root/mm/gup.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. put_user_pages_dirty_lock
  2. put_user_pages
  3. no_page_table
  4. follow_pfn_pte
  5. can_follow_write_pte
  6. should_force_cow_break
  7. follow_page_pte
  8. follow_pmd_mask
  9. follow_pud_mask
  10. follow_p4d_mask
  11. follow_page_mask
  12. follow_page
  13. get_gate_page
  14. faultin_page
  15. check_vma_flags
  16. __get_user_pages
  17. vma_permits_fault
  18. fixup_user_fault
  19. __get_user_pages_locked
  20. get_user_pages_remote
  21. populate_vma_page_range
  22. __mm_populate
  23. get_dump_page
  24. __get_user_pages_locked
  25. check_dax_vmas
  26. new_non_cma_page
  27. check_and_migrate_cma_pages
  28. check_and_migrate_cma_pages
  29. __gup_longterm_locked
  30. __gup_longterm_locked
  31. get_user_pages
  32. get_user_pages_locked
  33. get_user_pages_unlocked
  34. gup_get_pte
  35. gup_get_pte
  36. undo_dev_pagemap
  37. try_get_compound_head
  38. gup_pte_range
  39. gup_pte_range
  40. __gup_device_huge
  41. __gup_device_huge_pmd
  42. __gup_device_huge_pud
  43. __gup_device_huge_pmd
  44. __gup_device_huge_pud
  45. hugepte_addr_end
  46. gup_hugepte
  47. gup_huge_pd
  48. gup_huge_pd
  49. gup_huge_pmd
  50. gup_huge_pud
  51. gup_huge_pgd
  52. gup_pmd_range
  53. gup_pud_range
  54. gup_p4d_range
  55. gup_pgd_range
  56. gup_pgd_range
  57. gup_fast_permitted
  58. __get_user_pages_fast
  59. __gup_longterm_unlocked
  60. get_user_pages_fast

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 #include <linux/kernel.h>
   3 #include <linux/errno.h>
   4 #include <linux/err.h>
   5 #include <linux/spinlock.h>
   6 
   7 #include <linux/mm.h>
   8 #include <linux/memremap.h>
   9 #include <linux/pagemap.h>
  10 #include <linux/rmap.h>
  11 #include <linux/swap.h>
  12 #include <linux/swapops.h>
  13 
  14 #include <linux/sched/signal.h>
  15 #include <linux/rwsem.h>
  16 #include <linux/hugetlb.h>
  17 #include <linux/migrate.h>
  18 #include <linux/mm_inline.h>
  19 #include <linux/sched/mm.h>
  20 
  21 #include <asm/mmu_context.h>
  22 #include <asm/pgtable.h>
  23 #include <asm/tlbflush.h>
  24 
  25 #include "internal.h"
  26 
  27 struct follow_page_context {
  28         struct dev_pagemap *pgmap;
  29         unsigned int page_mask;
  30 };
  31 
  32 /**
  33  * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
  34  * @pages:  array of pages to be maybe marked dirty, and definitely released.
  35  * @npages: number of pages in the @pages array.
  36  * @make_dirty: whether to mark the pages dirty
  37  *
  38  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
  39  * variants called on that page.
  40  *
  41  * For each page in the @pages array, make that page (or its head page, if a
  42  * compound page) dirty, if @make_dirty is true, and if the page was previously
  43  * listed as clean. In any case, releases all pages using put_user_page(),
  44  * possibly via put_user_pages(), for the non-dirty case.
  45  *
  46  * Please see the put_user_page() documentation for details.
  47  *
  48  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
  49  * required, then the caller should a) verify that this is really correct,
  50  * because _lock() is usually required, and b) hand code it:
  51  * set_page_dirty_lock(), put_user_page().
  52  *
  53  */
  54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
  55                                bool make_dirty)
  56 {
  57         unsigned long index;
  58 
  59         /*
  60          * TODO: this can be optimized for huge pages: if a series of pages is
  61          * physically contiguous and part of the same compound page, then a
  62          * single operation to the head page should suffice.
  63          */
  64 
  65         if (!make_dirty) {
  66                 put_user_pages(pages, npages);
  67                 return;
  68         }
  69 
  70         for (index = 0; index < npages; index++) {
  71                 struct page *page = compound_head(pages[index]);
  72                 /*
  73                  * Checking PageDirty at this point may race with
  74                  * clear_page_dirty_for_io(), but that's OK. Two key
  75                  * cases:
  76                  *
  77                  * 1) This code sees the page as already dirty, so it
  78                  * skips the call to set_page_dirty(). That could happen
  79                  * because clear_page_dirty_for_io() called
  80                  * page_mkclean(), followed by set_page_dirty().
  81                  * However, now the page is going to get written back,
  82                  * which meets the original intention of setting it
  83                  * dirty, so all is well: clear_page_dirty_for_io() goes
  84                  * on to call TestClearPageDirty(), and write the page
  85                  * back.
  86                  *
  87                  * 2) This code sees the page as clean, so it calls
  88                  * set_page_dirty(). The page stays dirty, despite being
  89                  * written back, so it gets written back again in the
  90                  * next writeback cycle. This is harmless.
  91                  */
  92                 if (!PageDirty(page))
  93                         set_page_dirty_lock(page);
  94                 put_user_page(page);
  95         }
  96 }
  97 EXPORT_SYMBOL(put_user_pages_dirty_lock);
  98 
  99 /**
 100  * put_user_pages() - release an array of gup-pinned pages.
 101  * @pages:  array of pages to be marked dirty and released.
 102  * @npages: number of pages in the @pages array.
 103  *
 104  * For each page in the @pages array, release the page using put_user_page().
 105  *
 106  * Please see the put_user_page() documentation for details.
 107  */
 108 void put_user_pages(struct page **pages, unsigned long npages)
 109 {
 110         unsigned long index;
 111 
 112         /*
 113          * TODO: this can be optimized for huge pages: if a series of pages is
 114          * physically contiguous and part of the same compound page, then a
 115          * single operation to the head page should suffice.
 116          */
 117         for (index = 0; index < npages; index++)
 118                 put_user_page(pages[index]);
 119 }
 120 EXPORT_SYMBOL(put_user_pages);
 121 
 122 #ifdef CONFIG_MMU
 123 static struct page *no_page_table(struct vm_area_struct *vma,
 124                 unsigned int flags)
 125 {
 126         /*
 127          * When core dumping an enormous anonymous area that nobody
 128          * has touched so far, we don't want to allocate unnecessary pages or
 129          * page tables.  Return error instead of NULL to skip handle_mm_fault,
 130          * then get_dump_page() will return NULL to leave a hole in the dump.
 131          * But we can only make this optimization where a hole would surely
 132          * be zero-filled if handle_mm_fault() actually did handle it.
 133          */
 134         if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
 135                 return ERR_PTR(-EFAULT);
 136         return NULL;
 137 }
 138 
 139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 140                 pte_t *pte, unsigned int flags)
 141 {
 142         /* No page to get reference */
 143         if (flags & FOLL_GET)
 144                 return -EFAULT;
 145 
 146         if (flags & FOLL_TOUCH) {
 147                 pte_t entry = *pte;
 148 
 149                 if (flags & FOLL_WRITE)
 150                         entry = pte_mkdirty(entry);
 151                 entry = pte_mkyoung(entry);
 152 
 153                 if (!pte_same(*pte, entry)) {
 154                         set_pte_at(vma->vm_mm, address, pte, entry);
 155                         update_mmu_cache(vma, address, pte);
 156                 }
 157         }
 158 
 159         /* Proper page table entry exists, but no corresponding struct page */
 160         return -EEXIST;
 161 }
 162 
 163 /*
 164  * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
 165  * but only after we've gone through a COW cycle and they are dirty.
 166  */
 167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
 168 {
 169         return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
 170 }
 171 
 172 /*
 173  * A (separate) COW fault might break the page the other way and
 174  * get_user_pages() would return the page from what is now the wrong
 175  * VM. So we need to force a COW break at GUP time even for reads.
 176  */
 177 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
 178 {
 179         return is_cow_mapping(vma->vm_flags) && (flags & FOLL_GET);
 180 }
 181 
 182 static struct page *follow_page_pte(struct vm_area_struct *vma,
 183                 unsigned long address, pmd_t *pmd, unsigned int flags,
 184                 struct dev_pagemap **pgmap)
 185 {
 186         struct mm_struct *mm = vma->vm_mm;
 187         struct page *page;
 188         spinlock_t *ptl;
 189         pte_t *ptep, pte;
 190 
 191 retry:
 192         if (unlikely(pmd_bad(*pmd)))
 193                 return no_page_table(vma, flags);
 194 
 195         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 196         pte = *ptep;
 197         if (!pte_present(pte)) {
 198                 swp_entry_t entry;
 199                 /*
 200                  * KSM's break_ksm() relies upon recognizing a ksm page
 201                  * even while it is being migrated, so for that case we
 202                  * need migration_entry_wait().
 203                  */
 204                 if (likely(!(flags & FOLL_MIGRATION)))
 205                         goto no_page;
 206                 if (pte_none(pte))
 207                         goto no_page;
 208                 entry = pte_to_swp_entry(pte);
 209                 if (!is_migration_entry(entry))
 210                         goto no_page;
 211                 pte_unmap_unlock(ptep, ptl);
 212                 migration_entry_wait(mm, pmd, address);
 213                 goto retry;
 214         }
 215         if ((flags & FOLL_NUMA) && pte_protnone(pte))
 216                 goto no_page;
 217         if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
 218                 pte_unmap_unlock(ptep, ptl);
 219                 return NULL;
 220         }
 221 
 222         page = vm_normal_page(vma, address, pte);
 223         if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
 224                 /*
 225                  * Only return device mapping pages in the FOLL_GET case since
 226                  * they are only valid while holding the pgmap reference.
