root/mm/mlock.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. can_do_mlock
  2. clear_page_mlock
  3. mlock_vma_page
  4. __munlock_isolate_lru_page
  5. __munlock_isolated_page
  6. __munlock_isolation_failed
  7. munlock_vma_page
  8. __mlock_posix_error_return
  9. __putback_lru_fast_prepare
  10. __putback_lru_fast
  11. __munlock_pagevec
  12. __munlock_pagevec_fill
  13. munlock_vma_pages_range
  14. mlock_fixup
  15. apply_vma_lock_flags
  16. count_mm_mlocked_page_nr
  17. do_mlock
  18. SYSCALL_DEFINE2
  19. SYSCALL_DEFINE3
  20. SYSCALL_DEFINE2
  21. apply_mlockall_flags
  22. SYSCALL_DEFINE1
  23. SYSCALL_DEFINE0
  24. user_shm_lock
  25. user_shm_unlock

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *      linux/mm/mlock.c
   4  *
   5  *  (C) Copyright 1995 Linus Torvalds
   6  *  (C) Copyright 2002 Christoph Hellwig
   7  */
   8 
   9 #include <linux/capability.h>
  10 #include <linux/mman.h>
  11 #include <linux/mm.h>
  12 #include <linux/sched/user.h>
  13 #include <linux/swap.h>
  14 #include <linux/swapops.h>
  15 #include <linux/pagemap.h>
  16 #include <linux/pagevec.h>
  17 #include <linux/mempolicy.h>
  18 #include <linux/syscalls.h>
  19 #include <linux/sched.h>
  20 #include <linux/export.h>
  21 #include <linux/rmap.h>
  22 #include <linux/mmzone.h>
  23 #include <linux/hugetlb.h>
  24 #include <linux/memcontrol.h>
  25 #include <linux/mm_inline.h>
  26 
  27 #include "internal.h"
  28 
  29 bool can_do_mlock(void)
  30 {
  31         if (rlimit(RLIMIT_MEMLOCK) != 0)
  32                 return true;
  33         if (capable(CAP_IPC_LOCK))
  34                 return true;
  35         return false;
  36 }
  37 EXPORT_SYMBOL(can_do_mlock);
  38 
  39 /*
  40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
  41  * in vmscan and, possibly, the fault path; and to support semi-accurate
  42  * statistics.
  43  *
  44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  46  * The unevictable list is an LRU sibling list to the [in]active lists.
  47  * PageUnevictable is set to indicate the unevictable state.
  48  *
  49  * When lazy mlocking via vmscan, it is important to ensure that the
  50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  51  * may have mlocked a page that is being munlocked. So lazy mlock must take
  52  * the mmap_sem for read, and verify that the vma really is locked
  53  * (see mm/rmap.c).
  54  */
  55 
  56 /*
  57  *  LRU accounting for clear_page_mlock()
  58  */
  59 void clear_page_mlock(struct page *page)
  60 {
  61         if (!TestClearPageMlocked(page))
  62                 return;
  63 
  64         mod_zone_page_state(page_zone(page), NR_MLOCK,
  65                             -hpage_nr_pages(page));
  66         count_vm_event(UNEVICTABLE_PGCLEARED);
  67         /*
  68          * The previous TestClearPageMlocked() corresponds to the smp_mb()
  69          * in __pagevec_lru_add_fn().
  70          *
  71          * See __pagevec_lru_add_fn for more explanation.
  72          */
  73         if (!isolate_lru_page(page)) {
  74                 putback_lru_page(page);
  75         } else {
  76                 /*
  77                  * We lost the race. the page already moved to evictable list.
  78                  */
  79                 if (PageUnevictable(page))
  80                         count_vm_event(UNEVICTABLE_PGSTRANDED);
  81         }
  82 }
  83 
  84 /*
  85  * Mark page as mlocked if not already.
  86  * If page on LRU, isolate and putback to move to unevictable list.
  87  */
  88 void mlock_vma_page(struct page *page)
  89 {
  90         /* Serialize with page migration */
  91         BUG_ON(!PageLocked(page));
  92 
  93         VM_BUG_ON_PAGE(PageTail(page), page);
  94         VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
  95 
  96         if (!TestSetPageMlocked(page)) {
  97                 mod_zone_page_state(page_zone(page), NR_MLOCK,
  98                                     hpage_nr_pages(page));
  99                 count_vm_event(UNEVICTABLE_PGMLOCKED);
 100                 if (!isolate_lru_page(page))
 101                         putback_lru_page(page);
 102         }
 103 }
 104 
 105 /*
 106  * Isolate a page from LRU with optional get_page() pin.
