This source file includes following definitions.
- ipmr_mr_table_iter
- ipmr_get_table
- ipmr_fib_lookup
- ipmr_rule_action
- ipmr_rule_match
- ipmr_rule_configure
- ipmr_rule_compare
- ipmr_rule_fill
- ipmr_rules_init
- ipmr_rules_exit
- ipmr_rules_dump
- ipmr_rules_seq_read
- ipmr_rule_default
- ipmr_mr_table_iter
- ipmr_get_table
- ipmr_fib_lookup
- ipmr_rules_init
- ipmr_rules_exit
- ipmr_rules_dump
- ipmr_rules_seq_read
- ipmr_rule_default
- ipmr_hash_cmp
- ipmr_new_table_set
- ipmr_new_table
- ipmr_free_table
- ipmr_del_tunnel
- ipmr_init_vif_indev
- ipmr_new_tunnel
- reg_vif_xmit
- reg_vif_get_iflink
- reg_vif_setup
- ipmr_reg_vif
- __pim_rcv
- ipmr_reg_vif
- call_ipmr_vif_entry_notifiers
- call_ipmr_mfc_entry_notifiers
- vif_delete
- ipmr_cache_free_rcu
- ipmr_cache_free
- ipmr_destroy_unres
- ipmr_expire_process
- ipmr_update_thresholds
- vif_add
- ipmr_cache_find
- ipmr_cache_find_any
- ipmr_cache_find_parent
- ipmr_cache_alloc
- ipmr_cache_alloc_unres
- ipmr_cache_resolve
- ipmr_cache_report
- ipmr_cache_unresolved
- ipmr_mfc_delete
- ipmr_mfc_add
- mroute_clean_tables
- mrtsock_destruct
- ip_mroute_setsockopt
- ip_mroute_getsockopt
- ipmr_ioctl
- ipmr_compat_ioctl
- ipmr_device_event
- ip_encap
- ipmr_forward_finish
- ipmr_forward_offloaded
- ipmr_forward_offloaded
- ipmr_queue_xmit
- ipmr_find_vif
- ip_mr_forward
- ipmr_rt_fib_lookup
- ip_mr_input
- pim_rcv_v1
- pim_rcv
- ipmr_get_route
- ipmr_fill_mroute
- _ipmr_fill_mroute
- mroute_msgsize
- mroute_netlink_event
- igmpmsg_netlink_msgsize
- igmpmsg_netlink_event
- ipmr_rtm_valid_getroute_req
- ipmr_rtm_getroute
- ipmr_rtm_dumproute
- ipmr_rtm_validate_proto
- ipmr_nla_get_ttls
- rtm_to_ipmr_mfcc
- ipmr_rtm_route
- ipmr_fill_table
- ipmr_fill_vif
- ipmr_valid_dumplink
- ipmr_rtm_dumplink
- ipmr_vif_seq_start
- ipmr_vif_seq_stop
- ipmr_vif_seq_show
- ipmr_mfc_seq_start
- ipmr_mfc_seq_show
- ipmr_seq_read
- ipmr_dump
- ipmr_notifier_init
- ipmr_notifier_exit
- ipmr_net_init
- ipmr_net_exit
- ip_mr_init
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65
66 #include <linux/nospec.h>
67
68 struct ipmr_rule {
69 struct fib_rule common;
70 };
71
72 struct ipmr_result {
73 struct mr_table *mrt;
74 };
75
76
77
78
79
80 static DEFINE_RWLOCK(mrt_lock);
81
82
83
84
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86
87
88
89
90
91
92
93
94
95 static struct kmem_cache *mrt_cachep __ro_after_init;
96
97 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
98 static void ipmr_free_table(struct mr_table *mrt);
99
100 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
101 struct net_device *dev, struct sk_buff *skb,
102 struct mfc_cache *cache, int local);
103 static int ipmr_cache_report(struct mr_table *mrt,
104 struct sk_buff *pkt, vifi_t vifi, int assert);
105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
106 int cmd);
107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
108 static void mroute_clean_tables(struct mr_table *mrt, int flags);
109 static void ipmr_expire_process(struct timer_list *t);
110
111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
112 #define ipmr_for_each_table(mrt, net) \
113 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
114
115 static struct mr_table *ipmr_mr_table_iter(struct net *net,
116 struct mr_table *mrt)
117 {
118 struct mr_table *ret;
119
120 if (!mrt)
121 ret = list_entry_rcu(net->ipv4.mr_tables.next,
122 struct mr_table, list);
123 else
124 ret = list_entry_rcu(mrt->list.next,
125 struct mr_table, list);
126
127 if (&ret->list == &net->ipv4.mr_tables)
128 return NULL;
129 return ret;
130 }
131
132 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
133 {
134 struct mr_table *mrt;
135
136 ipmr_for_each_table(mrt, net) {
137 if (mrt->id == id)
138 return mrt;
139 }
140 return NULL;
141 }
142
143 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
144 struct mr_table **mrt)
145 {
146 int err;
147 struct ipmr_result res;
148 struct fib_lookup_arg arg = {
149 .result = &res,
150 .flags = FIB_LOOKUP_NOREF,
151 };
152
153
154 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
155
156 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
157 flowi4_to_flowi(flp4), 0, &arg);
158 if (err < 0)
159 return err;
160 *mrt = res.mrt;
161 return 0;
162 }
163
164 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
165 int flags, struct fib_lookup_arg *arg)
166 {
167 struct ipmr_result *res = arg->result;
168 struct mr_table *mrt;
169
170 switch (rule->action) {
171 case FR_ACT_TO_TBL:
172 break;
173 case FR_ACT_UNREACHABLE:
174 return -ENETUNREACH;
175 case FR_ACT_PROHIBIT:
176 return -EACCES;
177 case FR_ACT_BLACKHOLE:
178 default:
179 return -EINVAL;
180 }
181
182 arg->table = fib_rule_get_table(rule, arg);
183
184 mrt = ipmr_get_table(rule->fr_net, arg->table);
185 if (!mrt)
186 return -EAGAIN;
187 res->mrt = mrt;
188 return 0;
189 }
190
191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
192 {
193 return 1;
194 }
195
196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
197 FRA_GENERIC_POLICY,
198 };
199
200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
201 struct fib_rule_hdr *frh, struct nlattr **tb,
202 struct netlink_ext_ack *extack)
203 {
204 return 0;
205 }
206
207 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
208 struct nlattr **tb)
209 {
210 return 1;
211 }
212
213 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
214 struct fib_rule_hdr *frh)
215 {
216 frh->dst_len = 0;
217 frh->src_len = 0;
218 frh->tos = 0;
219 return 0;
220 }
221
222 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
223 .family = RTNL_FAMILY_IPMR,
224 .rule_size = sizeof(struct ipmr_rule),
225 .addr_size = sizeof(u32),
226 .action = ipmr_rule_action,
227 .match = ipmr_rule_match,
228 .configure = ipmr_rule_configure,
229 .compare = ipmr_rule_compare,
230 .fill = ipmr_rule_fill,
231 .nlgroup = RTNLGRP_IPV4_RULE,
232 .policy = ipmr_rule_policy,
233 .owner = THIS_MODULE,
234 };
235
236 static int __net_init ipmr_rules_init(struct net *net)
237 {
238 struct fib_rules_ops *ops;
239 struct mr_table *mrt;
240 int err;
241
242 ops = fib_rules_register(&ipmr_rules_ops_template, net);
243 if (IS_ERR(ops))
244 return PTR_ERR(ops);
245
246 INIT_LIST_HEAD(&net->ipv4.mr_tables);
247
248 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
249 if (IS_ERR(mrt)) {
250 err = PTR_ERR(mrt);
251 goto err1;
252 }
253
254 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
255 if (err < 0)
256 goto err2;
257
258 net->ipv4.mr_rules_ops = ops;
259 return 0;
260
261 err2:
262 ipmr_free_table(mrt);
263 err1:
264 fib_rules_unregister(ops);
265 return err;
266 }
267
268 static void __net_exit ipmr_rules_exit(struct net *net)
269 {
270 struct mr_table *mrt, *next;
271
272 rtnl_lock();
273 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
274 list_del(&mrt->list);
275 ipmr_free_table(mrt);
276 }
277 fib_rules_unregister(net->ipv4.mr_rules_ops);
278 rtnl_unlock();
279 }
280
281 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
282 {
283 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
284 }
285
286 static unsigned int ipmr_rules_seq_read(struct net *net)
287 {
288 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
289 }
290
291 bool ipmr_rule_default(const struct fib_rule *rule)
292 {