 227                  */
 228                 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 229                 if (*pgmap)
 230                         page = pte_page(pte);
 231                 else
 232                         goto no_page;
 233         } else if (unlikely(!page)) {
 234                 if (flags & FOLL_DUMP) {
 235                         /* Avoid special (like zero) pages in core dumps */
 236                         page = ERR_PTR(-EFAULT);
 237                         goto out;
 238                 }
 239 
 240                 if (is_zero_pfn(pte_pfn(pte))) {
 241                         page = pte_page(pte);
 242                 } else {
 243                         int ret;
 244 
 245                         ret = follow_pfn_pte(vma, address, ptep, flags);
 246                         page = ERR_PTR(ret);
 247                         goto out;
 248                 }
 249         }
 250 
 251         if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 252                 int ret;
 253                 get_page(page);
 254                 pte_unmap_unlock(ptep, ptl);
 255                 lock_page(page);
 256                 ret = split_huge_page(page);
 257                 unlock_page(page);
 258                 put_page(page);
 259                 if (ret)
 260                         return ERR_PTR(ret);
 261                 goto retry;
 262         }
 263 
 264         if (flags & FOLL_GET) {
 265                 if (unlikely(!try_get_page(page))) {
 266                         page = ERR_PTR(-ENOMEM);
 267                         goto out;
 268                 }
 269         }
 270         if (flags & FOLL_TOUCH) {
 271                 if ((flags & FOLL_WRITE) &&
 272                     !pte_dirty(pte) && !PageDirty(page))
 273                         set_page_dirty(page);
 274                 /*
 275                  * pte_mkyoung() would be more correct here, but atomic care
 276                  * is needed to avoid losing the dirty bit: it is easier to use
 277                  * mark_page_accessed().
 278                  */
 279                 mark_page_accessed(page);
 280         }
 281         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 282                 /* Do not mlock pte-mapped THP */
 283                 if (PageTransCompound(page))
 284                         goto out;
 285 
 286                 /*
 287                  * The preliminary mapping check is mainly to avoid the
 288                  * pointless overhead of lock_page on the ZERO_PAGE
 289                  * which might bounce very badly if there is contention.
 290                  *
 291                  * If the page is already locked, we don't need to
 292                  * handle it now - vmscan will handle it later if and
 293                  * when it attempts to reclaim the page.
 294                  */
 295                 if (page->mapping && trylock_page(page)) {
 296                         lru_add_drain();  /* push cached pages to LRU */
 297                         /*
 298                          * Because we lock page here, and migration is
 299                          * blocked by the pte's page reference, and we
 300                          * know the page is still mapped, we don't even
 301                          * need to check for file-cache page truncation.
 302                          */
 303                         mlock_vma_page(page);
 304                         unlock_page(page);
 305                 }
 306         }
 307 out:
 308         pte_unmap_unlock(ptep, ptl);
 309         return page;
 310 no_page:
 311         pte_unmap_unlock(ptep, ptl);
 312         if (!pte_none(pte))
 313                 return NULL;
 314         return no_page_table(vma, flags);
 315 }
 316 
 317 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 318                                     unsigned long address, pud_t *pudp,
 319                                     unsigned int flags,
 320                                     struct follow_page_context *ctx)
 321 {
 322         pmd_t *pmd, pmdval;
 323         spinlock_t *ptl;
 324         struct page *page;
 325         struct mm_struct *mm = vma->vm_mm;
 326 
 327         pmd = pmd_offset(pudp, address);
 328         /*
 329          * The READ_ONCE() will stabilize the pmdval in a register or
 330          * on the stack so that it will stop changing under the code.
 331          */
 332         pmdval = READ_ONCE(*pmd);
 333         if (pmd_none(pmdval))
 334                 return no_page_table(vma, flags);
 335         if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
 336                 page = follow_huge_pmd(mm, address, pmd, flags);
 337                 if (page)
 338                         return page;
 339                 return no_page_table(vma, flags);
 340         }
 341         if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
 342                 page = follow_huge_pd(vma, address,
 343                                       __hugepd(pmd_val(pmdval)), flags,
 344                                       PMD_SHIFT);
 345                 if (page)
 346                         return page;
 347                 return no_page_table(vma, flags);
 348         }
 349 retry:
 350         if (!pmd_present(pmdval)) {
 351                 if (likely(!(flags & FOLL_MIGRATION)))
 352                         return no_page_table(vma, flags);
 353                 VM_BUG_ON(thp_migration_supported() &&
 354                                   !is_pmd_migration_entry(pmdval));
 355                 if (is_pmd_migration_entry(pmdval))
 356                         pmd_migration_entry_wait(mm, pmd);
 357                 pmdval = READ_ONCE(*pmd);
 358                 /*
 359                  * MADV_DONTNEED may convert the pmd to null because
 360                  * mmap_sem is held in read mode
 361                  */
 362                 if (pmd_none(pmdval))
 363                         return no_page_table(vma, flags);
 364                 goto retry;
 365         }
 366         if (pmd_devmap(pmdval)) {
 367                 ptl = pmd_lock(mm, pmd);
 368                 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 369                 spin_unlock(ptl);
 370                 if (page)
 371                         return page;
 372         }
 373         if (likely(!pmd_trans_huge(pmdval)))
 374                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 375 
 376         if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
 377                 return no_page_table(vma, flags);
 378 
 379 retry_locked:
 380         ptl = pmd_lock(mm, pmd);
 381         if (unlikely(pmd_none(*pmd))) {
 382                 spin_unlock(ptl);
 383                 return no_page_table(vma, flags);
 384         }
 385         if (unlikely(!pmd_present(*pmd))) {
 386                 spin_unlock(ptl);
 387                 if (likely(!(flags & FOLL_MIGRATION)))
 388                         return no_page_table(vma, flags);
 389                 pmd_migration_entry_wait(mm, pmd);
 390                 goto retry_locked;
 391         }
 392         if (unlikely(!pmd_trans_huge(*pmd))) {
 393                 spin_unlock(ptl);
 394                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 395         }
 396         if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
 397                 int ret;
 398                 page = pmd_page(*pmd);
 399                 if (is_huge_zero_page(page)) {
 400                         spin_unlock(ptl);
 401                         ret = 0;
 402                         split_huge_pmd(vma, pmd, address);
 403                         if (pmd_trans_unstable(pmd))
 404                                 ret = -EBUSY;
 405                 } else if (flags & FOLL_SPLIT) {
 406                         if (unlikely(!try_get_page(page))) {
 407                                 spin_unlock(ptl);
 408                                 return ERR_PTR(-ENOMEM);
 409                         }
 410                         spin_unlock(ptl);
 411                         lock_page(page);
 412                         ret = split_huge_page(page);
 413                         unlock_page(page);
 414                         put_page(page);
 415                         if (pmd_none(*pmd))
 416                                 return no_page_table(vma, flags);
 417                 } else {  /* flags & FOLL_SPLIT_PMD */
 418                         spin_unlock(ptl);
 419                         split_huge_pmd(vma, pmd, address);
 420                         ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
 421                 }
 422 
 423                 return ret ? ERR_PTR(ret) :
 424                         follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 425         }
 426         page = follow_trans_huge_pmd(vma, address, pmd, flags);
 427         spin_unlock(ptl);
 428         ctx->page_mask = HPAGE_PMD_NR - 1;
 429         return page;
 430 }
 431 
 432 static struct page *follow_pud_mask(struct vm_area_struct *vma,
 433                                     unsigned long address, p4d_t *p4dp,
 434                                     unsigned int flags,
 435                                     struct follow_page_context *ctx)
 436 {
 437         pud_t *pud;
 438         spinlock_t *ptl;
 439         struct page *page;
 440         struct mm_struct *mm = vma->vm_mm;
 441 
 442         pud = pud_offset(p4dp, address);
 443         if (pud_none(*pud))
 444                 return no_page_table(vma, flags);
 445         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
 446                 page = follow_huge_pud(mm, address, pud, flags);
 447                 if (page)
 448                         return page;
 449                 return no_page_table(vma, flags);
 450         }
 451         if (is_hugepd(__hugepd(pud_val(*pud)))) {
 452                 page = follow_huge_pd(vma, address,
 453                                       __hugepd(pud_val(*pud)), flags,
 454                                       PUD_SHIFT);
 455                 if (page)
 456                         return page;
 457                 return no_page_table(vma, flags);
 458         }
 459         if (pud_devmap(*pud)) {
 460                 ptl = pud_lock(mm, pud);
 461                 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 462                 spin_unlock(ptl);
 463                 if (page)
 464                         return page;
 465         }
 466         if (unlikely(pud_bad(*pud)))
 467                 return no_page_table(vma, flags);
 468 
 469         return follow_pmd_mask(vma, address, pud, flags, ctx);
 470 }
 471 
 472 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 473                                     unsigned long address, pgd_t *pgdp,
 474                                     unsigned int flags,
 475                                     struct follow_page_context *ctx)
 476 {
 477         p4d_t *p4d;
 478         struct page *page;
 479 
 480         p4d = p4d_offset(pgdp, address);
 481         if (p4d_none(*p4d))
 482                 return no_page_table(vma, flags);
 483         BUILD_BUG_ON(p4d_huge(*p4d));
 484         if (unlikely(p4d_bad(*p4d)))
 485                 return no_page_table(vma, flags);
 486 
 487         if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
 488                 page = follow_huge_pd(vma, address,
 489                                       __hugepd(p4d_val(*p4d)), flags,
 490                                       P4D_SHIFT);
 491                 if (page)
 492                         return page;
 493                 return no_page_table(vma, flags);
 494         }
 495         return follow_pud_mask(vma, address, p4d, flags, ctx);
 496 }
 497 
 498 /**
 499  * follow_page_mask - look up a page descriptor from a user-virtual address
 500  * @vma: vm_area_struct mapping @address
 501  * @address: virtual address to look up
 502  * @flags: flags modifying lookup behaviour
 503  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 504  *       pointer to output page_mask
 505  *
 506  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 507  *
 508  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 509  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 510  *
 511  * On output, the @ctx->page_mask is set according to the size of the page.
 512  *
 513  * Return: the mapped (struct page *), %NULL if no mapping exists, or
 514  * an error pointer if there is a mapping to something not represented
 515  * by a page descriptor (see also vm_normal_page()).