 107  * Assumes lru_lock already held and page already pinned.
 108  */
 109 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
 110 {
 111         if (PageLRU(page)) {
 112                 struct lruvec *lruvec;
 113 
 114                 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
 115                 if (getpage)
 116                         get_page(page);
 117                 ClearPageLRU(page);
 118                 del_page_from_lru_list(page, lruvec, page_lru(page));
 119                 return true;
 120         }
 121 
 122         return false;
 123 }
 124 
 125 /*
 126  * Finish munlock after successful page isolation
 127  *
 128  * Page must be locked. This is a wrapper for try_to_munlock()
 129  * and putback_lru_page() with munlock accounting.
 130  */
 131 static void __munlock_isolated_page(struct page *page)
 132 {
 133         /*
 134          * Optimization: if the page was mapped just once, that's our mapping
 135          * and we don't need to check all the other vmas.
 136          */
 137         if (page_mapcount(page) > 1)
 138                 try_to_munlock(page);
 139 
 140         /* Did try_to_unlock() succeed or punt? */
 141         if (!PageMlocked(page))
 142                 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 143 
 144         putback_lru_page(page);
 145 }
 146 
 147 /*
 148  * Accounting for page isolation fail during munlock
 149  *
 150  * Performs accounting when page isolation fails in munlock. There is nothing
 151  * else to do because it means some other task has already removed the page
 152  * from the LRU. putback_lru_page() will take care of removing the page from
 153  * the unevictable list, if necessary. vmscan [page_referenced()] will move
 154  * the page back to the unevictable list if some other vma has it mlocked.
 155  */
 156 static void __munlock_isolation_failed(struct page *page)
 157 {
 158         if (PageUnevictable(page))
 159                 __count_vm_event(UNEVICTABLE_PGSTRANDED);
 160         else
 161                 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 162 }
 163 
 164 /**
 165  * munlock_vma_page - munlock a vma page
 166  * @page: page to be unlocked, either a normal page or THP page head
 167  *
 168  * returns the size of the page as a page mask (0 for normal page,
 169  *         HPAGE_PMD_NR - 1 for THP head page)
 170  *
 171  * called from munlock()/munmap() path with page supposedly on the LRU.
 172  * When we munlock a page, because the vma where we found the page is being
 173  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 174  * page locked so that we can leave it on the unevictable lru list and not
 175  * bother vmscan with it.  However, to walk the page's rmap list in
 176  * try_to_munlock() we must isolate the page from the LRU.  If some other
 177  * task has removed the page from the LRU, we won't be able to do that.
 178  * So we clear the PageMlocked as we might not get another chance.  If we
 179  * can't isolate the page, we leave it for putback_lru_page() and vmscan
 180  * [page_referenced()/try_to_unmap()] to deal with.
 181  */
 182 unsigned int munlock_vma_page(struct page *page)
 183 {
 184         int nr_pages;
 185         pg_data_t *pgdat = page_pgdat(page);
 186 
 187         /* For try_to_munlock() and to serialize with page migration */
 188         BUG_ON(!PageLocked(page));
 189 
 190         VM_BUG_ON_PAGE(PageTail(page), page);
 191 
 192         /*
 193          * Serialize with any parallel __split_huge_page_refcount() which
 194          * might otherwise copy PageMlocked to part of the tail pages before
 195          * we clear it in the head page. It also stabilizes hpage_nr_pages().
 196          */
 197         spin_lock_irq(&pgdat->lru_lock);
 198 
 199         if (!TestClearPageMlocked(page)) {
 200                 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
 201                 nr_pages = 1;
 202                 goto unlock_out;
 203         }
 204 
 205         nr_pages = hpage_nr_pages(page);
 206         __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
 207 
 208         if (__munlock_isolate_lru_page(page, true)) {
 209                 spin_unlock_irq(&pgdat->lru_lock);
 210                 __munlock_isolated_page(page);
 211                 goto out;
 212         }
 213         __munlock_isolation_failed(page);
 214 
 215 unlock_out:
 216         spin_unlock_irq(&pgdat->lru_lock);
 217 
 218 out:
 219         return nr_pages - 1;
 220 }
 221 
 222 /*
 223  * convert get_user_pages() return value to posix mlock() error
 224  */
 225 static int __mlock_posix_error_return(long retval)
 226 {
 227         if (retval == -EFAULT)
 228                 retval = -ENOMEM;
 229         else if (retval == -ENOMEM)
 230                 retval = -EAGAIN;
 231         return retval;
 232 }
 233 
 234 /*
 235  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 236  *
 237  * The fast path is available only for evictable pages with single mapping.