293 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
294 }
295 EXPORT_SYMBOL(ipmr_rule_default);
296 #else
297 #define ipmr_for_each_table(mrt, net) \
298 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
299
300 static struct mr_table *ipmr_mr_table_iter(struct net *net,
301 struct mr_table *mrt)
302 {
303 if (!mrt)
304 return net->ipv4.mrt;
305 return NULL;
306 }
307
308 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
309 {
310 return net->ipv4.mrt;
311 }
312
313 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
314 struct mr_table **mrt)
315 {
316 *mrt = net->ipv4.mrt;
317 return 0;
318 }
319
320 static int __net_init ipmr_rules_init(struct net *net)
321 {
322 struct mr_table *mrt;
323
324 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
325 if (IS_ERR(mrt))
326 return PTR_ERR(mrt);
327 net->ipv4.mrt = mrt;
328 return 0;
329 }
330
331 static void __net_exit ipmr_rules_exit(struct net *net)
332 {
333 rtnl_lock();
334 ipmr_free_table(net->ipv4.mrt);
335 net->ipv4.mrt = NULL;
336 rtnl_unlock();
337 }
338
339 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
340 {
341 return 0;
342 }
343
344 static unsigned int ipmr_rules_seq_read(struct net *net)
345 {
346 return 0;
347 }
348
349 bool ipmr_rule_default(const struct fib_rule *rule)
350 {
351 return true;
352 }
353 EXPORT_SYMBOL(ipmr_rule_default);
354 #endif
355
356 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
357 const void *ptr)
358 {
359 const struct mfc_cache_cmp_arg *cmparg = arg->key;
360 struct mfc_cache *c = (struct mfc_cache *)ptr;
361
362 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
363 cmparg->mfc_origin != c->mfc_origin;
364 }
365
366 static const struct rhashtable_params ipmr_rht_params = {
367 .head_offset = offsetof(struct mr_mfc, mnode),
368 .key_offset = offsetof(struct mfc_cache, cmparg),
369 .key_len = sizeof(struct mfc_cache_cmp_arg),
370 .nelem_hint = 3,
371 .obj_cmpfn = ipmr_hash_cmp,
372 .automatic_shrinking = true,
373 };
374
375 static void ipmr_new_table_set(struct mr_table *mrt,
376 struct net *net)
377 {
378 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
379 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
380 #endif
381 }
382
383 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
384 .mfc_mcastgrp = htonl(INADDR_ANY),
385 .mfc_origin = htonl(INADDR_ANY),
386 };
387
388 static struct mr_table_ops ipmr_mr_table_ops = {
389 .rht_params = &ipmr_rht_params,
390 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
391 };
392
393 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
394 {
395 struct mr_table *mrt;
396
397
398 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
399 return ERR_PTR(-EINVAL);
400
401 mrt = ipmr_get_table(net, id);
402 if (mrt)
403 return mrt;
404
405 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
406 ipmr_expire_process, ipmr_new_table_set);
407 }
408
409 static void ipmr_free_table(struct mr_table *mrt)
410 {
411 del_timer_sync(&mrt->ipmr_expire_timer);
412 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
413 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
414 rhltable_destroy(&mrt->mfc_hash);
415 kfree(mrt);
416 }
417
418
419
420 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
421 {
422 struct net *net = dev_net(dev);
423
424 dev_close(dev);
425
426 dev = __dev_get_by_name(net, "tunl0");
427 if (dev) {
428 const struct net_device_ops *ops = dev->netdev_ops;
429 struct ifreq ifr;
430 struct ip_tunnel_parm p;
431
432 memset(&p, 0, sizeof(p));
433 p.iph.daddr = v->vifc_rmt_addr.s_addr;
434 p.iph.saddr = v->vifc_lcl_addr.s_addr;
435 p.iph.version = 4;
436 p.iph.ihl = 5;
437 p.iph.protocol = IPPROTO_IPIP;
438 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
439 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
440
441 if (ops->ndo_do_ioctl) {
442 mm_segment_t oldfs = get_fs();
443
444 set_fs(KERNEL_DS);
445 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
446 set_fs(oldfs);
447 }
448 }
449 }
450
451
452 static bool ipmr_init_vif_indev(const struct net_device *dev)
453 {
454 struct in_device *in_dev;
455
456 ASSERT_RTNL();
457
458 in_dev = __in_dev_get_rtnl(dev);
459 if (!in_dev)
460 return false;
461 ipv4_devconf_setall(in_dev);
462 neigh_parms_data_state_setall(in_dev->arp_parms);
463 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
464
465 return true;
466 }
467
468 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
469 {
470 struct net_device *dev;
471
472 dev = __dev_get_by_name(net, "tunl0");
473
474 if (dev) {
475 const struct net_device_ops *ops = dev->netdev_ops;
476 int err;
477 struct ifreq ifr;
478 struct ip_tunnel_parm p;
479
480 memset(&p, 0, sizeof(p));
481 p.iph.daddr = v->vifc_rmt_addr.s_addr;
482 p.iph.saddr = v->vifc_lcl_addr.s_addr;
483 p.iph.version = 4;
484 p.iph.ihl = 5;
485 p.iph.protocol = IPPROTO_IPIP;
486 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
487 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
488
489 if (ops->ndo_do_ioctl) {
490 mm_segment_t oldfs = get_fs();
491
492 set_fs(KERNEL_DS);
493 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
494 set_fs(oldfs);
495 } else {
496 err = -EOPNOTSUPP;
497 }
498 dev = NULL;
499
500 if (err == 0 &&
501 (dev = __dev_get_by_name(net, p.name)) != NULL) {
502 dev->flags |= IFF_MULTICAST;
503 if (!ipmr_init_vif_indev(dev))
504 goto failure;
505 if (dev_open(dev, NULL))
506 goto failure;
507 dev_hold(dev);
508 }
509 }
510 return dev;
511
512 failure:
513 unregister_netdevice(dev);
514 return NULL;
515 }
516
517 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
518 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
519 {
520 struct net *net = dev_net(dev);
521 struct mr_table *mrt;
522 struct flowi4 fl4 = {
523 .flowi4_oif = dev->ifindex,
524 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
525 .flowi4_mark = skb->mark,
526 };
527 int err;
528
529 err = ipmr_fib_lookup(net, &fl4, &mrt);
530 if (err < 0) {
531 kfree_skb(skb);
532 return err;
533 }
534
535 read_lock(&mrt_lock);
536 dev->stats.tx_bytes += skb->len;
537 dev->stats.tx_packets++;
538 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
539 read_unlock(&mrt_lock);
540 kfree_skb(skb);
541 return NETDEV_TX_OK;
542 }
543
544 static int reg_vif_get_iflink(const struct net_device *dev)
545 {
546 return 0;
547 }
548
549 static const struct net_device_ops reg_vif_netdev_ops = {
550 .ndo_start_xmit = reg_vif_xmit,
551 .ndo_get_iflink = reg_vif_get_iflink,
552 };
553
554 static void reg_vif_setup(struct net_device *dev)
555 {
556 dev->type = ARPHRD_PIMREG;
557 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
558 dev->flags = IFF_NOARP;
559 dev->netdev_ops = ®_vif_netdev_ops;
560 dev->needs_free_netdev = true;
561 dev->features |= NETIF_F_NETNS_LOCAL;
562 }
563
564 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
565 {
566 struct net_device *dev;
567 char name[IFNAMSIZ];
568
569 if (mrt->id == RT_TABLE_DEFAULT)
570 sprintf(name, "pimreg");
571 else
572 sprintf(name, "pimreg%u", mrt->id);
573
574 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
575
576 if (!dev)
577 return NULL;
578
579 dev_net_set(dev, net);
580
581 if (register_netdevice(dev)) {
582 free_netdev(dev);
583 return NULL;
584 }
585
586 if (!ipmr_init_vif_indev(dev))