 516  */
 517 static struct page *follow_page_mask(struct vm_area_struct *vma,
 518                               unsigned long address, unsigned int flags,
 519                               struct follow_page_context *ctx)
 520 {
 521         pgd_t *pgd;
 522         struct page *page;
 523         struct mm_struct *mm = vma->vm_mm;
 524 
 525         ctx->page_mask = 0;
 526 
 527         /* make this handle hugepd */
 528         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 529         if (!IS_ERR(page)) {
 530                 BUG_ON(flags & FOLL_GET);
 531                 return page;
 532         }
 533 
 534         pgd = pgd_offset(mm, address);
 535 
 536         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 537                 return no_page_table(vma, flags);
 538 
 539         if (pgd_huge(*pgd)) {
 540                 page = follow_huge_pgd(mm, address, pgd, flags);
 541                 if (page)
 542                         return page;
 543                 return no_page_table(vma, flags);
 544         }
 545         if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
 546                 page = follow_huge_pd(vma, address,
 547                                       __hugepd(pgd_val(*pgd)), flags,
 548                                       PGDIR_SHIFT);
 549                 if (page)
 550                         return page;
 551                 return no_page_table(vma, flags);
 552         }
 553 
 554         return follow_p4d_mask(vma, address, pgd, flags, ctx);
 555 }
 556 
 557 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 558                          unsigned int foll_flags)
 559 {
 560         struct follow_page_context ctx = { NULL };
 561         struct page *page;
 562 
 563         page = follow_page_mask(vma, address, foll_flags, &ctx);
 564         if (ctx.pgmap)
 565                 put_dev_pagemap(ctx.pgmap);
 566         return page;
 567 }
 568 
 569 static int get_gate_page(struct mm_struct *mm, unsigned long address,
 570                 unsigned int gup_flags, struct vm_area_struct **vma,
 571                 struct page **page)
 572 {
 573         pgd_t *pgd;
 574         p4d_t *p4d;
 575         pud_t *pud;
 576         pmd_t *pmd;
 577         pte_t *pte;
 578         int ret = -EFAULT;
 579 
 580         /* user gate pages are read-only */
 581         if (gup_flags & FOLL_WRITE)
 582                 return -EFAULT;
 583         if (address > TASK_SIZE)
 584                 pgd = pgd_offset_k(address);
 585         else
 586                 pgd = pgd_offset_gate(mm, address);
 587         if (pgd_none(*pgd))
 588                 return -EFAULT;
 589         p4d = p4d_offset(pgd, address);
 590         if (p4d_none(*p4d))
 591                 return -EFAULT;
 592         pud = pud_offset(p4d, address);
 593         if (pud_none(*pud))
 594                 return -EFAULT;
 595         pmd = pmd_offset(pud, address);
 596         if (!pmd_present(*pmd))
 597                 return -EFAULT;
 598         VM_BUG_ON(pmd_trans_huge(*pmd));
 599         pte = pte_offset_map(pmd, address);
 600         if (pte_none(*pte))
 601                 goto unmap;
 602         *vma = get_gate_vma(mm);
 603         if (!page)
 604                 goto out;
 605         *page = vm_normal_page(*vma, address, *pte);
 606         if (!*page) {
 607                 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 608                         goto unmap;
 609                 *page = pte_page(*pte);
 610         }
 611         if (unlikely(!try_get_page(*page))) {
 612                 ret = -ENOMEM;
 613                 goto unmap;
 614         }
 615 out:
 616         ret = 0;
 617 unmap:
 618         pte_unmap(pte);
 619         return ret;
 620 }
 621 
 622 /*
 623  * mmap_sem must be held on entry.  If @nonblocking != NULL and
 624  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 625  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 626  */
 627 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
 628                 unsigned long address, unsigned int *flags, int *nonblocking)
 629 {
 630         unsigned int fault_flags = 0;
 631         vm_fault_t ret;
 632 
 633         /* mlock all present pages, but do not fault in new pages */
 634         if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 635                 return -ENOENT;
 636         if (*flags & FOLL_WRITE)
 637                 fault_flags |= FAULT_FLAG_WRITE;
 638         if (*flags & FOLL_REMOTE)
 639                 fault_flags |= FAULT_FLAG_REMOTE;
 640         if (nonblocking)
 641                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 642         if (*flags & FOLL_NOWAIT)
 643                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 644         if (*flags & FOLL_TRIED) {
 645                 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
 646                 fault_flags |= FAULT_FLAG_TRIED;
 647         }
 648 
 649         ret = handle_mm_fault(vma, address, fault_flags);
 650         if (ret & VM_FAULT_ERROR) {
 651                 int err = vm_fault_to_errno(ret, *flags);
 652 
 653                 if (err)
 654                         return err;
 655                 BUG();
 656         }
 657 
 658         if (tsk) {
 659                 if (ret & VM_FAULT_MAJOR)
 660                         tsk->maj_flt++;
 661                 else
 662                         tsk->min_flt++;
 663         }
 664 
 665         if (ret & VM_FAULT_RETRY) {
 666                 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 667                         *nonblocking = 0;
 668                 return -EBUSY;
 669         }
 670 
 671         /*
 672          * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 673          * necessary, even if maybe_mkwrite decided not to set pte_write. We
 674          * can thus safely do subsequent page lookups as if they were reads.
 675          * But only do so when looping for pte_write is futile: in some cases
 676          * userspace may also be wanting to write to the gotten user page,
 677          * which a read fault here might prevent (a readonly page might get
 678          * reCOWed by userspace write).
 679          */
 680         if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 681                 *flags |= FOLL_COW;
 682         return 0;
 683 }
 684 
 685 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 686 {
 687         vm_flags_t vm_flags = vma->vm_flags;
 688         int write = (gup_flags & FOLL_WRITE);
 689         int foreign = (gup_flags & FOLL_REMOTE);
 690 
 691         if (vm_flags & (VM_IO | VM_PFNMAP))
 692                 return -EFAULT;
 693 
 694         if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 695                 return -EFAULT;
 696 
 697         if (write) {
 698                 if (!(vm_flags & VM_WRITE)) {
 699                         if (!(gup_flags & FOLL_FORCE))
 700                                 return -EFAULT;
 701                         /*
 702                          * We used to let the write,force case do COW in a
 703                          * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 704                          * set a breakpoint in a read-only mapping of an
 705                          * executable, without corrupting the file (yet only
 706                          * when that file had been opened for writing!).
 707                          * Anon pages in shared mappings are surprising: now
 708                          * just reject it.
 709                          */
 710                         if (!is_cow_mapping(vm_flags))
 711                                 return -EFAULT;
 712                 }
 713         } else if (!(vm_flags & VM_READ)) {
 714                 if (!(gup_flags & FOLL_FORCE))
 715                         return -EFAULT;
 716                 /*
 717                  * Is there actually any vma we can reach here which does not
 718                  * have VM_MAYREAD set?
 719                  */
 720                 if (!(vm_flags & VM_MAYREAD))
 721                         return -EFAULT;
 722         }
 723         /*
 724          * gups are always data accesses, not instruction
 725          * fetches, so execute=false here
 726          */
 727         if (!arch_vma_access_permitted(vma, write, false, foreign))
 728                 return -EFAULT;
 729         return 0;
 730 }
 731 
 732 /**
 733  * __get_user_pages() - pin user pages in memory
 734  * @tsk:        task_struct of target task
 735  * @mm:         mm_struct of target mm
 736  * @start:      starting user address
 737  * @nr_pages:   number of pages from start to pin
 738  * @gup_flags:  flags modifying pin behaviour
 739  * @pages:      array that receives pointers to the pages pinned.
 740  *              Should be at least nr_pages long. Or NULL, if caller
 741  *              only intends to ensure the pages are faulted in.
 742  * @vmas:       array of pointers to vmas corresponding to each page.
 743  *              Or NULL if the caller does not require them.
 744  * @nonblocking: whether waiting for disk IO or mmap_sem contention
 745  *
 746  * Returns number of pages pinned. This may be fewer than the number
 747  * requested. If nr_pages is 0 or negative, returns 0. If no pages
 748  * were pinned, returns -errno. Each page returned must be released
 749  * with a put_page() call when it is finished with. vmas will only
 750  * remain valid while mmap_sem is held.
 751  *
 752  * Must be called with mmap_sem held.  It may be released.  See below.
 753  *
 754  * __get_user_pages walks a process's page tables and takes a reference to
 755  * each struct page that each user address corresponds to at a given
 756  * instant. That is, it takes the page that would be accessed if a user
 757  * thread accesses the given user virtual address at that instant.
 758  *
 759  * This does not guarantee that the page exists in the user mappings when
 760  * __get_user_pages returns, and there may even be a completely different
 761  * page there in some cases (eg. if mmapped pagecache has been invalidated
 762  * and subsequently re faulted). However it does guarantee that the page
 763  * won't be freed completely. And mostly callers simply care that the page
 764  * contains data that was valid *at some point in time*. Typically, an IO
 765  * or similar operation cannot guarantee anything stronger anyway because
 766  * locks can't be held over the syscall boundary.
 767  *
 768  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 769  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 770  * appropriate) must be called after the page is finished with, and
 771  * before put_page is called.
 772  *
 773  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 774  * or mmap_sem contention, and if waiting is needed to pin all pages,
 775  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 776  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 777  * this case.
 778  *
 779  * A caller using such a combination of @nonblocking and @gup_flags
 780  * must therefore hold the mmap_sem for reading only, and recognize
 781  * when it's been released.  Otherwise, it must be held for either
 782  * reading or writing and will not be released.
 783  *
 784  * In most cases, get_user_pages or get_user_pages_fast should be used
 785  * instead of __get_user_pages. __get_user_pages should be used only if
 786  * you need some special @gup_flags.
 787  */
 788 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 789                 unsigned long start, unsigned long nr_pages,
 790                 unsigned int gup_flags, struct page **pages,
 791                 struct vm_area_struct **vmas, int *nonblocking)
 792 {
 793         long ret = 0, i = 0;
 794         struct vm_area_struct *vma = NULL;
 795         struct follow_page_context ctx = { NULL };
 796 
 797         if (!nr_pages)
 798                 return 0;
 799 
 800         start = untagged_addr(start);
 801 
 802         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
 803 
 804         /*
 805          * If FOLL_FORCE is set then do not force a full fault as the hinting
 806          * fault information is unrelated to the reference behaviour of a task
 807          * using the address space
 808          */
 809         if (!(gup_flags & FOLL_FORCE))
 810                 gup_flags |= FOLL_NUMA;
 811 
 812         do {
 813                 struct page *page;
 814                 unsigned int foll_flags = gup_flags;
 815                 unsigned int page_increm;
 816 
 817                 /* first iteration or cross vma bound */
 818                 if (!vma || start >= vma->vm_end) {
 819                         vma = find_extend_vma(mm, start);
 820                         if (!vma && in_gate_area(mm, start)) {
 821                                 ret = get_gate_page(mm, start & PAGE_MASK,
 822                                                 gup_flags, &vma,
 823                                                 pages ? &pages[i] : NULL);
 824                                 if (ret)
 825                                         goto out;
 826                                 ctx.page_mask = 0;
 827                                 goto next_page;
 828                         }
 829 
 830                         if (!vma || check_vma_flags(vma, gup_flags)) {
 831                                 ret = -EFAULT;
 832                                 goto out;
 833                         }
 834                         if (is_vm_hugetlb_page(vma)) {
 835                                 if (should_force_cow_break(vma, foll_flags))
 836                                         foll_flags |= FOLL_WRITE;
 837                                 i = follow_hugetlb_page(mm, vma, pages, vmas,
 838                                                 &start, &nr_pages, i,
 839                                                 foll_flags, nonblocking);
 840                                 continue;
 841                         }
 842                 }
 843 
 844                 if (should_force_cow_break(vma, foll_flags))
 845                         foll_flags |= FOLL_WRITE;
 846 
 847 retry:
 848                 /*
 849                  * If we have a pending SIGKILL, don't keep faulting pages and
 850                  * potentially allocating memory.
