. Using small window
  29  * sizes can cause lot of false positives, but too big window size will
  30  * delay the notifications.
  31  *
  32  * As the vmscan reclaimer logic works with chunks which are multiple of
  33  * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
  34  *
  35  * TODO: Make the window size depend on machine size, as we do for vmstat
  36  * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
  37  */
  38 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
  39 
  40 /*
  41  * These thresholds are used when we account memory pressure through
  42  * scanned/reclaimed ratio. The current values were chosen empirically. In
  43  * essence, they are percents: the higher the value, the more number
  44  * unsuccessful reclaims there were.
  45  */
  46 static const unsigned int vmpressure_level_med = 60;
  47 static const unsigned int vmpressure_level_critical = 95;
  48 
  49 /*
  50  * When there are too little pages left to scan, vmpressure() may miss the
  51  * critical pressure as number of pages will be less than "window size".
  52  * However, in that case the vmscan priority will raise fast as the
  53  * reclaimer will try to scan LRUs more deeply.
  54  *
  55  * The vmscan logic considers these special priorities:
  56  *
  57  * prio == DEF_PRIORITY (12): reclaimer starts with that value
  58  * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
  59  * prio == 0                : close to OOM, kernel scans every page in an lru
  60  *
  61  * Any value in this range is acceptable for this tunable (i.e. from 12 to
  62  * 0). Current value for the vmpressure_level_critical_prio is chosen
  63  * empirically, but the number, in essence, means that we consider
  64  * critical level when scanning depth is ~10% of the lru size (vmscan
  65  * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
  66  * eights).
  67  */
  68 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
  69 
  70 static struct vmpressure *work_to_vmpressure(struct work_struct *work)
  71 {
  72         return container_of(work, struct vmpressure, work);
  73 }
  74 
  75 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
  76 {
  77         struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
  78         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  79 
  80         memcg = parent_mem_cgroup(memcg);
  81         if (!memcg)
  82                 return NULL;
  83         return memcg_to_vmpressure(memcg);
  84 }
  85 
  86 enum vmpressure_levels {
  87         VMPRESSURE_LOW = 0,
  88         VMPRESSURE_MEDIUM,
  89         VMPRESSURE_CRITICAL,
  90         VMPRESSURE_NUM_LEVELS,
  91 };
  92 
  93 enum vmpressure_modes {
  94         VMPRESSURE_NO_PASSTHROUGH = 0,
  95         VMPRESSURE_HIERARCHY,
  96         VMPRESSURE_LOCAL,
  97         VMPRESSURE_NUM_MODES,
  98 };
  99 
 100 static const char * const vmpressure_str_levels[] = {
 101         [VMPRESSURE_LOW] = "low",
 102         [VMPRESSURE_MEDIUM] = "medium",
 103         [VMPRESSURE_CRITICAL] = "critical",
 104 };
 105 
 106 static const char * const vmpressure_str_modes[] = {
 107         [VMPRESSURE_NO_PASSTHROUGH] = "default",
 108         [VMPRESSURE_HIERARCHY] = "hierarchy",
 109         [VMPRESSURE_LOCAL] = "local",
 110 };
 111 
 112 static enum vmpressure_levels vmpressure_level(unsigned long pressure)
 113 {
 114         if (pressure >= vmpressure_level_critical)
 115                 return VMPRESSURE_CRITICAL;
 116         else if (pressure >= vmpressure_level_med)
 117                 return VMPRESSURE_MEDIUM;
 118         return VMPRESSURE_LOW;
 119 }
 120 
 121 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
 122                                                     unsigned long reclaimed)
 123 {
 124         unsigned long scale = scanned + reclaimed;
 125         unsigned long pressure = 0;
 126 
 127         /*
 128          * reclaimed can be greater than scanned for things such as reclaimed
 129          * slab pages. shrink_node() just adds reclaimed pages without a
 130          * related increment to scanned pages.