 238  * Then we can bypass the per-cpu pvec and get better performance.
 239  * when mapcount > 1 we need try_to_munlock() which can fail.
 240  * when !page_evictable(), we need the full redo logic of putback_lru_page to
 241  * avoid leaving evictable page in unevictable list.
 242  *
 243  * In case of success, @page is added to @pvec and @pgrescued is incremented
 244  * in case that the page was previously unevictable. @page is also unlocked.
 245  */
 246 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
 247                 int *pgrescued)
 248 {
 249         VM_BUG_ON_PAGE(PageLRU(page), page);
 250         VM_BUG_ON_PAGE(!PageLocked(page), page);
 251 
 252         if (page_mapcount(page) <= 1 && page_evictable(page)) {
 253                 pagevec_add(pvec, page);
 254                 if (TestClearPageUnevictable(page))
 255                         (*pgrescued)++;
 256                 unlock_page(page);
 257                 return true;
 258         }
 259 
 260         return false;
 261 }
 262 
 263 /*
 264  * Putback multiple evictable pages to the LRU
 265  *
 266  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
 267  * the pages might have meanwhile become unevictable but that is OK.
 268  */
 269 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
 270 {
 271         count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 272         /*
 273          *__pagevec_lru_add() calls release_pages() so we don't call
 274          * put_page() explicitly
 275          */
 276         __pagevec_lru_add(pvec);
 277         count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 278 }
 279 
 280 /*
 281  * Munlock a batch of pages from the same zone
 282  *
 283  * The work is split to two main phases. First phase clears the Mlocked flag
 284  * and attempts to isolate the pages, all under a single zone lru lock.
 285  * The second phase finishes the munlock only for pages where isolation
 286  * succeeded.
 287  *
 288  * Note that the pagevec may be modified during the process.
 289  */
 290 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
 291 {
 292         int i;
 293         int nr = pagevec_count(pvec);
 294         int delta_munlocked = -nr;
 295         struct pagevec pvec_putback;
 296         int pgrescued = 0;
 297 
 298         pagevec_init(&pvec_putback);
 299 
 300         /* Phase 1: page isolation */
 301         spin_lock_irq(&zone->zone_pgdat->lru_lock);
 302         for (i = 0; i < nr; i++) {
 303                 struct page *page = pvec->pages[i];
 304 
 305                 if (TestClearPageMlocked(page)) {
 306                         /*
 307                          * We already have pin from follow_page_mask()
 308                          * so we can spare the get_page() here.
 309                          */
 310                         if (__munlock_isolate_lru_page(page, false))
 311                                 continue;
 312                         else
 313                                 __munlock_isolation_failed(page);
 314                 } else {
 315                         delta_munlocked++;
 316                 }
 317 
 318                 /*
 319                  * We won't be munlocking this page in the next phase
 320                  * but we still need to release the follow_page_mask()
 321                  * pin. We cannot do it under lru_lock however. If it's
 322                  * the last pin, __page_cache_release() would deadlock.