 851                  */
 852                 if (fatal_signal_pending(current)) {
 853                         ret = -ERESTARTSYS;
 854                         goto out;
 855                 }
 856                 cond_resched();
 857 
 858                 page = follow_page_mask(vma, start, foll_flags, &ctx);
 859                 if (!page) {
 860                         ret = faultin_page(tsk, vma, start, &foll_flags,
 861                                         nonblocking);
 862                         switch (ret) {
 863                         case 0:
 864                                 goto retry;
 865                         case -EBUSY:
 866                                 ret = 0;
 867                                 /* FALLTHRU */
 868                         case -EFAULT:
 869                         case -ENOMEM:
 870                         case -EHWPOISON:
 871                                 goto out;
 872                         case -ENOENT:
 873                                 goto next_page;
 874                         }
 875                         BUG();
 876                 } else if (PTR_ERR(page) == -EEXIST) {
 877                         /*
 878                          * Proper page table entry exists, but no corresponding
 879                          * struct page.
 880                          */
 881                         goto next_page;
 882                 } else if (IS_ERR(page)) {
 883                         ret = PTR_ERR(page);
 884                         goto out;
 885                 }
 886                 if (pages) {
 887                         pages[i] = page;
 888                         flush_anon_page(vma, page, start);
 889                         flush_dcache_page(page);
 890                         ctx.page_mask = 0;
 891                 }
 892 next_page:
 893                 if (vmas) {
 894                         vmas[i] = vma;
 895                         ctx.page_mask = 0;
 896                 }
 897                 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
 898                 if (page_increm > nr_pages)
 899                         page_increm = nr_pages;
 900                 i += page_increm;
 901                 start += page_increm * PAGE_SIZE;
 902                 nr_pages -= page_increm;
 903         } while (nr_pages);
 904 out:
 905         if (ctx.pgmap)
 906                 put_dev_pagemap(ctx.pgmap);
 907         return i ? i : ret;
 908 }
 909 
 910 static bool vma_permits_fault(struct vm_area_struct *vma,
 911                               unsigned int fault_flags)
 912 {
 913         bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
 914         bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
 915         vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
 916 
 917         if (!(vm_flags & vma->vm_flags))
 918                 return false;
 919 
 920         /*
 921          * The architecture might have a hardware protection
 922          * mechanism other than read/write that can deny access.
 923          *
 924          * gup always represents data access, not instruction
 925          * fetches, so execute=false here:
 926          */
 927         if (!arch_vma_access_permitted(vma, write, false, foreign))
 928                 return false;
 929 
 930         return true;
 931 }
 932 
 933 /*
 934  * fixup_user_fault() - manually resolve a user page fault
 935  * @tsk:        the task_struct to use for page fault accounting, or
 936  *              NULL if faults are not to be recorded.
 937  * @mm:         mm_struct of target mm
 938  * @address:    user address
 939  * @fault_flags:flags to pass down to handle_mm_fault()
 940  * @unlocked:   did we unlock the mmap_sem while retrying, maybe NULL if caller
 941  *              does not allow retry
 942  *
 943  * This is meant to be called in the specific scenario where for locking reasons
 944  * we try to access user memory in atomic context (within a pagefault_disable()
 945  * section), this returns -EFAULT, and we want to resolve the user fault before
 946  * trying again.
 947  *
 948  * Typically this is meant to be used by the futex code.
 949  *
 950  * The main difference with get_user_pages() is that this function will
 951  * unconditionally call handle_mm_fault() which will in turn perform all the
 952  * necessary SW fixup of the dirty and young bits in the PTE, while
 953  * get_user_pages() only guarantees to update these in the struct page.
 954  *
 955  * This is important for some architectures where those bits also gate the
 956  * access permission to the page because they are maintained in software.  On
 957  * such architectures, gup() will not be enough to make a subsequent access
 958  * succeed.
 959  *
 960  * This function will not return with an unlocked mmap_sem. So it has not the
 961  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
 962  */
 963 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 964                      unsigned long address, unsigned int fault_flags,
 965                      bool *unlocked)
 966 {
 967         struct vm_area_struct *vma;
 968         vm_fault_t ret, major = 0;
 969 
 970         address = untagged_addr(address);
 971 
 972         if (unlocked)
 973                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 974 
 975 retry:
 976         vma = find_extend_vma(mm, address);
 977         if (!vma || address < vma->vm_start)
 978                 return -EFAULT;
 979 
 980         if (!vma_permits_fault(vma, fault_flags))
 981                 return -EFAULT;
 982 
 983         ret = handle_mm_fault(vma, address, fault_flags);
 984         major |= ret & VM_FAULT_MAJOR;
 985         if (ret & VM_FAULT_ERROR) {
 986                 int err = vm_fault_to_errno(ret, 0);
 987 
 988                 if (err)
 989                         return err;
 990                 BUG();
 991         }
 992 
 993         if (ret & VM_FAULT_RETRY) {
 994                 down_read(&mm->mmap_sem);
 995                 if (!(fault_flags & FAULT_FLAG_TRIED)) {
 996                         *unlocked = true;
 997                         fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
 998                         fault_flags |= FAULT_FLAG_TRIED;
 999                         goto retry;
1000                 }
1001         }
1002 
1003         if (tsk) {
1004                 if (major)
1005                         tsk->maj_flt++;
1006                 else
1007                         tsk->min_flt++;
1008         }
1009         return 0;
1010 }
1011 EXPORT_SYMBOL_GPL(fixup_user_fault);
1012 
1013 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1014                                                 struct mm_struct *mm,
1015                                                 unsigned long start,
1016                                                 unsigned long nr_pages,
1017                                                 struct page **pages,
1018                                                 struct vm_area_struct **vmas,
1019                                                 int *locked,
1020                                                 unsigned int flags)
1021 {
1022         long ret, pages_done;
1023         bool lock_dropped;
1024 
1025         if (locked) {
1026                 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1027                 BUG_ON(vmas);
1028                 /* check caller initialized locked */
1029                 BUG_ON(*locked != 1);
1030         }
1031 
1032         if (pages)
1033                 flags |= FOLL_GET;
1034 
1035         pages_done = 0;
1036         lock_dropped = false;
1037         for (;;) {
1038                 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1039                                        vmas, locked);
1040                 if (!locked)
1041                         /* VM_FAULT_RETRY couldn't trigger, bypass */
1042                         return ret;
1043 
1044                 /* VM_FAULT_RETRY cannot return errors */
1045                 if (!*locked) {
1046                         BUG_ON(ret < 0);
1047                         BUG_ON(ret >= nr_pages);
1048                 }
1049 
1050                 if (ret > 0) {
1051                         nr_pages -= ret;
1052                         pages_done += ret;
1053                         if (!nr_pages)
1054                                 break;
1055                 }
1056                 if (*locked) {
1057                         /*
1058                          * VM_FAULT_RETRY didn't trigger or it was a
1059                          * FOLL_NOWAIT.
1060                          */
1061                         if (!pages_done)
1062                                 pages_done = ret;
1063                         break;
1064                 }
1065                 /*
1066                  * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1067                  * For the prefault case (!pages) we only update counts.
1068                  */
1069                 if (likely(pages))
1070                         pages += ret;
1071                 start += ret << PAGE_SHIFT;
1072 
1073                 /*
1074                  * Repeat on the address that fired VM_FAULT_RETRY
1075                  * without FAULT_FLAG_ALLOW_RETRY but with
1076                  * FAULT_FLAG_TRIED.
1077                  */
1078                 *locked = 1;
1079                 lock_dropped = true;
1080                 down_read(&mm->mmap_sem);
1081                 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1082                                        pages, NULL, NULL);
1083                 if (ret != 1) {
1084                         BUG_ON(ret > 1);
1085                         if (!pages_done)
1086                                 pages_done = ret;
1087                         break;
1088                 }
1089                 nr_pages--;
1090                 pages_done++;
1091                 if (!nr_pages)
1092                         break;
1093                 if (likely(pages))
1094                         pages++;
1095                 start += PAGE_SIZE;
1096         }
1097         if (lock_dropped && *locked) {
1098                 /*
1099                  * We must let the caller know we temporarily dropped the lock
1100                  * and so the critical section protected by it was lost.
1101                  */
1102                 up_read(&mm->mmap_sem);
1103                 *locked = 0;
1104         }
1105         return pages_done;
1106 }
1107 
1108 /*
1109  * get_user_pages_remote() - pin user pages in memory
1110  * @tsk:        the task_struct to use for page fault accounting, or
1111  *              NULL if faults are not to be recorded.
1112  * @mm:         mm_struct of target mm
1113  * @start:      starting user address
1114  * @nr_pages:   number of pages from start to pin
1115  * @gup_flags:  flags modifying lookup behaviour
1116  * @pages:      array that receives pointers to the pages pinned.
1117  *              Should be at least nr_pages long. Or NULL, if caller
1118  *              only intends to ensure the pages are faulted in.
1119  * @vmas:       array of pointers to vmas corresponding to each page.
1120  *              Or NULL if the caller does not require them.
1121  * @locked:     pointer to lock flag indicating whether lock is held and
1122  *              subsequently whether VM_FAULT_RETRY functionality can be
1123  *              utilised. Lock must initially be held.
1124  *
1125  * Returns number of pages pinned. This may be fewer than the number
1126  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1127  * were pinned, returns -errno. Each page returned must be released
1128  * with a put_page() call when it is finished with. vmas will only
1129  * remain valid while mmap_sem is held.