 131          */
 132         if (reclaimed >= scanned)
 133                 goto out;
 134         /*
 135          * We calculate the ratio (in percents) of how many pages were
 136          * scanned vs. reclaimed in a given time frame (window). Note that
 137          * time is in VM reclaimer's "ticks", i.e. number of pages
 138          * scanned. This makes it possible to set desired reaction time
 139          * and serves as a ratelimit.
 140          */
 141         pressure = scale - (reclaimed * scale / scanned);
 142         pressure = pressure * 100 / scale;
 143 
 144 out:
 145         pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
 146                  scanned, reclaimed);
 147 
 148         return vmpressure_level(pressure);
 149 }
 150 
 151 struct vmpressure_event {
 152         struct eventfd_ctx *efd;
 153         enum vmpressure_levels level;
 154         enum vmpressure_modes mode;
 155         struct list_head node;
 156 };
 157 
 158 static bool vmpressure_event(struct vmpressure *vmpr,
 159                              const enum vmpressure_levels level,
 160                              bool ancestor, bool signalled)
 161 {
 162         struct vmpressure_event *ev;
 163         bool ret = false;
 164 
 165         mutex_lock(&vmpr->events_lock);
 166         list_for_each_entry(ev, &vmpr->events, node) {
 167                 if (ancestor && ev->mode == VMPRESSURE_LOCAL)
 168                         continue;
 169                 if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH)
 170                         continue;
 171                 if (level < ev->level)
 172                         continue;
 173                 eventfd_signal(ev->efd, 1);
 174                 ret = true;
 175         }
 176         mutex_unlock(&vmpr->events_lock);
 177 
 178         return ret;
 179 }
 180 
 181 static void vmpressure_work_fn(struct work_struct *work)
 182 {
 183         struct vmpressure *vmpr = work_to_vmpressure(work);
 184         unsigned long scanned;
 185         unsigned long reclaimed;
 186         enum vmpressure_levels level;
 187         bool ancestor = false;
 188         bool signalled = false;
 189 
 190         spin_lock(&vmpr->sr_lock);
 191         /*
 192          * Several contexts might be calling vmpressure(), so it is
 193          * possible that the work was rescheduled again before the old
 194          * work context cleared the counters. In that case we will run
 195          * just after the old work returns, but then scanned might be zero
 196          * here. No need for any locks here since we don't care if
 197          * vmpr->reclaimed is in sync.
 198          */
 199         scanned = vmpr->tree_scanned;
 200         if (!scanned) {
 201                 spin_unlock(&vmpr->sr_lock);
 202                 return;
 203         }
 204 
 205         reclaimed = vmpr->tree_reclaimed;
 206         vmpr->tree_scanned = 0;
 207         vmpr->tree_reclaimed = 0;
 208         spin_unlock(&vmpr->sr_lock);
 209 
 210         level = vmpressure_calc_level(scanned, reclaimed);
 211 
 212         do {
 213                 if (vmpressure_event(vmpr, level, ancestor, signalled))
 214                         signalled = true;
 215                 ancestor = true;
 216         } while ((vmpr = vmpressure_parent(vmpr)));
 217 }
 218 
 219 /**
 220  * vmpressure() - Account memory pressure through scanned/reclaimed ratio
 221  * @gfp:        reclaimer's gfp mask
 222  * @memcg:      cgroup memory controller handle
 223  * @tree:       legacy subtree mode
 224  * @scanned:    number of pages scanned
 225  * @reclaimed:  number of pages reclaimed
 226  *
 227  * This function should be called from the vmscan reclaim path to account
 228  * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
 229  * pressure index is then further refined and averaged over time.
 230  *
 231  * If @tree is set, vmpressure is in traditional userspace reporting
 232  * mode: @memcg is considered the pressure root and userspace is
 233  * notified of the entire subtree's reclaim efficiency.
 234  *
 235  * If @tree is not set, reclaim efficiency is recorded for @memcg, and
 236  * only in-kernel users are notified.
 237  *
 238  * This function does not return any value.