587 goto failure;
588 if (dev_open(dev, NULL))
589 goto failure;
590
591 dev_hold(dev);
592
593 return dev;
594
595 failure:
596 unregister_netdevice(dev);
597 return NULL;
598 }
599
600
601 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
602 unsigned int pimlen)
603 {
604 struct net_device *reg_dev = NULL;
605 struct iphdr *encap;
606
607 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
608
609
610
611
612
613 if (!ipv4_is_multicast(encap->daddr) ||
614 encap->tot_len == 0 ||
615 ntohs(encap->tot_len) + pimlen > skb->len)
616 return 1;
617
618 read_lock(&mrt_lock);
619 if (mrt->mroute_reg_vif_num >= 0)
620 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
621 read_unlock(&mrt_lock);
622
623 if (!reg_dev)
624 return 1;
625
626 skb->mac_header = skb->network_header;
627 skb_pull(skb, (u8 *)encap - skb->data);
628 skb_reset_network_header(skb);
629 skb->protocol = htons(ETH_P_IP);
630 skb->ip_summed = CHECKSUM_NONE;
631
632 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
633
634 netif_rx(skb);
635
636 return NET_RX_SUCCESS;
637 }
638 #else
639 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
640 {
641 return NULL;
642 }
643 #endif
644
645 static int call_ipmr_vif_entry_notifiers(struct net *net,
646 enum fib_event_type event_type,
647 struct vif_device *vif,
648 vifi_t vif_index, u32 tb_id)
649 {
650 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
651 vif, vif_index, tb_id,
652 &net->ipv4.ipmr_seq);
653 }
654
655 static int call_ipmr_mfc_entry_notifiers(struct net *net,
656 enum fib_event_type event_type,
657 struct mfc_cache *mfc, u32 tb_id)
658 {
659 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
660 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
661 }
662
663
664
665
666
667 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
668 struct list_head *head)
669 {
670 struct net *net = read_pnet(&mrt->net);
671 struct vif_device *v;
672 struct net_device *dev;
673 struct in_device *in_dev;
674
675 if (vifi < 0 || vifi >= mrt->maxvif)
676 return -EADDRNOTAVAIL;
677
678 v = &mrt->vif_table[vifi];
679
680 if (VIF_EXISTS(mrt, vifi))
681 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
682 mrt->id);
683
684 write_lock_bh(&mrt_lock);
685 dev = v->dev;
686 v->dev = NULL;
687
688 if (!dev) {
689 write_unlock_bh(&mrt_lock);
690 return -EADDRNOTAVAIL;
691 }
692
693 if (vifi == mrt->mroute_reg_vif_num)
694 mrt->mroute_reg_vif_num = -1;
695
696 if (vifi + 1 == mrt->maxvif) {
697 int tmp;
698
699 for (tmp = vifi - 1; tmp >= 0; tmp--) {
700 if (VIF_EXISTS(mrt, tmp))
701 break;
702 }
703 mrt->maxvif = tmp+1;
704 }
705
706 write_unlock_bh(&mrt_lock);
707
708 dev_set_allmulti(dev, -1);
709
710 in_dev = __in_dev_get_rtnl(dev);
711 if (in_dev) {
712 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
713 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
714 NETCONFA_MC_FORWARDING,
715 dev->ifindex, &in_dev->cnf);
716 ip_rt_multicast_event(in_dev);
717 }
718
719 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
720 unregister_netdevice_queue(dev, head);
721
722 dev_put(dev);
723 return 0;
724 }
725
726 static void ipmr_cache_free_rcu(struct rcu_head *head)
727 {
728 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
729
730 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
731 }
732
733 static void ipmr_cache_free(struct mfc_cache *c)
734 {
735 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
736 }
737
738
739
740
741 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
742 {
743 struct net *net = read_pnet(&mrt->net);
744 struct sk_buff *skb;
745 struct nlmsgerr *e;
746
747 atomic_dec(&mrt->cache_resolve_queue_len);
748
749 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
750 if (ip_hdr(skb)->version == 0) {
751 struct nlmsghdr *nlh = skb_pull(skb,
752 sizeof(struct iphdr));
753 nlh->nlmsg_type = NLMSG_ERROR;
754 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
755 skb_trim(skb, nlh->nlmsg_len);
756 e = nlmsg_data(nlh);
757 e->error = -ETIMEDOUT;
758 memset(&e->msg, 0, sizeof(e->msg));
759
760 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
761 } else {
762 kfree_skb(skb);
763 }
764 }
765
766 ipmr_cache_free(c);
767 }
768
769
770 static void ipmr_expire_process(struct timer_list *t)
771 {
772 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
773 struct mr_mfc *c, *next;
774 unsigned long expires;
775 unsigned long now;
776
777 if (!spin_trylock(&mfc_unres_lock)) {
778 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
779 return;
780 }
781
782 if (list_empty(&mrt->mfc_unres_queue))
783 goto out;
784
785 now = jiffies;
786 expires = 10*HZ;
787
788 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
789 if (time_after(c->mfc_un.unres.expires, now)) {
790 unsigned long interval = c->mfc_un.unres.expires - now;
791 if (interval < expires)
792 expires = interval;
793 continue;
794 }
795
796 list_del(&c->list);
797 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
798 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
799 }
800
801 if (!list_empty(&mrt->mfc_unres_queue))
802 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
803
804 out:
805 spin_unlock(&mfc_unres_lock);
806 }
807
808
809 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
810 unsigned char *ttls)
811 {
812 int vifi;
813
814 cache->mfc_un.res.minvif = MAXVIFS;
815 cache->mfc_un.res.maxvif = 0;
816 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
817
818 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
819 if (VIF_EXISTS(mrt, vifi) &&
820 ttls[vifi] && ttls[vifi] < 255) {
821 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
822 if (cache->mfc_un.res.minvif > vifi)
823 cache->mfc_un.res.minvif = vifi;
824 if (cache->mfc_un.res.maxvif <= vifi)
825 cache->mfc_un.res.maxvif = vifi + 1;
826 }
827 }
828 cache->mfc_un.res.lastuse = jiffies;
829 }
830
831 static int vif_add(struct net *net, struct mr_table *mrt,
832 struct vifctl *vifc, int mrtsock)
833 {
834 struct netdev_phys_item_id ppid = { };
835 int vifi = vifc->vifc_vifi;
836 struct vif_device *v = &mrt->vif_table[vifi];
837 struct net_device *dev;
838 struct in_device *in_dev;
839 int err;
840
841
842 if (VIF_EXISTS(mrt, vifi))
843 return -EADDRINUSE;
844
845 switch (vifc->vifc_flags) {
846 case VIFF_REGISTER:
847 if (!ipmr_pimsm_enabled())
848 return -EINVAL;
849
850
851
852 if (mrt->mroute_reg_vif_num >= 0)
853 return -EADDRINUSE;
854 dev = ipmr_reg_vif(net, mrt);
855 if (!dev)
856 return -ENOBUFS;
857 err = dev_set_allmulti(dev, 1);
858 if (err) {
859 unregister_netdevice(dev);
860 dev_put(dev);
861 return err;
862 }
863 break;
864 case VIFF_TUNNEL:
865 dev = ipmr_new_tunnel(net, vifc);
866 if (!dev)
867 return -ENOBUFS;
868 err = dev_set_allmulti(dev, 1);
869 if (err) {
870 ipmr_del_tunnel(dev, vifc);
871 dev_put(dev);
872 return err;
873 }
874 break;
875 case VIFF_USE_IFINDEX:
876 case 0:
877 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
878 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
879 if (dev && !__in_dev_get_rtnl(dev)) {
880 dev_put(dev);
881 return -EADDRNOTAVAIL;
882 }
883 } else {
884 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
885 }
886 if (!dev)
887 return -EADDRNOTAVAIL;
888 err = dev_set_allmulti(dev, 1);
889 if (err) {
890 dev_put(dev);