1130  *
1131  * Must be called with mmap_sem held for read or write.
1132  *
1133  * get_user_pages walks a process's page tables and takes a reference to
1134  * each struct page that each user address corresponds to at a given
1135  * instant. That is, it takes the page that would be accessed if a user
1136  * thread accesses the given user virtual address at that instant.
1137  *
1138  * This does not guarantee that the page exists in the user mappings when
1139  * get_user_pages returns, and there may even be a completely different
1140  * page there in some cases (eg. if mmapped pagecache has been invalidated
1141  * and subsequently re faulted). However it does guarantee that the page
1142  * won't be freed completely. And mostly callers simply care that the page
1143  * contains data that was valid *at some point in time*. Typically, an IO
1144  * or similar operation cannot guarantee anything stronger anyway because
1145  * locks can't be held over the syscall boundary.
1146  *
1147  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1148  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1149  * be called after the page is finished with, and before put_page is called.
1150  *
1151  * get_user_pages is typically used for fewer-copy IO operations, to get a
1152  * handle on the memory by some means other than accesses via the user virtual
1153  * addresses. The pages may be submitted for DMA to devices or accessed via
1154  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1155  * use the correct cache flushing APIs.
1156  *
1157  * See also get_user_pages_fast, for performance critical applications.
1158  *
1159  * get_user_pages should be phased out in favor of
1160  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1161  * should use get_user_pages because it cannot pass
1162  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1163  */
1164 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1165                 unsigned long start, unsigned long nr_pages,
1166                 unsigned int gup_flags, struct page **pages,
1167                 struct vm_area_struct **vmas, int *locked)
1168 {
1169         /*
1170          * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1171          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1172          * vmas.  As there are no users of this flag in this call we simply
1173          * disallow this option for now.
1174          */
1175         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1176                 return -EINVAL;
1177 
1178         return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1179                                        locked,
1180                                        gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1181 }
1182 EXPORT_SYMBOL(get_user_pages_remote);
1183 
1184 /**
1185  * populate_vma_page_range() -  populate a range of pages in the vma.
1186  * @vma:   target vma
1187  * @start: start address
1188  * @end:   end address
1189  * @nonblocking:
1190  *
1191  * This takes care of mlocking the pages too if VM_LOCKED is set.
1192  *
1193  * return 0 on success, negative error code on error.
1194  *
1195  * vma->vm_mm->mmap_sem must be held.
1196  *
1197  * If @nonblocking is NULL, it may be held for read or write and will
1198  * be unperturbed.
1199  *
1200  * If @nonblocking is non-NULL, it must held for read only and may be
1201  * released.  If it's released, *@nonblocking will be set to 0.
1202  */
1203 long populate_vma_page_range(struct vm_area_struct *vma,
1204                 unsigned long start, unsigned long end, int *nonblocking)
1205 {
1206         struct mm_struct *mm = vma->vm_mm;
1207         unsigned long nr_pages = (end - start) / PAGE_SIZE;
1208         int gup_flags;
1209 
1210         VM_BUG_ON(start & ~PAGE_MASK);
1211         VM_BUG_ON(end   & ~PAGE_MASK);
1212         VM_BUG_ON_VMA(start < vma->vm_start, vma);
1213         VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1214         VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1215 
1216         gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1217         if (vma->vm_flags & VM_LOCKONFAULT)
1218                 gup_flags &= ~FOLL_POPULATE;
1219         /*
1220          * We want to touch writable mappings with a write fault in order
1221          * to break COW, except for shared mappings because these don't COW
1222          * and we would not want to dirty them for nothing.
1223          */
1224         if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1225                 gup_flags |= FOLL_WRITE;
1226 
1227         /*
1228          * We want mlock to succeed for regions that have any permissions
1229          * other than PROT_NONE.
1230          */
1231         if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1232                 gup_flags |= FOLL_FORCE;
1233 
1234         /*
1235          * We made sure addr is within a VMA, so the following will
1236          * not result in a stack expansion that recurses back here.
1237          */
1238         return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1239                                 NULL, NULL, nonblocking);
1240 }
1241 
1242 /*
1243  * __mm_populate - populate and/or mlock pages within a range of address space.
1244  *
1245  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1246  * flags. VMAs must be already marked with the desired vm_flags, and
1247  * mmap_sem must not be held.
1248  */
1249 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1250 {
1251         struct mm_struct *mm = current->mm;
1252         unsigned long end, nstart, nend;
1253         struct vm_area_struct *vma = NULL;
1254         int locked = 0;
1255         long ret = 0;
1256 
1257         end = start + len;
1258 
1259         for (nstart = start; nstart < end; nstart = nend) {
1260                 /*
1261                  * We want to fault in pages for [nstart; end) address range.
1262                  * Find first corresponding VMA.
1263                  */
1264                 if (!locked) {
1265                         locked = 1;
1266                         down_read(&mm->mmap_sem);
1267                         vma = find_vma(mm, nstart);
1268                 } else if (nstart >= vma->vm_end)
1269                         vma = vma->vm_next;
1270                 if (!vma || vma->vm_start >= end)
1271                         break;
1272                 /*
1273                  * Set [nstart; nend) to intersection of desired address
1274                  * range with the first VMA. Also, skip undesirable VMA types.
1275                  */
1276                 nend = min(end, vma->vm_end);
1277                 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1278                         continue;
1279                 if (nstart < vma->vm_start)
1280                         nstart = vma->vm_start;
1281                 /*
1282                  * Now fault in a range of pages. populate_vma_page_range()
1283                  * double checks the vma flags, so that it won't mlock pages
1284                  * if the vma was already munlocked.
1285                  */
1286                 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1287                 if (ret < 0) {
1288                         if (ignore_errors) {
1289                                 ret = 0;
1290                                 continue;       /* continue at next VMA */
1291                         }
1292                         break;
1293                 }
1294                 nend = nstart + ret * PAGE_SIZE;
1295                 ret = 0;
1296         }
1297         if (locked)
1298                 up_read(&mm->mmap_sem);
1299         return ret;     /* 0 or negative error code */
1300 }
1301 
1302 /**
1303  * get_dump_page() - pin user page in memory while writing it to core dump
1304  * @addr: user address
1305  *
1306  * Returns struct page pointer of user page pinned for dump,
1307  * to be freed afterwards by put_page().
1308  *
1309  * Returns NULL on any kind of failure - a hole must then be inserted into
1310  * the corefile, to preserve alignment with its headers; and also returns
1311  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1312  * allowing a hole to be left in the corefile to save diskspace.
1313  *
1314  * Called without mmap_sem, but after all other threads have been killed.
1315  */
1316 #ifdef CONFIG_ELF_CORE
1317 struct page *get_dump_page(unsigned long addr)
1318 {
1319         struct vm_area_struct *vma;
1320         struct page *page;
1321 
1322         if (__get_user_pages(current, current->mm, addr, 1,
1323                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1324                              NULL) < 1)
1325                 return NULL;
1326         flush_cache_page(vma, addr, page_to_pfn(page));
1327         return page;
1328 }
1329 #endif /* CONFIG_ELF_CORE */
1330 #else /* CONFIG_MMU */
1331 static long __get_user_pages_locked(struct task_struct *tsk,
1332                 struct mm_struct *mm, unsigned long start,
1333                 unsigned long nr_pages, struct page **pages,
1334                 struct vm_area_struct **vmas, int *locked,
1335                 unsigned int foll_flags)
1336 {
1337         struct vm_area_struct *vma;
1338         unsigned long vm_flags;
1339         int i;
1340 
1341         /* calculate required read or write permissions.
1342          * If FOLL_FORCE is set, we only require the "MAY" flags.
1343          */
1344         vm_flags  = (foll_flags & FOLL_WRITE) ?
1345                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1346         vm_flags &= (foll_flags & FOLL_FORCE) ?
1347                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1348 
1349         for (i = 0; i < nr_pages; i++) {
1350                 vma = find_vma(mm, start);
1351                 if (!vma)
1352                         goto finish_or_fault;
1353 
1354                 /* protect what we can, including chardevs */
1355                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1356                     !(vm_flags & vma->vm_flags))
1357                         goto finish_or_fault;
1358 
1359                 if (pages) {
1360                         pages[i] = virt_to_page(start);
1361                         if (pages[i])
1362                                 get_page(pages[i]);
1363                 }
1364                 if (vmas)
1365                         vmas[i] = vma;
1366                 start = (start + PAGE_SIZE) & PAGE_MASK;
1367         }
1368 
1369         return i;
1370 
1371 finish_or_fault:
1372         return i ? : -EFAULT;
1373 }
1374 #endif /* !CONFIG_MMU */
1375 
1376 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1377 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1378 {
1379         long i;
1380         struct vm_area_struct *vma_prev = NULL;
1381 
1382         for (i = 0; i < nr_pages; i++) {
1383                 struct vm_area_struct *vma = vmas[i];
1384 
1385                 if (vma == vma_prev)
1386                         continue;
1387 
1388                 vma_prev = vma;
1389 
1390                 if (vma_is_fsdax(vma))
1391                         return true;
1392         }
1393         return false;
1394 }
1395 
1396 #ifdef CONFIG_CMA
1397 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1398 {
1399         /*
1400          * We want to make sure we allocate the new page from the same node
1401          * as the source page.
1402          */
1403         int nid = page_to_nid(page);
1404         /*
1405          * Trying to allocate a page for migration. Ignore allocation
1406          * failure warnings. We don't force __GFP_THISNODE here because
1407          * this node here is the node where we have CMA reservation and
1408          * in some case these nodes will have really less non movable
1409          * allocation memory.
1410          */
1411         gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1412 
1413         if (PageHighMem(page))
1414                 gfp_mask |= __GFP_HIGHMEM;
1415 
1416 #ifdef CONFIG_HUGETLB_PAGE
1417         if (PageHuge(page)) {
1418                 struct hstate *h = page_hstate(page);
1419                 /*
1420                  * We don't want to dequeue from the pool because pool pages will
1421                  * mostly be from the CMA region.
1422                  */
1423                 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1424         }
1425 #endif
1426         if (PageTransHuge(page)) {
1427                 struct page *thp;
1428                 /*
1429                  * ignore allocation failure warnings
1430                  */
1431                 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1432 
1433                 /*
1434                  * Remove the movable mask so that we don't allocate from
1435                  * CMA area again.