 323                  */
 324                 pagevec_add(&pvec_putback, pvec->pages[i]);
 325                 pvec->pages[i] = NULL;
 326         }
 327         __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 328         spin_unlock_irq(&zone->zone_pgdat->lru_lock);
 329 
 330         /* Now we can release pins of pages that we are not munlocking */
 331         pagevec_release(&pvec_putback);
 332 
 333         /* Phase 2: page munlock */
 334         for (i = 0; i < nr; i++) {
 335                 struct page *page = pvec->pages[i];
 336 
 337                 if (page) {
 338                         lock_page(page);
 339                         if (!__putback_lru_fast_prepare(page, &pvec_putback,
 340                                         &pgrescued)) {
 341                                 /*
 342                                  * Slow path. We don't want to lose the last
 343                                  * pin before unlock_page()
 344                                  */
 345                                 get_page(page); /* for putback_lru_page() */
 346                                 __munlock_isolated_page(page);
 347                                 unlock_page(page);
 348                                 put_page(page); /* from follow_page_mask() */
 349                         }
 350                 }
 351         }
 352 
 353         /*
 354          * Phase 3: page putback for pages that qualified for the fast path
 355          * This will also call put_page() to return pin from follow_page_mask()
 356          */
 357         if (pagevec_count(&pvec_putback))
 358                 __putback_lru_fast(&pvec_putback, pgrescued);
 359 }
 360 
 361 /*
 362  * Fill up pagevec for __munlock_pagevec using pte walk
 363  *
 364  * The function expects that the struct page corresponding to @start address is
 365  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
 366  *
 367  * The rest of @pvec is filled by subsequent pages within the same pmd and same
 368  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
 369  * pages also get pinned.
 370  *
 371  * Returns the address of the next page that should be scanned. This equals
 372  * @start + PAGE_SIZE when no page could be added by the pte walk.
 373  */
 374 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
 375                         struct vm_area_struct *vma, struct zone *zone,
 376                         unsigned long start, unsigned long end)
 377 {
 378         pte_t *pte;
 379         spinlock_t *ptl;
 380 
 381         /*
 382          * Initialize pte walk starting at the already pinned page where we
 383          * are sure that there is a pte, as it was pinned under the same
 384          * mmap_sem write op.
 385          */
 386         pte = get_locked_pte(vma->vm_mm, start, &ptl);
 387         /* Make sure we do not cross the page table boundary */
 388         end = pgd_addr_end(start, end);
 389         end = p4d_addr_end(start, end);
 390         end = pud_addr_end(start, end);
 391         end = pmd_addr_end(start, end);
 392 
 393         /* The page next to the pinned page is the first we will try to get */
 394         start += PAGE_SIZE;
 395         while (start < end) {
 396                 struct page *page = NULL;
 397                 pte++;
 398                 if (pte_present(*pte))
 399                         page = vm_normal_page(vma, start, *pte);
 400                 /*
 401                  * Break if page could not be obtained or the page's node+zone does not
 402                  * match
 403                  */
 404                 if (!page || page_zone(page) != zone)
 405                         break;
 406 
 407                 /*
 408                  * Do not use pagevec for PTE-mapped THP,
 409                  * munlock_vma_pages_range() will handle them.
 410                  */
 411                 if (PageTransCompound(page))
 412                         break;
 413 
 414                 get_page(page);
 415                 /*
 416                  * Increase the address that will be returned *before* the
 417                  * eventual break due to pvec becoming full by adding the page
 418                  */
 419                 start += PAGE_SIZE;
 420                 if (pagevec_add(pvec, page) == 0)
 421                         break;
 422         }
 423         pte_unmap_unlock(pte, ptl);
 424         return start;
 425 }
 426 
 427 /*
 428  * munlock_vma_pages_range() - munlock all pages in the vma range.'
 429  * @vma - vma containing range to be munlock()ed.
 430  * @start - start address in @vma of the range
 431  * @end - end of range in @vma.
 432  *
 433  *  For mremap(), munmap() and exit().
 434  *
 435  * Called with @vma VM_LOCKED.
 436  *
 437  * Returns with VM_LOCKED cleared.  Callers must be prepared to
 438  * deal with this.
 439  *
 440  * We don't save and restore VM_LOCKED here because pages are
 441  * still on lru.  In unmap path, pages might be scanned by reclaim
 442  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 443  * free them.  This will result in freeing mlocked pages.
 444  */
 445 void munlock_vma_pages_range(struct vm_area_struct *vma,
 446                              unsigned long start, unsigned long end)
 447 {
 448         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 449 
 450         while (start < end) {
 451                 struct page *page;
 452                 unsigned int page_mask = 0;
 453                 unsigned long page_increm;
 454                 struct pagevec pvec;
 455                 struct zone *zone;
 456 
 457                 pagevec_init(&pvec);
 458                 /*
 459                  * Although FOLL_DUMP is intended for get_dump_page(),
 460                  * it just so happens that its special treatment of the
 461                  * ZERO_PAGE (returning an error instead of doing get_page)
 462                  * suits munlock very well (and if somehow an abnormal page
 463                  * has sneaked into the range, we won't oops here: great).