891 return err;
892 }
893 break;
894 default:
895 return -EINVAL;
896 }
897
898 in_dev = __in_dev_get_rtnl(dev);
899 if (!in_dev) {
900 dev_put(dev);
901 return -EADDRNOTAVAIL;
902 }
903 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
904 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
905 dev->ifindex, &in_dev->cnf);
906 ip_rt_multicast_event(in_dev);
907
908
909 vif_device_init(v, dev, vifc->vifc_rate_limit,
910 vifc->vifc_threshold,
911 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
912 (VIFF_TUNNEL | VIFF_REGISTER));
913
914 err = dev_get_port_parent_id(dev, &ppid, true);
915 if (err == 0) {
916 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
917 v->dev_parent_id.id_len = ppid.id_len;
918 } else {
919 v->dev_parent_id.id_len = 0;
920 }
921
922 v->local = vifc->vifc_lcl_addr.s_addr;
923 v->remote = vifc->vifc_rmt_addr.s_addr;
924
925
926 write_lock_bh(&mrt_lock);
927 v->dev = dev;
928 if (v->flags & VIFF_REGISTER)
929 mrt->mroute_reg_vif_num = vifi;
930 if (vifi+1 > mrt->maxvif)
931 mrt->maxvif = vifi+1;
932 write_unlock_bh(&mrt_lock);
933 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
934 return 0;
935 }
936
937
938 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
939 __be32 origin,
940 __be32 mcastgrp)
941 {
942 struct mfc_cache_cmp_arg arg = {
943 .mfc_mcastgrp = mcastgrp,
944 .mfc_origin = origin
945 };
946
947 return mr_mfc_find(mrt, &arg);
948 }
949
950
951 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
952 __be32 mcastgrp, int vifi)
953 {
954 struct mfc_cache_cmp_arg arg = {
955 .mfc_mcastgrp = mcastgrp,
956 .mfc_origin = htonl(INADDR_ANY)
957 };
958
959 if (mcastgrp == htonl(INADDR_ANY))
960 return mr_mfc_find_any_parent(mrt, vifi);
961 return mr_mfc_find_any(mrt, vifi, &arg);
962 }
963
964
965 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
966 __be32 origin, __be32 mcastgrp,
967 int parent)
968 {
969 struct mfc_cache_cmp_arg arg = {
970 .mfc_mcastgrp = mcastgrp,
971 .mfc_origin = origin,
972 };
973
974 return mr_mfc_find_parent(mrt, &arg, parent);
975 }
976
977
978 static struct mfc_cache *ipmr_cache_alloc(void)
979 {
980 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
981
982 if (c) {
983 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
984 c->_c.mfc_un.res.minvif = MAXVIFS;
985 c->_c.free = ipmr_cache_free_rcu;
986 refcount_set(&c->_c.mfc_un.res.refcount, 1);
987 }
988 return c;
989 }
990
991 static struct mfc_cache *ipmr_cache_alloc_unres(void)
992 {
993 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
994
995 if (c) {
996 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
997 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
998 }
999 return c;
1000 }
1001
1002
1003 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1004 struct mfc_cache *uc, struct mfc_cache *c)
1005 {
1006 struct sk_buff *skb;
1007 struct nlmsgerr *e;
1008
1009
1010 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1011 if (ip_hdr(skb)->version == 0) {
1012 struct nlmsghdr *nlh = skb_pull(skb,
1013 sizeof(struct iphdr));
1014
1015 if (mr_fill_mroute(mrt, skb, &c->_c,
1016 nlmsg_data(nlh)) > 0) {
1017 nlh->nlmsg_len = skb_tail_pointer(skb) -
1018 (u8 *)nlh;
1019 } else {
1020 nlh->nlmsg_type = NLMSG_ERROR;
1021 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1022 skb_trim(skb, nlh->nlmsg_len);
1023 e = nlmsg_data(nlh);
1024 e->error = -EMSGSIZE;
1025 memset(&e->msg, 0, sizeof(e->msg));
1026 }
1027
1028 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1029 } else {
1030 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1031 }
1032 }
1033 }
1034
1035
1036
1037
1038
1039 static int ipmr_cache_report(struct mr_table *mrt,
1040 struct sk_buff *pkt, vifi_t vifi, int assert)
1041 {
1042 const int ihl = ip_hdrlen(pkt);
1043 struct sock *mroute_sk;
1044 struct igmphdr *igmp;
1045 struct igmpmsg *msg;
1046 struct sk_buff *skb;
1047 int ret;
1048
1049 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1050 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1051 else
1052 skb = alloc_skb(128, GFP_ATOMIC);
1053
1054 if (!skb)
1055 return -ENOBUFS;
1056
1057 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1058
1059
1060
1061
1062
1063 skb_push(skb, sizeof(struct iphdr));
1064 skb_reset_network_header(skb);
1065 skb_reset_transport_header(skb);
1066 msg = (struct igmpmsg *)skb_network_header(skb);
1067 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1068 msg->im_msgtype = assert;
1069 msg->im_mbz = 0;
1070 if (assert == IGMPMSG_WRVIFWHOLE)
1071 msg->im_vif = vifi;
1072 else
1073 msg->im_vif = mrt->mroute_reg_vif_num;
1074 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1075 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1076 sizeof(struct iphdr));
1077 } else {
1078
1079 skb_set_network_header(skb, skb->len);
1080 skb_put(skb, ihl);
1081 skb_copy_to_linear_data(skb, pkt->data, ihl);
1082
1083 ip_hdr(skb)->protocol = 0;
1084 msg = (struct igmpmsg *)skb_network_header(skb);
1085 msg->im_vif = vifi;
1086 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1087
1088 igmp = skb_put(skb, sizeof(struct igmphdr));
1089 igmp->type = assert;
1090 msg->im_msgtype = assert;
1091 igmp->code = 0;
1092 ip_hdr(skb)->tot_len = htons(skb->len);
1093 skb->transport_header = skb->network_header;
1094 }
1095
1096 rcu_read_lock();
1097 mroute_sk = rcu_dereference(mrt->mroute_sk);
1098 if (!mroute_sk) {
1099 rcu_read_unlock();
1100 kfree_skb(skb);
1101 return -EINVAL;
1102 }
1103
1104 igmpmsg_netlink_event(mrt, skb);
1105
1106
1107 ret = sock_queue_rcv_skb(mroute_sk, skb);
1108 rcu_read_unlock();
1109 if (ret < 0) {
1110 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1111 kfree_skb(skb);
1112 }
1113
1114 return ret;
1115 }
1116
1117
1118 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1119 struct sk_buff *skb, struct net_device *dev)
1120 {
1121 const struct iphdr *iph = ip_hdr(skb);
1122 struct mfc_cache *c;
1123 bool found = false;
1124 int err;
1125
1126 spin_lock_bh(&mfc_unres_lock);
1127 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1128 if (c->mfc_mcastgrp == iph->daddr &&
1129 c->mfc_origin == iph->saddr) {
1130 found = true;
1131 break;
1132 }
1133 }
1134
1135 if (!found) {
1136
1137 c = ipmr_cache_alloc_unres();
1138 if (!c) {
1139 spin_unlock_bh(&mfc_unres_lock);
1140
1141 kfree_skb(skb);
1142 return -ENOBUFS;
1143 }
1144
1145
1146 c->_c.mfc_parent = -1;
1147 c->mfc_origin = iph->saddr;
1148 c->mfc_mcastgrp = iph->daddr;
1149
1150
1151 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1152
1153 if (err < 0) {
1154
1155
1156
1157 spin_unlock_bh(&mfc_unres_lock);
1158
1159 ipmr_cache_free(c);
1160 kfree_skb(skb);
1161 return err;
1162 }
1163
1164 atomic_inc(&mrt->cache_resolve_queue_len);
1165 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1166 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1167
1168 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1169 mod_timer(&mrt->ipmr_expire_timer,
1170 c->_c.mfc_un.unres.expires);
1171 }
1172
1173
1174 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1175 kfree_skb(skb);
1176 err = -ENOBUFS;
1177 } else {
1178 if (dev) {
1179 skb->dev = dev;
1180 skb->skb_iif = dev->ifindex;
1181 }
1182 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1183 err = 0;
1184 }