1436                  */
1437                 thp_gfpmask &= ~__GFP_MOVABLE;
1438                 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1439                 if (!thp)
1440                         return NULL;
1441                 prep_transhuge_page(thp);
1442                 return thp;
1443         }
1444 
1445         return __alloc_pages_node(nid, gfp_mask, 0);
1446 }
1447 
1448 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1449                                         struct mm_struct *mm,
1450                                         unsigned long start,
1451                                         unsigned long nr_pages,
1452                                         struct page **pages,
1453                                         struct vm_area_struct **vmas,
1454                                         unsigned int gup_flags)
1455 {
1456         unsigned long i;
1457         unsigned long step;
1458         bool drain_allow = true;
1459         bool migrate_allow = true;
1460         LIST_HEAD(cma_page_list);
1461 
1462 check_again:
1463         for (i = 0; i < nr_pages;) {
1464 
1465                 struct page *head = compound_head(pages[i]);
1466 
1467                 /*
1468                  * gup may start from a tail page. Advance step by the left
1469                  * part.
1470                  */
1471                 step = compound_nr(head) - (pages[i] - head);
1472                 /*
1473                  * If we get a page from the CMA zone, since we are going to
1474                  * be pinning these entries, we might as well move them out
1475                  * of the CMA zone if possible.
1476                  */
1477                 if (is_migrate_cma_page(head)) {
1478                         if (PageHuge(head))
1479                                 isolate_huge_page(head, &cma_page_list);
1480                         else {
1481                                 if (!PageLRU(head) && drain_allow) {
1482                                         lru_add_drain_all();
1483                                         drain_allow = false;
1484                                 }
1485 
1486                                 if (!isolate_lru_page(head)) {
1487                                         list_add_tail(&head->lru, &cma_page_list);
1488                                         mod_node_page_state(page_pgdat(head),
1489                                                             NR_ISOLATED_ANON +
1490                                                             page_is_file_cache(head),
1491                                                             hpage_nr_pages(head));
1492                                 }
1493                         }
1494                 }
1495 
1496                 i += step;
1497         }
1498 
1499         if (!list_empty(&cma_page_list)) {
1500                 /*
1501                  * drop the above get_user_pages reference.
1502                  */
1503                 for (i = 0; i < nr_pages; i++)
1504                         put_page(pages[i]);
1505 
1506                 if (migrate_pages(&cma_page_list, new_non_cma_page,
1507                                   NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1508                         /*
1509                          * some of the pages failed migration. Do get_user_pages
1510                          * without migration.
1511                          */
1512                         migrate_allow = false;
1513 
1514                         if (!list_empty(&cma_page_list))
1515                                 putback_movable_pages(&cma_page_list);
1516                 }
1517                 /*
1518                  * We did migrate all the pages, Try to get the page references
1519                  * again migrating any new CMA pages which we failed to isolate
1520                  * earlier.
1521                  */
1522                 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1523                                                    pages, vmas, NULL,
1524                                                    gup_flags);
1525 
1526                 if ((nr_pages > 0) && migrate_allow) {
1527                         drain_allow = true;
1528                         goto check_again;
1529                 }
1530         }
1531 
1532         return nr_pages;
1533 }
1534 #else
1535 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1536                                         struct mm_struct *mm,
1537                                         unsigned long start,
1538                                         unsigned long nr_pages,
1539                                         struct page **pages,
1540                                         struct vm_area_struct **vmas,
1541                                         unsigned int gup_flags)
1542 {
1543         return nr_pages;
1544 }
1545 #endif /* CONFIG_CMA */
1546 
1547 /*
1548  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1549  * allows us to process the FOLL_LONGTERM flag.
1550  */
1551 static long __gup_longterm_locked(struct task_struct *tsk,
1552                                   struct mm_struct *mm,
1553                                   unsigned long start,
1554                                   unsigned long nr_pages,
1555                                   struct page **pages,
1556                                   struct vm_area_struct **vmas,
1557                                   unsigned int gup_flags)
1558 {
1559         struct vm_area_struct **vmas_tmp = vmas;
1560         unsigned long flags = 0;
1561         long rc, i;
1562 
1563         if (gup_flags & FOLL_LONGTERM) {
1564                 if (!pages)
1565                         return -EINVAL;
1566 
1567                 if (!vmas_tmp) {
1568                         vmas_tmp = kcalloc(nr_pages,
1569                                            sizeof(struct vm_area_struct *),
1570                                            GFP_KERNEL);
1571                         if (!vmas_tmp)
1572                                 return -ENOMEM;
1573                 }
1574                 flags = memalloc_nocma_save();
1575         }
1576 
1577         rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1578                                      vmas_tmp, NULL, gup_flags);
1579 
1580         if (gup_flags & FOLL_LONGTERM) {
1581                 memalloc_nocma_restore(flags);
1582                 if (rc < 0)
1583                         goto out;
1584 
1585                 if (check_dax_vmas(vmas_tmp, rc)) {
1586                         for (i = 0; i < rc; i++)
1587                                 put_page(pages[i]);
1588                         rc = -EOPNOTSUPP;
1589                         goto out;
1590                 }
1591 
1592                 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1593                                                  vmas_tmp, gup_flags);
1594         }
1595 
1596 out:
1597         if (vmas_tmp != vmas)
1598                 kfree(vmas_tmp);
1599         return rc;
1600 }
1601 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1602 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1603                                                   struct mm_struct *mm,
1604                                                   unsigned long start,
1605                                                   unsigned long nr_pages,
1606                                                   struct page **pages,
1607                                                   struct vm_area_struct **vmas,
1608                                                   unsigned int flags)
1609 {
1610         return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1611                                        NULL, flags);
1612 }
1613 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1614 
1615 /*
1616  * This is the same as get_user_pages_remote(), just with a
1617  * less-flexible calling convention where we assume that the task
1618  * and mm being operated on are the current task's and don't allow
1619  * passing of a locked parameter.  We also obviously don't pass
1620  * FOLL_REMOTE in here.
1621  */
1622 long get_user_pages(unsigned long start, unsigned long nr_pages,
1623                 unsigned int gup_flags, struct page **pages,
1624                 struct vm_area_struct **vmas)
1625 {
1626         return __gup_longterm_locked(current, current->mm, start, nr_pages,
1627                                      pages, vmas, gup_flags | FOLL_TOUCH);
1628 }
1629 EXPORT_SYMBOL(get_user_pages);
1630 
1631 /*
1632  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1633  * paths better by using either get_user_pages_locked() or
1634  * get_user_pages_unlocked().
1635  *
1636  * get_user_pages_locked() is suitable to replace the form:
1637  *
1638  *      down_read(&mm->mmap_sem);
1639  *      do_something()
1640  *      get_user_pages(tsk, mm, ..., pages, NULL);
1641  *      up_read(&mm->mmap_sem);
1642  *
1643  *  to:
1644  *
1645  *      int locked = 1;
1646  *      down_read(&mm->mmap_sem);
1647  *      do_something()
1648  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1649  *      if (locked)
1650  *          up_read(&mm->mmap_sem);
1651  */
1652 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1653                            unsigned int gup_flags, struct page **pages,
1654                            int *locked)
1655 {
1656         /*
1657          * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1658          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1659          * vmas.  As there are no users of this flag in this call we simply
1660          * disallow this option for now.
1661          */
1662         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1663                 return -EINVAL;
1664 
1665         return __get_user_pages_locked(current, current->mm, start, nr_pages,
1666                                        pages, NULL, locked,
1667                                        gup_flags | FOLL_TOUCH);
1668 }
1669 EXPORT_SYMBOL(get_user_pages_locked);
1670 
1671 /*
1672  * get_user_pages_unlocked() is suitable to replace the form:
1673  *
1674  *      down_read(&mm->mmap_sem);
1675  *      get_user_pages(tsk, mm, ..., pages, NULL);
1676  *      up_read(&mm->mmap_sem);
1677  *
1678  *  with:
1679  *
1680  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1681  *
1682  * It is functionally equivalent to get_user_pages_fast so
1683  * get_user_pages_fast should be used instead if specific gup_flags
1684  * (e.g. FOLL_FORCE) are not required.
1685  */
1686 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1687                              struct page **pages, unsigned int gup_flags)
1688 {
1689         struct mm_struct *mm = current->mm;
1690         int locked = 1;
1691         long ret;
1692 
1693         /*
1694          * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1695          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1696          * vmas.  As there are no users of this flag in this call we simply
1697          * disallow this option for now.
1698          */
1699         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1700                 return -EINVAL;
1701 
1702         down_read(&mm->mmap_sem);
1703         ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1704                                       &locked, gup_flags | FOLL_TOUCH);
1705         if (locked)
1706                 up_read(&mm->mmap_sem);
1707         return ret;
1708 }
1709 EXPORT_SYMBOL(get_user_pages_unlocked);
1710 
1711 /*
1712  * Fast GUP
1713  *
1714  * get_user_pages_fast attempts to pin user pages by walking the page
1715  * tables directly and avoids taking locks. Thus the walker needs to be
1716  * protected from page table pages being freed from under it, and should
1717  * block any THP splits.
1718  *
1719  * One way to achieve this is to have the walker disable interrupts, and
1720  * rely on IPIs from the TLB flushing code blocking before the page table
1721  * pages are freed. This is unsuitable for architectures that do not need
1722  * to broadcast an IPI when invalidating TLBs.
1723  *
1724  * Another way to achieve this is to batch up page table containing pages
1725  * belonging to more than one mm_user, then rcu_sched a callback to free those
1726  * pages. Disabling interrupts will allow the fast_gup walker to both block
1727  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1728  * (which is a relatively rare event). The code below adopts this strategy.
1729  *
1730  * Before activating this code, please be aware that the following assumptions
1731  * are currently made:
1732  *
1733  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1734  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1735  *
1736  *  *) ptes can be read atomically by the architecture.
1737  *
1738  *  *) access_ok is sufficient to validate userspace address ranges.
1739  *
1740  * The last two assumptions can be relaxed by the addition of helper functions.
1741  *
1742  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1743  */
1744 #ifdef CONFIG_HAVE_FAST_GUP
1745 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1746 /*
1747  * WARNING: only to be used in the get_user_pages_fast() implementation.