 464                  */
 465                 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
 466 
 467                 if (page && !IS_ERR(page)) {
 468                         if (PageTransTail(page)) {
 469                                 VM_BUG_ON_PAGE(PageMlocked(page), page);
 470                                 put_page(page); /* follow_page_mask() */
 471                         } else if (PageTransHuge(page)) {
 472                                 lock_page(page);
 473                                 /*
 474                                  * Any THP page found by follow_page_mask() may
 475                                  * have gotten split before reaching
 476                                  * munlock_vma_page(), so we need to compute
 477                                  * the page_mask here instead.
 478                                  */
 479                                 page_mask = munlock_vma_page(page);
 480                                 unlock_page(page);
 481                                 put_page(page); /* follow_page_mask() */
 482                         } else {
 483                                 /*
 484                                  * Non-huge pages are handled in batches via
 485                                  * pagevec. The pin from follow_page_mask()
 486                                  * prevents them from collapsing by THP.
 487                                  */
 488                                 pagevec_add(&pvec, page);
 489                                 zone = page_zone(page);
 490 
 491                                 /*
 492                                  * Try to fill the rest of pagevec using fast
 493                                  * pte walk. This will also update start to
 494                                  * the next page to process. Then munlock the
 495                                  * pagevec.
 496                                  */
 497                                 start = __munlock_pagevec_fill(&pvec, vma,
 498                                                 zone, start, end);
 499                                 __munlock_pagevec(&pvec, zone);
 500                                 goto next;
 501                         }
 502                 }
 503                 page_increm = 1 + page_mask;
 504                 start += page_increm * PAGE_SIZE;
 505 next:
 506                 cond_resched();
 507         }
 508 }
 509 
 510 /*
 511  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 512  *
 513  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 514  * munlock is a no-op.  However, for some special vmas, we go ahead and
 515  * populate the ptes.
 516  *
 517  * For vmas that pass the filters, merge/split as appropriate.
 518  */
 519 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 520         unsigned long start, unsigned long end, vm_flags_t newflags)
 521 {
 522         struct mm_struct *mm = vma->vm_mm;
 523         pgoff_t pgoff;
 524         int nr_pages;
 525         int ret = 0;
 526         int lock = !!(newflags & VM_LOCKED);
 527         vm_flags_t old_flags = vma->vm_flags;
 528 
 529         if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
 530             is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
 531             vma_is_dax(vma))
 532                 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
 533                 goto out;
 534 
 535         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 536         *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 537                           vma->vm_file, pgoff, vma_policy(vma),
 538                           vma->vm_userfaultfd_ctx);
 539         if (*prev) {
 540                 vma = *prev;
 541                 goto success;
 542         }
 543 
 544         if (start != vma->vm_start) {
 545                 ret = split_vma(mm, vma, start, 1);
 546                 if (ret)
 547                         goto out;
 548         }
 549 
 550         if (end != vma->vm_end) {
 551                 ret = split_vma(mm, vma, end, 0);
 552                 if (ret)
 553                         goto out;
 554         }
 555 
 556 success:
 557         /*
 558          * Keep track of amount of locked VM.
 559          */
 560         nr_pages = (end - start) >> PAGE_SHIFT;
 561         if (!lock)
 562                 nr_pages = -nr_pages;
 563         else if (old_flags & VM_LOCKED)
 564                 nr_pages = 0;
 565         mm->locked_vm += nr_pages;
 566 
 567         /*
 568          * vm_flags is protected by the mmap_sem held in write mode.
 569          * It's okay if try_to_unmap_one unmaps a page just after we
 570          * set VM_LOCKED, populate_vma_page_range will bring it back.