1185
1186 spin_unlock_bh(&mfc_unres_lock);
1187 return err;
1188 }
1189
1190
1191
1192 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1193 {
1194 struct net *net = read_pnet(&mrt->net);
1195 struct mfc_cache *c;
1196
1197
1198 rcu_read_lock();
1199 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1200 mfc->mfcc_mcastgrp.s_addr, parent);
1201 rcu_read_unlock();
1202 if (!c)
1203 return -ENOENT;
1204 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1205 list_del_rcu(&c->_c.list);
1206 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1207 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1208 mr_cache_put(&c->_c);
1209
1210 return 0;
1211 }
1212
1213 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1214 struct mfcctl *mfc, int mrtsock, int parent)
1215 {
1216 struct mfc_cache *uc, *c;
1217 struct mr_mfc *_uc;
1218 bool found;
1219 int ret;
1220
1221 if (mfc->mfcc_parent >= MAXVIFS)
1222 return -ENFILE;
1223
1224
1225 rcu_read_lock();
1226 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1227 mfc->mfcc_mcastgrp.s_addr, parent);
1228 rcu_read_unlock();
1229 if (c) {
1230 write_lock_bh(&mrt_lock);
1231 c->_c.mfc_parent = mfc->mfcc_parent;
1232 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1233 if (!mrtsock)
1234 c->_c.mfc_flags |= MFC_STATIC;
1235 write_unlock_bh(&mrt_lock);
1236 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1237 mrt->id);
1238 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1239 return 0;
1240 }
1241
1242 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1243 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1244 return -EINVAL;
1245
1246 c = ipmr_cache_alloc();
1247 if (!c)
1248 return -ENOMEM;
1249
1250 c->mfc_origin = mfc->mfcc_origin.s_addr;
1251 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1252 c->_c.mfc_parent = mfc->mfcc_parent;
1253 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1254 if (!mrtsock)
1255 c->_c.mfc_flags |= MFC_STATIC;
1256
1257 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1258 ipmr_rht_params);
1259 if (ret) {
1260 pr_err("ipmr: rhtable insert error %d\n", ret);
1261 ipmr_cache_free(c);
1262 return ret;
1263 }
1264 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1265
1266
1267
1268 found = false;
1269 spin_lock_bh(&mfc_unres_lock);
1270 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1271 uc = (struct mfc_cache *)_uc;
1272 if (uc->mfc_origin == c->mfc_origin &&
1273 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1274 list_del(&_uc->list);
1275 atomic_dec(&mrt->cache_resolve_queue_len);
1276 found = true;
1277 break;
1278 }
1279 }
1280 if (list_empty(&mrt->mfc_unres_queue))
1281 del_timer(&mrt->ipmr_expire_timer);
1282 spin_unlock_bh(&mfc_unres_lock);
1283
1284 if (found) {
1285 ipmr_cache_resolve(net, mrt, uc, c);
1286 ipmr_cache_free(uc);
1287 }
1288 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1289 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1290 return 0;
1291 }
1292
1293
1294 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1295 {
1296 struct net *net = read_pnet(&mrt->net);
1297 struct mr_mfc *c, *tmp;
1298 struct mfc_cache *cache;
1299 LIST_HEAD(list);
1300 int i;
1301
1302
1303 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1304 for (i = 0; i < mrt->maxvif; i++) {
1305 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1306 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1307 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1308 continue;
1309 vif_delete(mrt, i, 0, &list);
1310 }
1311 unregister_netdevice_many(&list);
1312 }
1313
1314
1315 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1316 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1317 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1318 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1319 continue;
1320 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1321 list_del_rcu(&c->list);
1322 cache = (struct mfc_cache *)c;
1323 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1324 mrt->id);
1325 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1326 mr_cache_put(c);
1327 }
1328 }
1329
1330 if (flags & MRT_FLUSH_MFC) {
1331 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1332 spin_lock_bh(&mfc_unres_lock);
1333 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1334 list_del(&c->list);
1335 cache = (struct mfc_cache *)c;
1336 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1337 ipmr_destroy_unres(mrt, cache);
1338 }
1339 spin_unlock_bh(&mfc_unres_lock);
1340 }
1341 }
1342 }
1343
1344
1345
1346
1347 static void mrtsock_destruct(struct sock *sk)
1348 {
1349 struct net *net = sock_net(sk);
1350 struct mr_table *mrt;
1351
1352 rtnl_lock();
1353 ipmr_for_each_table(mrt, net) {
1354 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1355 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1356 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1357 NETCONFA_MC_FORWARDING,
1358 NETCONFA_IFINDEX_ALL,
1359 net->ipv4.devconf_all);
1360 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1361 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1362 }
1363 }
1364 rtnl_unlock();
1365 }
1366
1367
1368
1369
1370
1371
1372
1373 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1374 unsigned int optlen)
1375 {
1376 struct net *net = sock_net(sk);
1377 int val, ret = 0, parent = 0;
1378 struct mr_table *mrt;
1379 struct vifctl vif;
1380 struct mfcctl mfc;
1381 bool do_wrvifwhole;
1382 u32 uval;
1383
1384
1385 rtnl_lock();
1386 if (sk->sk_type != SOCK_RAW ||
1387 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1388 ret = -EOPNOTSUPP;
1389 goto out_unlock;
1390 }
1391
1392 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1393 if (!mrt) {
1394 ret = -ENOENT;
1395 goto out_unlock;
1396 }
1397 if (optname != MRT_INIT) {
1398 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1399 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1400 ret = -EACCES;
1401 goto out_unlock;
1402 }
1403 }
1404
1405 switch (optname) {
1406 case MRT_INIT:
1407 if (optlen != sizeof(int)) {
1408 ret = -EINVAL;
1409 break;
1410 }
1411 if (rtnl_dereference(mrt->mroute_sk)) {
1412 ret = -EADDRINUSE;
1413 break;
1414 }
1415
1416 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1417 if (ret == 0) {
1418 rcu_assign_pointer(mrt->mroute_sk, sk);
1419 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1420 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1421 NETCONFA_MC_FORWARDING,
1422 NETCONFA_IFINDEX_ALL,
1423 net->ipv4.devconf_all);
1424 }
1425 break;
1426 case MRT_DONE:
1427 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1428 ret = -EACCES;
1429 } else {
1430
1431
1432
1433
1434 rtnl_unlock();
1435 ret = ip_ra_control(sk, 0, NULL);
1436 goto out;
1437 }
1438 break;
1439 case MRT_ADD_VIF:
1440 case MRT_DEL_VIF:
1441 if (optlen != sizeof(vif)) {
1442 ret = -EINVAL;
1443 break;
1444 }
1445 if (copy_from_user(&vif, optval, sizeof(vif))) {
1446 ret = -EFAULT;
1447 break;
1448 }
1449 if (vif.vifc_vifi >= MAXVIFS) {
1450 ret = -ENFILE;
1451 break;
1452 }
1453 if (optname == MRT_ADD_VIF) {
1454 ret = vif_add(net, mrt, &vif,
1455 sk == rtnl_dereference(mrt->mroute_sk));
1456 } else {
1457 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1458 }
1459 break;