1748  *
1749  * With get_user_pages_fast(), we walk down the pagetables without taking any
1750  * locks.  For this we would like to load the pointers atomically, but sometimes
1751  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1752  * we do have is the guarantee that a PTE will only either go from not present
1753  * to present, or present to not present or both -- it will not switch to a
1754  * completely different present page without a TLB flush in between; something
1755  * that we are blocking by holding interrupts off.
1756  *
1757  * Setting ptes from not present to present goes:
1758  *
1759  *   ptep->pte_high = h;
1760  *   smp_wmb();
1761  *   ptep->pte_low = l;
1762  *
1763  * And present to not present goes:
1764  *
1765  *   ptep->pte_low = 0;
1766  *   smp_wmb();
1767  *   ptep->pte_high = 0;
1768  *
1769  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1770  * We load pte_high *after* loading pte_low, which ensures we don't see an older
1771  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1772  * picked up a changed pte high. We might have gotten rubbish values from
1773  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1774  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1775  * operates on present ptes we're safe.
1776  */
1777 static inline pte_t gup_get_pte(pte_t *ptep)
1778 {
1779         pte_t pte;
1780 
1781         do {
1782                 pte.pte_low = ptep->pte_low;
1783                 smp_rmb();
1784                 pte.pte_high = ptep->pte_high;
1785                 smp_rmb();
1786         } while (unlikely(pte.pte_low != ptep->pte_low));
1787 
1788         return pte;
1789 }
1790 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1791 /*
1792  * We require that the PTE can be read atomically.
1793  */
1794 static inline pte_t gup_get_pte(pte_t *ptep)
1795 {
1796         return READ_ONCE(*ptep);
1797 }
1798 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1799 
1800 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1801                                             struct page **pages)
1802 {
1803         while ((*nr) - nr_start) {
1804                 struct page *page = pages[--(*nr)];
1805 
1806                 ClearPageReferenced(page);
1807                 put_page(page);
1808         }
1809 }
1810 
1811 /*
1812  * Return the compund head page with ref appropriately incremented,
1813  * or NULL if that failed.
1814  */
1815 static inline struct page *try_get_compound_head(struct page *page, int refs)
1816 {
1817         struct page *head = compound_head(page);
1818         if (WARN_ON_ONCE(page_ref_count(head) < 0))
1819                 return NULL;
1820         if (unlikely(!page_cache_add_speculative(head, refs)))
1821                 return NULL;
1822         return head;
1823 }
1824 
1825 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1826 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1827                          unsigned int flags, struct page **pages, int *nr)
1828 {
1829         struct dev_pagemap *pgmap = NULL;
1830         int nr_start = *nr, ret = 0;
1831         pte_t *ptep, *ptem;
1832 
1833         ptem = ptep = pte_offset_map(&pmd, addr);
1834         do {
1835                 pte_t pte = gup_get_pte(ptep);
1836                 struct page *head, *page;
1837 
1838                 /*
1839                  * Similar to the PMD case below, NUMA hinting must take slow
1840                  * path using the pte_protnone check.
1841                  */
1842                 if (pte_protnone(pte))
1843                         goto pte_unmap;
1844 
1845                 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1846                         goto pte_unmap;
1847 
1848                 if (pte_devmap(pte)) {
1849                         if (unlikely(flags & FOLL_LONGTERM))
1850                                 goto pte_unmap;
1851 
1852                         pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1853                         if (unlikely(!pgmap)) {
1854                                 undo_dev_pagemap(nr, nr_start, pages);
1855                                 goto pte_unmap;
1856                         }
1857                 } else if (pte_special(pte))
1858                         goto pte_unmap;
1859 
1860                 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1861                 page = pte_page(pte);
1862 
1863                 head = try_get_compound_head(page, 1);
1864                 if (!head)
1865                         goto pte_unmap;
1866 
1867                 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1868                         put_page(head);
1869                         goto pte_unmap;
1870                 }
1871 
1872                 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1873 
1874                 SetPageReferenced(page);
1875                 pages[*nr] = page;
1876                 (*nr)++;
1877 
1878         } while (ptep++, addr += PAGE_SIZE, addr != end);
1879 
1880         ret = 1;
1881 
1882 pte_unmap:
1883         if (pgmap)
1884                 put_dev_pagemap(pgmap);
1885         pte_unmap(ptem);
1886         return ret;
1887 }
1888 #else
1889 
1890 /*
1891  * If we can't determine whether or not a pte is special, then fail immediately
1892  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1893  * to be special.
1894  *
1895  * For a futex to be placed on a THP tail page, get_futex_key requires a
1896  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1897  * useful to have gup_huge_pmd even if we can't operate on ptes.
1898  */
1899 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1900                          unsigned int flags, struct page **pages, int *nr)
1901 {
1902         return 0;
1903 }
1904 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1905 
1906 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1907 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1908                 unsigned long end, struct page **pages, int *nr)
1909 {
1910         int nr_start = *nr;
1911         struct dev_pagemap *pgmap = NULL;
1912 
1913         do {
1914                 struct page *page = pfn_to_page(pfn);
1915 
1916                 pgmap = get_dev_pagemap(pfn, pgmap);
1917                 if (unlikely(!pgmap)) {
1918                         undo_dev_pagemap(nr, nr_start, pages);
1919                         return 0;
1920                 }
1921                 SetPageReferenced(page);
1922                 pages[*nr] = page;
1923                 get_page(page);
1924                 (*nr)++;
1925                 pfn++;
1926         } while (addr += PAGE_SIZE, addr != end);
1927 
1928         if (pgmap)
1929                 put_dev_pagemap(pgmap);
1930         return 1;
1931 }
1932 
1933 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1934                 unsigned long end, struct page **pages, int *nr)
1935 {
1936         unsigned long fault_pfn;
1937         int nr_start = *nr;
1938 
1939         fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1940         if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1941                 return 0;
1942 
1943         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1944                 undo_dev_pagemap(nr, nr_start, pages);
1945                 return 0;
1946         }
1947         return 1;
1948 }
1949 
1950 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1951                 unsigned long end, struct page **pages, int *nr)
1952 {
1953         unsigned long fault_pfn;
1954         int nr_start = *nr;
1955 
1956         fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1957         if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1958                 return 0;
1959 
1960         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1961                 undo_dev_pagemap(nr, nr_start, pages);
1962                 return 0;
1963         }
1964         return 1;
1965 }
1966 #else
1967 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1968                 unsigned long end, struct page **pages, int *nr)
1969 {
1970         BUILD_BUG();
1971         return 0;
1972 }
1973 
1974 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1975                 unsigned long end, struct page **pages, int *nr)
1976 {
1977         BUILD_BUG();
1978         return 0;
1979 }
1980 #endif
1981 
1982 #ifdef CONFIG_ARCH_HAS_HUGEPD
1983 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1984                                       unsigned long sz)
1985 {
1986         unsigned long __boundary = (addr + sz) & ~(sz-1);
1987         return (__boundary - 1 < end - 1) ? __boundary : end;
1988 }
1989 
1990 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1991                        unsigned long end, unsigned int flags,
1992                        struct page **pages, int *nr)
1993 {
1994         unsigned long pte_end;
1995         struct page *head, *page;
1996         pte_t pte;
1997         int refs;
1998 
1999         pte_end = (addr + sz) & ~(sz-1);
2000         if (pte_end < end)
2001                 end = pte_end;
2002 
2003         pte = READ_ONCE(*ptep);
2004 
2005         if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2006                 return 0;
2007 
2008         /* hugepages are never "special" */
2009         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2010 
2011         refs = 0;
2012         head = pte_page(pte);
2013 
2014         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2015         do {
2016                 VM_BUG_ON(compound_head(page) != head);
2017                 pages[*nr] = page;
2018                 (*nr)++;
2019                 page++;
2020                 refs++;
2021         } while (addr += PAGE_SIZE, addr != end);
2022 
2023         head = try_get_compound_head(head, refs);
2024         if (!head) {
2025                 *nr -= refs;
2026                 return 0;
2027         }
2028 
2029         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2030                 /* Could be optimized better */
2031                 *nr -= refs;
2032                 while (refs--)
2033                         put_page(head);
2034                 return 0;
2035         }
2036 
2037         SetPageReferenced(head);
2038         return 1;
2039 }
2040 
2041 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2042                 unsigned int pdshift, unsigned long end, unsigned int flags,
2043                 struct page **pages, int *nr)
2044 {
2045         pte_t *ptep;
2046         unsigned long sz = 1UL << hugepd_shift(hugepd);
2047         unsigned long next;
2048 
2049         ptep = hugepte_offset(hugepd, addr, pdshift);
2050         do {
2051                 next = hugepte_addr_end(addr, end, sz);
2052                 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2053                         return 0;
2054         } while (ptep++, addr = next, addr != end);
2055 
2056         return 1;
2057 }
2058 #else
2059 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2060                 unsigned int pdshift, unsigned long end, unsigned int flags,
2061                 struct page **pages, int *nr)
2062 {
2063         return 0;
2064 }
2065 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2066 
2067 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2068                         unsigned long end, unsigned int flags,
2069                         struct page **pages, int *nr)
2070 {
2071         struct page *head, *page;
2072         int refs;
2073 
2074         if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2075                 return 0;
2076 
2077         if (pmd_devmap(orig)) {
2078                 if (unlikely(flags & FOLL_LONGTERM))
2079                         return 0;
2080                 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2081         }
2082 
2083         refs = 0;
2084         page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2085         do {
2086                 pages[*nr] = page;
2087                 (*nr)++;
2088                 page++;
2089                 refs++;
2090         } while (addr += PAGE_SIZE, addr != end);
2091 
2092         head = try_get_compound_head(pmd_page(orig), refs);
2093         if (!head) {
2094                 *nr -= refs;
2095                 return 0;
2096         }
2097 
2098         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2099                 *nr -= refs;
2100                 while (refs--)
2101                         put_page(head);
2102                 return 0;
2103         }
2104 
2105         SetPageReferenced(head);
2106         return 1;
2107 }
2108 
2109 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2110                 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2111 {
2112         struct page *head, *page;
2113         int refs;
2114 
2115         if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2116                 return 0;
2117 
2118         if (pud_devmap(orig)) {
2119                 if (unlikely(flags & FOLL_LONGTERM))
2120                         return 0;
2121                 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2122         }
2123 
2124         refs = 0;
2125         page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2126         do {
2127                 pages[*nr] = page;
2128                 (*nr)++;
2129                 page++;
2130                 refs++;
2131         } while (addr += PAGE_SIZE, addr != end);
2132 
2133         head = try_get_compound_head(pud_page(orig), refs);
2134         if (!head) {
2135                 *nr -= refs;
2136                 return 0;
2137         }
2138 
2139         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2140                 *nr -= refs;
2141                 while (refs--)
2142                         put_page(head);
2143                 return 0;
2144         }
2145 
2146         SetPageReferenced(head);
2147         return 1;
2148 }
2149 
2150 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2151                         unsigned long end, unsigned int flags,
2152                         struct page **pages, int *nr)
2153 {
2154         int refs;
2155         struct page *head, *page;
2156 
2157         if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2158                 return 0;
2159 
2160         BUILD_BUG_ON(pgd_devmap(orig));
2161         refs = 0;
2162         page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2163         do {
2164                 pages[*nr] = page;
2165                 (*nr)++;
2166                 page++;
2167                 refs++;
2168         } while (addr += PAGE_SIZE, addr != end);
2169 
2170         head = try_get_compound_head(pgd_page(orig), refs);
2171         if (!head) {
2172                 *nr -= refs;
2173                 return 0;
2174         }
2175 
2176         if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2177                 *nr -= refs;
2178                 while (refs--)
2179                         put_page(head);
2180                 return 0;
2181         }
2182 
2183         SetPageReferenced(head);
2184         return 1;
2185 }
2186 
2187 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2188                 unsigned int flags, struct page **pages, int *nr)
2189 {
2190         unsigned long next;
2191         pmd_t *pmdp;
2192 
2193         pmdp = pmd_offset(&pud, addr);
2194         do {
2195                 pmd_t pmd = READ_ONCE(*pmdp);
2196 
2197                 next = pmd_addr_end(addr, end);
2198                 if (!pmd_present(pmd))
2199                         return 0;
2200 
2201                 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2202                              pmd_devmap(pmd))) {
2203                         /*
2204                          * NUMA hinting faults need to be handled in the GUP
2205                          * slowpath for accounting purposes and so that they
2206                          * can be serialised against THP migration.