 571          */
 572 
 573         if (lock)
 574                 vma->vm_flags = newflags;
 575         else
 576                 munlock_vma_pages_range(vma, start, end);
 577 
 578 out:
 579         *prev = vma;
 580         return ret;
 581 }
 582 
 583 static int apply_vma_lock_flags(unsigned long start, size_t len,
 584                                 vm_flags_t flags)
 585 {
 586         unsigned long nstart, end, tmp;
 587         struct vm_area_struct * vma, * prev;
 588         int error;
 589 
 590         VM_BUG_ON(offset_in_page(start));
 591         VM_BUG_ON(len != PAGE_ALIGN(len));
 592         end = start + len;
 593         if (end < start)
 594                 return -EINVAL;
 595         if (end == start)
 596                 return 0;
 597         vma = find_vma(current->mm, start);
 598         if (!vma || vma->vm_start > start)
 599                 return -ENOMEM;
 600 
 601         prev = vma->vm_prev;
 602         if (start > vma->vm_start)
 603                 prev = vma;
 604 
 605         for (nstart = start ; ; ) {
 606                 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 607 
 608                 newflags |= flags;
 609 
 610                 /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 611                 tmp = vma->vm_end;
 612                 if (tmp > end)
 613                         tmp = end;
 614                 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 615                 if (error)
 616                         break;
 617                 nstart = tmp;
 618                 if (nstart < prev->vm_end)
 619                         nstart = prev->vm_end;
 620                 if (nstart >= end)
 621                         break;
 622 
 623                 vma = prev->vm_next;
 624                 if (!vma || vma->vm_start != nstart) {
 625                         error = -ENOMEM;
 626                         break;
 627                 }
 628         }
 629         return error;
 630 }
 631 
 632 /*
 633  * Go through vma areas and sum size of mlocked
 634  * vma pages, as return value.
 635  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
 636  * is also counted.
 637  * Return value: previously mlocked page counts
 638  */
 639 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
 640                 unsigned long start, size_t len)
 641 {
 642         struct vm_area_struct *vma;
 643         unsigned long count = 0;
 644 
 645         if (mm == NULL)
 646                 mm = current->mm;
 647 
 648         vma = find_vma(mm, start);
 649         if (vma == NULL)
 650                 vma = mm->mmap;
 651 
 652         for (; vma ; vma = vma->vm_next) {
 653                 if (start >= vma->vm_end)
 654                         continue;
 655                 if (start + len <=  vma->vm_start)
 656                         break;
 657                 if (vma->vm_flags & VM_LOCKED) {
 658                         if (start > vma->vm_start)
 659                                 count -= (start - vma->vm_start);
 660                         if (start + len < vma->vm_end) {
 661                                 count += start + len - vma->vm_start;
 662                                 break;
 663                         }
 664                         count += vma->vm_end - vma->vm_start;
 665                 }
 666         }
 667 
 668         return count >> PAGE_SHIFT;
 669 }
 670 
 671 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 672 {
 673         unsigned long locked;
 674         unsigned long lock_limit;
 675         int error = -ENOMEM;
 676 
 677         start = untagged_addr(start);
 678 
 679         if (!can_do_mlock())
 680                 return -EPERM;
 681 
 682         len = PAGE_ALIGN(len + (offset_in_page(start)));
 683         start &= PAGE_MASK;
 684 
 685         lock_limit = rlimit(RLIMIT_MEMLOCK);
 686         lock_limit >>= PAGE_SHIFT;
 687         locked = len >> PAGE_SHIFT;
 688 
 689         if (down_write_killable(&current->mm->mmap_sem))
 690                 return -EINTR;
 691 
 692         locked += current->mm->locked_vm;
 693         if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
 694                 /*
 695                  * It is possible that the regions requested intersect with
 696                  * previously mlocked areas, that part area in "mm->locked_vm"
 697                  * should not be counted to new mlock increment count. So check
 698                  * and adjust locked count if necessary.
 699                  */
 700                 locked -= count_mm_mlocked_page_nr(current->mm,
 701                                 start, len);
 702         }
 703 
 704         /* check against resource limits */
 705         if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 706                 error = apply_vma_lock_flags(start, len, flags);
 707 
 708         up_write(&current->mm->mmap_sem);
 709         if (error)
 710                 return error;
 711 
 712         error = __mm_populate(start, len, 0);
 713         if (error)
 714                 return __mlock_posix_error_return(error);
 715         return 0;
 716 }
 717 
 718 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 719 {
 720         return do_mlock(start, len, VM_LOCKED);
 721 }
 722 
 723 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
 724 {
 725         vm_flags_t vm_flags = VM_LOCKED;
 726 
 727         if (flags & ~MLOCK_ONFAULT)
 728                 return -EINVAL;
 729 
 730         if (flags & MLOCK_ONFAULT)
 731                 vm_flags |= VM_LOCKONFAULT;
 732 
 733         return do_mlock(start, len, vm_flags);
 734 }
 735 
 736 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 737 {
 738         int ret;
 739 
 740         start = untagged_addr(start);
 741 
 742         len = PAGE_ALIGN(len + (offset_in_page(start)));
 743         start &= PAGE_MASK;
 744 
 745         if (down_write_killable(&current->mm->mmap_sem))
 746                 return -EINTR;
 747         ret = apply_vma_lock_flags(start, len, 0);
 748         up_write(&current->mm->mmap_sem);
 749 
 750         return ret;
 751 }
 752 
 753 /*
 754  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
 755  * and translate into the appropriate modifications to mm->def_flags and/or the
 756  * flags for all current VMAs.