1460
1461
1462
1463 case MRT_ADD_MFC:
1464 case MRT_DEL_MFC:
1465 parent = -1;
1466
1467 case MRT_ADD_MFC_PROXY:
1468 case MRT_DEL_MFC_PROXY:
1469 if (optlen != sizeof(mfc)) {
1470 ret = -EINVAL;
1471 break;
1472 }
1473 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1474 ret = -EFAULT;
1475 break;
1476 }
1477 if (parent == 0)
1478 parent = mfc.mfcc_parent;
1479 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1480 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1481 else
1482 ret = ipmr_mfc_add(net, mrt, &mfc,
1483 sk == rtnl_dereference(mrt->mroute_sk),
1484 parent);
1485 break;
1486 case MRT_FLUSH:
1487 if (optlen != sizeof(val)) {
1488 ret = -EINVAL;
1489 break;
1490 }
1491 if (get_user(val, (int __user *)optval)) {
1492 ret = -EFAULT;
1493 break;
1494 }
1495 mroute_clean_tables(mrt, val);
1496 break;
1497
1498 case MRT_ASSERT:
1499 if (optlen != sizeof(val)) {
1500 ret = -EINVAL;
1501 break;
1502 }
1503 if (get_user(val, (int __user *)optval)) {
1504 ret = -EFAULT;
1505 break;
1506 }
1507 mrt->mroute_do_assert = val;
1508 break;
1509 case MRT_PIM:
1510 if (!ipmr_pimsm_enabled()) {
1511 ret = -ENOPROTOOPT;
1512 break;
1513 }
1514 if (optlen != sizeof(val)) {
1515 ret = -EINVAL;
1516 break;
1517 }
1518 if (get_user(val, (int __user *)optval)) {
1519 ret = -EFAULT;
1520 break;
1521 }
1522
1523 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1524 val = !!val;
1525 if (val != mrt->mroute_do_pim) {
1526 mrt->mroute_do_pim = val;
1527 mrt->mroute_do_assert = val;
1528 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1529 }
1530 break;
1531 case MRT_TABLE:
1532 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1533 ret = -ENOPROTOOPT;
1534 break;
1535 }
1536 if (optlen != sizeof(uval)) {
1537 ret = -EINVAL;
1538 break;
1539 }
1540 if (get_user(uval, (u32 __user *)optval)) {
1541 ret = -EFAULT;
1542 break;
1543 }
1544
1545 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1546 ret = -EBUSY;
1547 } else {
1548 mrt = ipmr_new_table(net, uval);
1549 if (IS_ERR(mrt))
1550 ret = PTR_ERR(mrt);
1551 else
1552 raw_sk(sk)->ipmr_table = uval;
1553 }
1554 break;
1555
1556 default:
1557 ret = -ENOPROTOOPT;
1558 }
1559 out_unlock:
1560 rtnl_unlock();
1561 out:
1562 return ret;
1563 }
1564
1565
1566 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1567 {
1568 int olr;
1569 int val;
1570 struct net *net = sock_net(sk);
1571 struct mr_table *mrt;
1572
1573 if (sk->sk_type != SOCK_RAW ||
1574 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1575 return -EOPNOTSUPP;
1576
1577 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1578 if (!mrt)
1579 return -ENOENT;
1580
1581 switch (optname) {
1582 case MRT_VERSION:
1583 val = 0x0305;
1584 break;
1585 case MRT_PIM:
1586 if (!ipmr_pimsm_enabled())
1587 return -ENOPROTOOPT;
1588 val = mrt->mroute_do_pim;
1589 break;
1590 case MRT_ASSERT:
1591 val = mrt->mroute_do_assert;
1592 break;
1593 default:
1594 return -ENOPROTOOPT;
1595 }
1596
1597 if (get_user(olr, optlen))
1598 return -EFAULT;
1599 olr = min_t(unsigned int, olr, sizeof(int));
1600 if (olr < 0)
1601 return -EINVAL;
1602 if (put_user(olr, optlen))
1603 return -EFAULT;
1604 if (copy_to_user(optval, &val, olr))
1605 return -EFAULT;
1606 return 0;
1607 }
1608
1609
1610 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1611 {
1612 struct sioc_sg_req sr;
1613 struct sioc_vif_req vr;
1614 struct vif_device *vif;
1615 struct mfc_cache *c;
1616 struct net *net = sock_net(sk);
1617 struct mr_table *mrt;
1618
1619 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1620 if (!mrt)
1621 return -ENOENT;
1622
1623 switch (cmd) {
1624 case SIOCGETVIFCNT:
1625 if (copy_from_user(&vr, arg, sizeof(vr)))
1626 return -EFAULT;
1627 if (vr.vifi >= mrt->maxvif)
1628 return -EINVAL;
1629 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1630 read_lock(&mrt_lock);
1631 vif = &mrt->vif_table[vr.vifi];
1632 if (VIF_EXISTS(mrt, vr.vifi)) {
1633 vr.icount = vif->pkt_in;
1634 vr.ocount = vif->pkt_out;
1635 vr.ibytes = vif->bytes_in;
1636 vr.obytes = vif->bytes_out;
1637 read_unlock(&mrt_lock);
1638
1639 if (copy_to_user(arg, &vr, sizeof(vr)))
1640 return -EFAULT;
1641 return 0;
1642 }
1643 read_unlock(&mrt_lock);
1644 return -EADDRNOTAVAIL;
1645 case SIOCGETSGCNT:
1646 if (copy_from_user(&sr, arg, sizeof(sr)))
1647 return -EFAULT;
1648
1649 rcu_read_lock();
1650 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1651 if (c) {
1652 sr.pktcnt = c->_c.mfc_un.res.pkt;
1653 sr.bytecnt = c->_c.mfc_un.res.bytes;
1654 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1655 rcu_read_unlock();
1656
1657 if (copy_to_user(arg, &sr, sizeof(sr)))
1658 return -EFAULT;
1659 return 0;
1660 }
1661 rcu_read_unlock();
1662 return -EADDRNOTAVAIL;
1663 default:
1664 return -ENOIOCTLCMD;
1665 }
1666 }
1667
1668 #ifdef CONFIG_COMPAT
1669 struct compat_sioc_sg_req {
1670 struct in_addr src;
1671 struct in_addr grp;
1672 compat_ulong_t pktcnt;
1673 compat_ulong_t bytecnt;
1674 compat_ulong_t wrong_if;
1675 };
1676
1677 struct compat_sioc_vif_req {
1678 vifi_t vifi;
1679 compat_ulong_t icount;
1680 compat_ulong_t ocount;
1681 compat_ulong_t ibytes;
1682 compat_ulong_t obytes;
1683 };
1684
1685 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1686 {
1687 struct compat_sioc_sg_req sr;
1688 struct compat_sioc_vif_req vr;
1689 struct vif_device *vif;
1690 struct mfc_cache *c;
1691 struct net *net = sock_net(sk);
1692 struct mr_table *mrt;
1693
1694 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1695 if (!mrt)
1696 return -ENOENT;
1697
1698 switch (cmd) {
1699 case SIOCGETVIFCNT:
1700 if (copy_from_user(&vr, arg, sizeof(vr)))
1701 return -EFAULT;
1702 if (vr.vifi >= mrt->maxvif)
1703 return -EINVAL;
1704 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1705 read_lock(&mrt_lock);
1706 vif = &mrt->vif_table[vr.vifi];
1707 if (VIF_EXISTS(mrt, vr.vifi)) {
1708 vr.icount = vif->pkt_in;
1709 vr.ocount = vif->pkt_out;
1710 vr.ibytes = vif->bytes_in;
1711 vr.obytes = vif->bytes_out;
1712 read_unlock(&mrt_lock);
1713
1714 if (copy_to_user(arg, &vr, sizeof(vr)))
1715 return -EFAULT;
1716 return 0;
1717 }
1718 read_unlock(&mrt_lock);
1719 return -EADDRNOTAVAIL;
1720 case SIOCGETSGCNT:
1721 if (copy_from_user(&sr, arg, sizeof(sr)))
1722 return -EFAULT;
1723
1724 rcu_read_lock();
1725 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1726 if (c) {
1727 sr.pktcnt = c->_c.mfc_un.res.pkt;
1728 sr.bytecnt = c->_c.mfc_un.res.bytes;
1729 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1730 rcu_read_unlock();
1731
1732 if (copy_to_user(arg, &sr, sizeof(sr)))
1733 return -EFAULT;
1734 return 0;
1735 }
1736 rcu_read_unlock();
1737 return -EADDRNOTAVAIL;
1738 default:
1739 return -ENOIOCTLCMD;
1740 }
1741 }
1742 #endif
1743
1744 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1745 {
1746 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1747 struct net *net = dev_net(dev);
1748 struct mr_table *mrt;
1749 struct vif_device *v;
1750 int ct;
1751
1752 if (event != NETDEV_UNREGISTER)
1753 return NOTIFY_DONE;
1754
1755 ipmr_for_each_table(mrt, net) {
1756 v = &mrt->vif_table[0];
1757 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1758 if (v->dev == dev)
1759 vif_delete(mrt, ct, 1, NULL);
1760 }
1761 }
1762 return NOTIFY_DONE;