2207                          */
2208                         if (pmd_protnone(pmd))
2209                                 return 0;
2210 
2211                         if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2212                                 pages, nr))
2213                                 return 0;
2214 
2215                 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2216                         /*
2217                          * architecture have different format for hugetlbfs
2218                          * pmd format and THP pmd format
2219                          */
2220                         if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2221                                          PMD_SHIFT, next, flags, pages, nr))
2222                                 return 0;
2223                 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2224                         return 0;
2225         } while (pmdp++, addr = next, addr != end);
2226 
2227         return 1;
2228 }
2229 
2230 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2231                          unsigned int flags, struct page **pages, int *nr)
2232 {
2233         unsigned long next;
2234         pud_t *pudp;
2235 
2236         pudp = pud_offset(&p4d, addr);
2237         do {
2238                 pud_t pud = READ_ONCE(*pudp);
2239 
2240                 next = pud_addr_end(addr, end);
2241                 if (pud_none(pud))
2242                         return 0;
2243                 if (unlikely(pud_huge(pud))) {
2244                         if (!gup_huge_pud(pud, pudp, addr, next, flags,
2245                                           pages, nr))
2246                                 return 0;
2247                 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2248                         if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2249                                          PUD_SHIFT, next, flags, pages, nr))
2250                                 return 0;
2251                 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2252                         return 0;
2253         } while (pudp++, addr = next, addr != end);
2254 
2255         return 1;
2256 }
2257 
2258 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2259                          unsigned int flags, struct page **pages, int *nr)
2260 {
2261         unsigned long next;
2262         p4d_t *p4dp;
2263 
2264         p4dp = p4d_offset(&pgd, addr);
2265         do {
2266                 p4d_t p4d = READ_ONCE(*p4dp);
2267 
2268                 next = p4d_addr_end(addr, end);
2269                 if (p4d_none(p4d))
2270                         return 0;
2271                 BUILD_BUG_ON(p4d_huge(p4d));
2272                 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2273                         if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2274                                          P4D_SHIFT, next, flags, pages, nr))
2275                                 return 0;
2276                 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2277                         return 0;
2278         } while (p4dp++, addr = next, addr != end);
2279 
2280         return 1;
2281 }
2282 
2283 static void gup_pgd_range(unsigned long addr, unsigned long end,
2284                 unsigned int flags, struct page **pages, int *nr)
2285 {
2286         unsigned long next;
2287         pgd_t *pgdp;
2288 
2289         pgdp = pgd_offset(current->mm, addr);
2290         do {
2291                 pgd_t pgd = READ_ONCE(*pgdp);
2292 
2293                 next = pgd_addr_end(addr, end);
2294                 if (pgd_none(pgd))
2295                         return;
2296                 if (unlikely(pgd_huge(pgd))) {
2297                         if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2298                                           pages, nr))
2299                                 return;
2300                 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2301                         if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2302                                          PGDIR_SHIFT, next, flags, pages, nr))
2303                                 return;
2304                 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2305                         return;
2306         } while (pgdp++, addr = next, addr != end);
2307 }
2308 #else
2309 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2310                 unsigned int flags, struct page **pages, int *nr)
2311 {
2312 }
2313 #endif /* CONFIG_HAVE_FAST_GUP */
2314 
2315 #ifndef gup_fast_permitted
2316 /*
2317  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2318  * we need to fall back to the slow version:
2319  */
2320 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2321 {
2322         return true;
2323 }
2324 #endif
2325 
2326 /*
2327  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2328  * the regular GUP.
2329  * Note a difference with get_user_pages_fast: this always returns the
2330  * number of pages pinned, 0 if no pages were pinned.
2331  *
2332  * If the architecture does not support this function, simply return with no
2333  * pages pinned.
2334  *
2335  * Careful, careful! COW breaking can go either way, so a non-write
2336  * access can get ambiguous page results. If you call this function without
2337  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2338  */
2339 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2340                           struct page **pages)
2341 {
2342         unsigned long len, end;
2343         unsigned long flags;
2344         int nr = 0;
2345 
2346         start = untagged_addr(start) & PAGE_MASK;
2347         len = (unsigned long) nr_pages << PAGE_SHIFT;
2348         end = start + len;
2349 
2350         if (end <= start)
2351                 return 0;
2352         if (unlikely(!access_ok((void __user *)start, len)))
2353                 return 0;
2354 
2355         /*
2356          * Disable interrupts.  We use the nested form as we can already have
2357          * interrupts disabled by get_futex_key.
2358          *
2359          * With interrupts disabled, we block page table pages from being
2360          * freed from under us. See struct mmu_table_batch comments in
2361          * include/asm-generic/tlb.h for more details.
2362          *
2363          * We do not adopt an rcu_read_lock(.) here as we also want to
2364          * block IPIs that come from THPs splitting.
2365          *
2366          * NOTE! We allow read-only gup_fast() here, but you'd better be
2367          * careful about possible COW pages. You'll get _a_ COW page, but
2368          * not necessarily the one you intended to get depending on what
2369          * COW event happens after this. COW may break the page copy in a
2370          * random direction.
2371          */
2372 
2373         if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2374             gup_fast_permitted(start, end)) {
2375                 local_irq_save(flags);
2376                 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2377                 local_irq_restore(flags);
2378         }
2379 
2380         return nr;
2381 }
2382 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2383 
2384 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2385                                    unsigned int gup_flags, struct page **pages)
2386 {
2387         int ret;
2388 
2389         /*
2390          * FIXME: FOLL_LONGTERM does not work with
2391          * get_user_pages_unlocked() (see comments in that function)
2392          */
2393         if (gup_flags & FOLL_LONGTERM) {
2394                 down_read(&current->mm->mmap_sem);
2395                 ret = __gup_longterm_locked(current, current->mm,
2396                                             start, nr_pages,
2397                                             pages, NULL, gup_flags);
2398                 up_read(&current->mm->mmap_sem);
2399         } else {
2400                 ret = get_user_pages_unlocked(start, nr_pages,
2401                                               pages, gup_flags);
2402         }
2403 
2404         return ret;
2405 }
2406 
2407 /**
2408  * get_user_pages_fast() - pin user pages in memory
2409  * @start:      starting user address
2410  * @nr_pages:   number of pages from start to pin
2411  * @gup_flags:  flags modifying pin behaviour
2412  * @pages:      array that receives pointers to the pages pinned.
2413  *              Should be at least nr_pages long.
2414  *
2415  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2416  * If not successful, it will fall back to taking the lock and
2417  * calling get_user_pages().
2418  *
2419  * Returns number of pages pinned. This may be fewer than the number
2420  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2421  * were pinned, returns -errno.
2422  */
2423 int get_user_pages_fast(unsigned long start, int nr_pages,
2424                         unsigned int gup_flags, struct page **pages)
2425 {
2426         unsigned long addr, len, end;
2427         int nr = 0, ret = 0;
2428 
2429         if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2430                                        FOLL_FORCE)))
2431                 return -EINVAL;
2432 
2433         start = untagged_addr(start) & PAGE_MASK;
2434         addr = start;
2435         len = (unsigned long) nr_pages << PAGE_SHIFT;
2436         end = start + len;
2437 
2438         if (end <= start)
2439                 return 0;
2440         if (unlikely(!access_ok((void __user *)start, len)))
2441                 return -EFAULT;
2442 
2443         /*
2444          * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2445          * because get_user_pages() may need to cause an early COW in
2446          * order to avoid confusing the normal COW routines. So only
2447          * targets that are already writable are safe to do by just
2448          * looking at the page tables.
2449          */
2450         if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2451             gup_fast_permitted(start, end)) {
2452                 local_irq_disable();
2453                 gup_pgd_range(addr, end, gup_flags | FOLL_WRITE, pages, &nr);
2454                 local_irq_enable();
2455                 ret = nr;
2456         }
2457 
2458         if (nr < nr_pages) {
2459                 /* Try to get the remaining pages with get_user_pages */
2460                 start += nr << PAGE_SHIFT;
2461                 pages += nr;
2462 
2463                 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2464                                               gup_flags, pages);
2465 
2466                 /* Have to be a bit careful with return values */
2467                 if (nr > 0) {
2468                         if (ret < 0)
2469                                 ret = nr;
2470                         else
2471                                 ret += nr;
2472                 }
2473         }
2474 
2475         return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(get_user_pages_fast);

/* [<][>][^][v][top][bottom][index][help] */