 239  */
 240 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree,
 241                 unsigned long scanned, unsigned long reclaimed)
 242 {
 243         struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
 244 
 245         /*
 246          * Here we only want to account pressure that userland is able to
 247          * help us with. For example, suppose that DMA zone is under
 248          * pressure; if we notify userland about that kind of pressure,
 249          * then it will be mostly a waste as it will trigger unnecessary
 250          * freeing of memory by userland (since userland is more likely to
 251          * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
 252          * is why we include only movable, highmem and FS/IO pages.
 253          * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
 254          * we account it too.
 255          */
 256         if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
 257                 return;
 258 
 259         /*
 260          * If we got here with no pages scanned, then that is an indicator
 261          * that reclaimer was unable to find any shrinkable LRUs at the
 262          * current scanning depth. But it does not mean that we should
 263          * report the critical pressure, yet. If the scanning priority
 264          * (scanning depth) goes too high (deep), we will be notified
 265          * through vmpressure_prio(). But so far, keep calm.
 266          */
 267         if (!scanned)
 268                 return;
 269 
 270         if (tree) {
 271                 spin_lock(&vmpr->sr_lock);
 272                 scanned = vmpr->tree_scanned += scanned;
 273                 vmpr->tree_reclaimed += reclaimed;
 274                 spin_unlock(&vmpr->sr_lock);
 275 
 276                 if (scanned < vmpressure_win)
 277                         return;
 278                 schedule_work(&vmpr->work);
 279         } else {
 280                 enum vmpressure_levels level;
 281 
 282                 /* For now, no users for root-level efficiency */
 283                 if (!memcg || memcg == root_mem_cgroup)
 284                         return;
 285 
 286                 spin_lock(&vmpr->sr_lock);
 287                 scanned = vmpr->scanned += scanned;
 288                 reclaimed = vmpr->reclaimed += reclaimed;
 289                 if (scanned < vmpressure_win) {
 290                         spin_unlock(&vmpr->sr_lock);
 291                         return;
 292                 }
 293                 vmpr->scanned = vmpr->reclaimed = 0;
 294                 spin_unlock(&vmpr->sr_lock);
 295 
 296                 level = vmpressure_calc_level(scanned, reclaimed);
 297 
 298                 if (level > VMPRESSURE_LOW) {
 299                         /*
 300                          * Let the socket buffer allocator know that
 301                          * we are having trouble reclaiming LRU pages.
 302                          *
 303                          * For hysteresis keep the pressure state
 304                          * asserted for a second in which subsequent
 305                          * pressure events can occur.
 306                          */
 307                         memcg->socket_pressure = jiffies + HZ;
 308                 }
 309         }
 310 }
 311 
 312 /**
 313  * vmpressure_prio() - Account memory pressure through reclaimer priority level
 314  * @gfp:        reclaimer's gfp mask
 315  * @memcg:      cgroup memory controller handle
 316  * @prio:       reclaimer's priority
 317  *
 318  * This function should be called from the reclaim path every time when
 319  * the vmscan's reclaiming priority (scanning depth) changes.
 320  *
 321  * This function does not return any value.
 322  */
 323 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
 324 {
 325         /*
 326          * We only use prio for accounting critical level. For more info
 327          * see comment for vmpressure_level_critical_prio variable above.
 328          */
 329         if (prio > vmpressure_level_critical_prio)
 330                 return;
 331 
 332         /*
 333          * OK, the prio is below the threshold, updating vmpressure
 334          * information before shrinker dives into long shrinking of long
 335          * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
 336          * to the vmpressure() basically means that we signal 'critical'
 337          * level.
 338          */
 339         vmpressure(gfp, memcg, true, vmpressure_win, 0);
 340 }
 341 
 342 #define MAX_VMPRESSURE_ARGS_LEN (strlen("critical") + strlen("hierarchy") + 2)
 343 
 344 /**
 345  * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
 346  * @memcg:      memcg that is interested in vmpressure notifications
 347  * @eventfd:    eventfd context to link notifications with
 348  * @args:       event arguments (pressure level threshold, optional mode)
 349  *
 350  * This function associates eventfd context with the vmpressure
 351  * infrastructure, so that the notifications will be delivered to the
 352  * @eventfd. The @args parameter is a comma-delimited string that denotes a
 353  * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium",
 354  * or "critical") and an optional mode (one of vmpressure_str_modes, i.e.