1763 }
1764
1765 static struct notifier_block ip_mr_notifier = {
1766 .notifier_call = ipmr_device_event,
1767 };
1768
1769
1770
1771
1772
1773 static void ip_encap(struct net *net, struct sk_buff *skb,
1774 __be32 saddr, __be32 daddr)
1775 {
1776 struct iphdr *iph;
1777 const struct iphdr *old_iph = ip_hdr(skb);
1778
1779 skb_push(skb, sizeof(struct iphdr));
1780 skb->transport_header = skb->network_header;
1781 skb_reset_network_header(skb);
1782 iph = ip_hdr(skb);
1783
1784 iph->version = 4;
1785 iph->tos = old_iph->tos;
1786 iph->ttl = old_iph->ttl;
1787 iph->frag_off = 0;
1788 iph->daddr = daddr;
1789 iph->saddr = saddr;
1790 iph->protocol = IPPROTO_IPIP;
1791 iph->ihl = 5;
1792 iph->tot_len = htons(skb->len);
1793 ip_select_ident(net, skb, NULL);
1794 ip_send_check(iph);
1795
1796 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1797 nf_reset_ct(skb);
1798 }
1799
1800 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1801 struct sk_buff *skb)
1802 {
1803 struct ip_options *opt = &(IPCB(skb)->opt);
1804
1805 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1806 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1807
1808 if (unlikely(opt->optlen))
1809 ip_forward_options(skb);
1810
1811 return dst_output(net, sk, skb);
1812 }
1813
1814 #ifdef CONFIG_NET_SWITCHDEV
1815 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1816 int in_vifi, int out_vifi)
1817 {
1818 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1819 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1820
1821 if (!skb->offload_l3_fwd_mark)
1822 return false;
1823 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1824 return false;
1825 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1826 &in_vif->dev_parent_id);
1827 }
1828 #else
1829 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1830 int in_vifi, int out_vifi)
1831 {
1832 return false;
1833 }
1834 #endif
1835
1836
1837
1838 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1839 int in_vifi, struct sk_buff *skb, int vifi)
1840 {
1841 const struct iphdr *iph = ip_hdr(skb);
1842 struct vif_device *vif = &mrt->vif_table[vifi];
1843 struct net_device *dev;
1844 struct rtable *rt;
1845 struct flowi4 fl4;
1846 int encap = 0;
1847
1848 if (!vif->dev)
1849 goto out_free;
1850
1851 if (vif->flags & VIFF_REGISTER) {
1852 vif->pkt_out++;
1853 vif->bytes_out += skb->len;
1854 vif->dev->stats.tx_bytes += skb->len;
1855 vif->dev->stats.tx_packets++;
1856 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1857 goto out_free;
1858 }
1859
1860 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1861 goto out_free;
1862
1863 if (vif->flags & VIFF_TUNNEL) {
1864 rt = ip_route_output_ports(net, &fl4, NULL,
1865 vif->remote, vif->local,
1866 0, 0,
1867 IPPROTO_IPIP,
1868 RT_TOS(iph->tos), vif->link);
1869 if (IS_ERR(rt))
1870 goto out_free;
1871 encap = sizeof(struct iphdr);
1872 } else {
1873 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1874 0, 0,
1875 IPPROTO_IPIP,
1876 RT_TOS(iph->tos), vif->link);
1877 if (IS_ERR(rt))
1878 goto out_free;
1879 }
1880
1881 dev = rt->dst.dev;
1882
1883 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1884
1885
1886
1887
1888 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1889 ip_rt_put(rt);
1890 goto out_free;
1891 }
1892
1893 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1894
1895 if (skb_cow(skb, encap)) {
1896 ip_rt_put(rt);
1897 goto out_free;
1898 }
1899
1900 vif->pkt_out++;
1901 vif->bytes_out += skb->len;
1902
1903 skb_dst_drop(skb);
1904 skb_dst_set(skb, &rt->dst);
1905 ip_decrease_ttl(ip_hdr(skb));
1906
1907
1908
1909
1910 if (vif->flags & VIFF_TUNNEL) {
1911 ip_encap(net, skb, vif->local, vif->remote);
1912
1913 vif->dev->stats.tx_packets++;
1914 vif->dev->stats.tx_bytes += skb->len;
1915 }
1916
1917 IPCB(skb)->flags |= IPSKB_FORWARDED;
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1930 net, NULL, skb, skb->dev, dev,
1931 ipmr_forward_finish);
1932 return;
1933
1934 out_free:
1935 kfree_skb(skb);
1936 }
1937
1938 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1939 {
1940 int ct;
1941
1942 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1943 if (mrt->vif_table[ct].dev == dev)
1944 break;
1945 }
1946 return ct;
1947 }
1948
1949
1950 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1951 struct net_device *dev, struct sk_buff *skb,
1952 struct mfc_cache *c, int local)
1953 {
1954 int true_vifi = ipmr_find_vif(mrt, dev);
1955 int psend = -1;
1956 int vif, ct;
1957
1958 vif = c->_c.mfc_parent;
1959 c->_c.mfc_un.res.pkt++;
1960 c->_c.mfc_un.res.bytes += skb->len;
1961 c->_c.mfc_un.res.lastuse = jiffies;
1962
1963 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1964 struct mfc_cache *cache_proxy;
1965
1966
1967
1968
1969 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1970 if (cache_proxy &&
1971 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1972 goto forward;
1973 }
1974
1975
1976 if (mrt->vif_table[vif].dev != dev) {
1977 if (rt_is_output_route(skb_rtable(skb))) {
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989 goto dont_forward;
1990 }
1991
1992 c->_c.mfc_un.res.wrong_if++;
1993
1994 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1995
1996
1997
1998
1999
2000 (mrt->mroute_do_pim ||
2001 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2002 time_after(jiffies,
2003 c->_c.mfc_un.res.last_assert +
2004 MFC_ASSERT_THRESH)) {
2005 c->_c.mfc_un.res.last_assert = jiffies;
2006 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2007 if (mrt->mroute_do_wrvifwhole)
2008 ipmr_cache_report(mrt, skb, true_vifi,
2009 IGMPMSG_WRVIFWHOLE);
2010 }
2011 goto dont_forward;
2012 }
2013
2014 forward:
2015 mrt->vif_table[vif].pkt_in++;
2016 mrt->vif_table[vif].bytes_in += skb->len;
2017
2018
2019 if (c->mfc_origin == htonl(INADDR_ANY) &&
2020 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2021 if (true_vifi >= 0 &&
2022 true_vifi != c->_c.mfc_parent &&
2023 ip_hdr(skb)->ttl >
2024 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2025
2026
2027
2028
2029 psend = c->_c.mfc_parent;
2030 goto last_forward;
2031 }
2032 goto dont_forward;
2033 }
2034 for (ct = c->_c.mfc_un.res.maxvif - 1;
2035 ct >= c->_c.mfc_un.res.minvif; ct--) {
2036
2037 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2038 ct != true_vifi) &&
2039 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2040 if (psend != -1) {
2041 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2042
2043 if (skb2)
2044 ipmr_queue_xmit(net, mrt, true_vifi,
2045 skb2, psend);
2046 }
2047 psend = ct;
2048 }
2049 }
2050 last_forward:
2051 if (psend != -1) {
2052 if (local) {
2053 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2054
2055 if (skb2)
2056 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2057 psend);
2058 } else {
2059 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2060 return;
2061 }
2062 }
2063
2064 dont_forward:
2065 if (!local)
2066 kfree_skb(skb);
2067 }
2068
2069 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2070 {
2071 struct rtable *rt = skb_rtable(skb);
2072 struct iphdr *iph = ip_hdr(skb);
2073 struct flowi4 fl4 = {
2074 .daddr = iph->daddr,
2075 .saddr = iph->saddr,
2076 .flowi4_tos = RT_TOS(iph->tos),
2077 .flowi4_oif = (rt_is_output_route(rt) ?