 757  *
 758  * There are a couple of subtleties with this.  If mlockall() is called multiple
 759  * times with different flags, the values do not necessarily stack.  If mlockall
 760  * is called once including the MCL_FUTURE flag and then a second time without
 761  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
 762  */
 763 static int apply_mlockall_flags(int flags)
 764 {
 765         struct vm_area_struct * vma, * prev = NULL;
 766         vm_flags_t to_add = 0;
 767 
 768         current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
 769         if (flags & MCL_FUTURE) {
 770                 current->mm->def_flags |= VM_LOCKED;
 771 
 772                 if (flags & MCL_ONFAULT)
 773                         current->mm->def_flags |= VM_LOCKONFAULT;
 774 
 775                 if (!(flags & MCL_CURRENT))
 776                         goto out;
 777         }
 778 
 779         if (flags & MCL_CURRENT) {
 780                 to_add |= VM_LOCKED;
 781                 if (flags & MCL_ONFAULT)
 782                         to_add |= VM_LOCKONFAULT;
 783         }
 784 
 785         for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 786                 vm_flags_t newflags;
 787 
 788                 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 789                 newflags |= to_add;
 790 
 791                 /* Ignore errors */
 792                 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 793                 cond_resched();
 794         }
 795 out:
 796         return 0;
 797 }
 798 
 799 SYSCALL_DEFINE1(mlockall, int, flags)
 800 {
 801         unsigned long lock_limit;
 802         int ret;
 803 
 804         if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
 805             flags == MCL_ONFAULT)
 806                 return -EINVAL;
 807 
 808         if (!can_do_mlock())
 809                 return -EPERM;
 810 
 811         lock_limit = rlimit(RLIMIT_MEMLOCK);
 812         lock_limit >>= PAGE_SHIFT;
 813 
 814         if (down_write_killable(&current->mm->mmap_sem))
 815                 return -EINTR;
 816 
 817         ret = -ENOMEM;
 818         if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 819             capable(CAP_IPC_LOCK))
 820                 ret = apply_mlockall_flags(flags);
 821         up_write(&current->mm->mmap_sem);
 822         if (!ret && (flags & MCL_CURRENT))
 823                 mm_populate(0, TASK_SIZE);
 824 
 825         return ret;
 826 }
 827 
 828 SYSCALL_DEFINE0(munlockall)
 829 {
 830         int ret;
 831 
 832         if (down_write_killable(&current->mm->mmap_sem))
 833                 return -EINTR;
 834         ret = apply_mlockall_flags(0);
 835         up_write(&current->mm->mmap_sem);
 836         return ret;
 837 }
 838 
 839 /*
 840  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 841  * shm segments) get accounted against the user_struct instead.
 842  */
 843 static DEFINE_SPINLOCK(shmlock_user_lock);
 844 
 845 int user_shm_lock(size_t size, struct user_struct *user)
 846 {
 847         unsigned long lock_limit, locked;
 848         int allowed = 0;
 849 
 850         locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 851         lock_limit = rlimit(RLIMIT_MEMLOCK);
 852         if (lock_limit == RLIM_INFINITY)
 853                 allowed = 1;
 854         lock_limit >>= PAGE_SHIFT;
 855         spin_lock(&shmlock_user_lock);
 856         if (!allowed &&
 857             locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 858                 goto out;
 859         get_uid(user);
 860         user->locked_shm += locked;
 861         allowed = 1;
 862 out:
 863         spin_unlock(&shmlock_user_lock);
 864         return allowed;
 865 }
 866 
 867 void user_shm_unlock(size_t size, struct user_struct *user)
 868 {
 869         spin_lock(&shmlock_user_lock);
 870         user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 871         spin_unlock(&shmlock_user_lock);
 872         free_uid(user);
 873 }

/* [<][>][^][v][top][bottom][index][help] */