 355  * "hierarchy" or "local").
 356  *
 357  * To be used as memcg event method.
 358  *
 359  * Return: 0 on success, -ENOMEM on memory failure or -EINVAL if @args could
 360  * not be parsed.
 361  */
 362 int vmpressure_register_event(struct mem_cgroup *memcg,
 363                               struct eventfd_ctx *eventfd, const char *args)
 364 {
 365         struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
 366         struct vmpressure_event *ev;
 367         enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH;
 368         enum vmpressure_levels level;
 369         char *spec, *spec_orig;
 370         char *token;
 371         int ret = 0;
 372 
 373         spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL);
 374         if (!spec) {
 375                 ret = -ENOMEM;
 376                 goto out;
 377         }
 378 
 379         /* Find required level */
 380         token = strsep(&spec, ",");
 381         ret = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token);
 382         if (ret < 0)
 383                 goto out;
 384         level = ret;
 385 
 386         /* Find optional mode */
 387         token = strsep(&spec, ",");
 388         if (token) {
 389                 ret = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token);
 390                 if (ret < 0)
 391                         goto out;
 392                 mode = ret;
 393         }
 394 
 395         ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 396         if (!ev) {
 397                 ret = -ENOMEM;
 398                 goto out;
 399         }
 400 
 401         ev->efd = eventfd;
 402         ev->level = level;
 403         ev->mode = mode;
 404 
 405         mutex_lock(&vmpr->events_lock);
 406         list_add(&ev->node, &vmpr->events);
 407         mutex_unlock(&vmpr->events_lock);
 408         ret = 0;
 409 out:
 410         kfree(spec_orig);
 411         return ret;
 412 }
 413 
 414 /**
 415  * vmpressure_unregister_event() - Unbind eventfd from vmpressure
 416  * @memcg:      memcg handle
 417  * @eventfd:    eventfd context that was used to link vmpressure with the @cg
 418  *
 419  * This function does internal manipulations to detach the @eventfd from
 420  * the vmpressure notifications, and then frees internal resources
 421  * associated with the @eventfd (but the @eventfd itself is not freed).
 422  *
 423  * To be used as memcg event method.
 424  */
 425 void vmpressure_unregister_event(struct mem_cgroup *memcg,
 426                                  struct eventfd_ctx *eventfd)
 427 {
 428         struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
 429         struct vmpressure_event *ev;
 430 
 431         mutex_lock(&vmpr->events_lock);
 432         list_for_each_entry(ev, &vmpr->events, node) {
 433                 if (ev->efd != eventfd)
 434                         continue;
 435                 list_del(&ev->node);
 436                 kfree(ev);
 437                 break;
 438         }
 439         mutex_unlock(&vmpr->events_lock);
 440 }
 441 
 442 /**
 443  * vmpressure_init() - Initialize vmpressure control structure
 444  * @vmpr:       Structure to be initialized
 445  *
 446  * This function should be called on every allocated vmpressure structure
 447  * before any usage.
 448  */
 449 void vmpressure_init(struct vmpressure *vmpr)
 450 {
 451         spin_lock_init(&vmpr->sr_lock);
 452         mutex_init(&vmpr->events_lock);
 453         INIT_LIST_HEAD(&vmpr->events);
 454         INIT_WORK(&vmpr->work, vmpressure_work_fn);
 455 }
 456 
 457 /**
 458  * vmpressure_cleanup() - shuts down vmpressure control structure
 459  * @vmpr:       Structure to be cleaned up
 460  *
 461  * This function should be called before the structure in which it is
 462  * embedded is cleaned up.
 463  */
 464 void vmpressure_cleanup(struct vmpressure *vmpr)
 465 {
 466         /*
 467          * Make sure there is no pending work before eventfd infrastructure
 468          * goes away.
 469          */
 470         flush_work(&vmpr->work);
 471 }

/* [<][>][^][v][top][bottom][index][help] */