2078 skb->dev->ifindex : 0),
2079 .flowi4_iif = (rt_is_output_route(rt) ?
2080 LOOPBACK_IFINDEX :
2081 skb->dev->ifindex),
2082 .flowi4_mark = skb->mark,
2083 };
2084 struct mr_table *mrt;
2085 int err;
2086
2087 err = ipmr_fib_lookup(net, &fl4, &mrt);
2088 if (err)
2089 return ERR_PTR(err);
2090 return mrt;
2091 }
2092
2093
2094
2095
2096 int ip_mr_input(struct sk_buff *skb)
2097 {
2098 struct mfc_cache *cache;
2099 struct net *net = dev_net(skb->dev);
2100 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2101 struct mr_table *mrt;
2102 struct net_device *dev;
2103
2104
2105
2106
2107
2108 dev = skb->dev;
2109 if (netif_is_l3_master(skb->dev)) {
2110 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2111 if (!dev) {
2112 kfree_skb(skb);
2113 return -ENODEV;
2114 }
2115 }
2116
2117
2118
2119
2120 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2121 goto dont_forward;
2122
2123 mrt = ipmr_rt_fib_lookup(net, skb);
2124 if (IS_ERR(mrt)) {
2125 kfree_skb(skb);
2126 return PTR_ERR(mrt);
2127 }
2128 if (!local) {
2129 if (IPCB(skb)->opt.router_alert) {
2130 if (ip_call_ra_chain(skb))
2131 return 0;
2132 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2133
2134
2135
2136
2137
2138
2139 struct sock *mroute_sk;
2140
2141 mroute_sk = rcu_dereference(mrt->mroute_sk);
2142 if (mroute_sk) {
2143 nf_reset_ct(skb);
2144 raw_rcv(mroute_sk, skb);
2145 return 0;
2146 }
2147 }
2148 }
2149
2150
2151 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2152 if (!cache) {
2153 int vif = ipmr_find_vif(mrt, dev);
2154
2155 if (vif >= 0)
2156 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2157 vif);
2158 }
2159
2160
2161 if (!cache) {
2162 int vif;
2163
2164 if (local) {
2165 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2166 ip_local_deliver(skb);
2167 if (!skb2)
2168 return -ENOBUFS;
2169 skb = skb2;
2170 }
2171
2172 read_lock(&mrt_lock);
2173 vif = ipmr_find_vif(mrt, dev);
2174 if (vif >= 0) {
2175 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2176 read_unlock(&mrt_lock);
2177
2178 return err2;
2179 }
2180 read_unlock(&mrt_lock);
2181 kfree_skb(skb);
2182 return -ENODEV;
2183 }
2184
2185 read_lock(&mrt_lock);
2186 ip_mr_forward(net, mrt, dev, skb, cache, local);
2187 read_unlock(&mrt_lock);
2188
2189 if (local)
2190 return ip_local_deliver(skb);
2191
2192 return 0;
2193
2194 dont_forward:
2195 if (local)
2196 return ip_local_deliver(skb);
2197 kfree_skb(skb);
2198 return 0;
2199 }
2200
2201 #ifdef CONFIG_IP_PIMSM_V1
2202
2203 int pim_rcv_v1(struct sk_buff *skb)
2204 {
2205 struct igmphdr *pim;
2206 struct net *net = dev_net(skb->dev);
2207 struct mr_table *mrt;
2208
2209 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2210 goto drop;
2211
2212 pim = igmp_hdr(skb);
2213
2214 mrt = ipmr_rt_fib_lookup(net, skb);
2215 if (IS_ERR(mrt))
2216 goto drop;
2217 if (!mrt->mroute_do_pim ||
2218 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2219 goto drop;
2220
2221 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2222 drop:
2223 kfree_skb(skb);
2224 }
2225 return 0;
2226 }
2227 #endif
2228
2229 #ifdef CONFIG_IP_PIMSM_V2
2230 static int pim_rcv(struct sk_buff *skb)
2231 {
2232 struct pimreghdr *pim;
2233 struct net *net = dev_net(skb->dev);
2234 struct mr_table *mrt;
2235
2236 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2237 goto drop;
2238
2239 pim = (struct pimreghdr *)skb_transport_header(skb);
2240 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2241 (pim->flags & PIM_NULL_REGISTER) ||
2242 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2243 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2244 goto drop;
2245
2246 mrt = ipmr_rt_fib_lookup(net, skb);
2247 if (IS_ERR(mrt))
2248 goto drop;
2249 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2250 drop:
2251 kfree_skb(skb);
2252 }
2253 return 0;
2254 }
2255 #endif
2256
2257 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2258 __be32 saddr, __be32 daddr,
2259 struct rtmsg *rtm, u32 portid)
2260 {
2261 struct mfc_cache *cache;
2262 struct mr_table *mrt;
2263 int err;
2264
2265 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2266 if (!mrt)
2267 return -ENOENT;
2268
2269 rcu_read_lock();
2270 cache = ipmr_cache_find(mrt, saddr, daddr);
2271 if (!cache && skb->dev) {
2272 int vif = ipmr_find_vif(mrt, skb->dev);
2273
2274 if (vif >= 0)
2275 cache = ipmr_cache_find_any(mrt, daddr, vif);
2276 }
2277 if (!cache) {
2278 struct sk_buff *skb2;
2279 struct iphdr *iph;
2280 struct net_device *dev;
2281 int vif = -1;
2282
2283 dev = skb->dev;
2284 read_lock(&mrt_lock);
2285 if (dev)
2286 vif = ipmr_find_vif(mrt, dev);
2287 if (vif < 0) {
2288 read_unlock(&mrt_lock);
2289 rcu_read_unlock();
2290 return -ENODEV;
2291 }
2292
2293 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2294 if (!skb2) {
2295 read_unlock(&mrt_lock);
2296 rcu_read_unlock();
2297 return -ENOMEM;
2298 }
2299
2300 NETLINK_CB(skb2).portid = portid;
2301 skb_push(skb2, sizeof(struct iphdr));
2302 skb_reset_network_header(skb2);
2303 iph = ip_hdr(skb2);
2304 iph->ihl = sizeof(struct iphdr) >> 2;
2305 iph->saddr = saddr;
2306 iph->daddr = daddr;
2307 iph->version = 0;
2308 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2309 read_unlock(&mrt_lock);
2310 rcu_read_unlock();
2311 return err;
2312 }
2313
2314 read_lock(&mrt_lock);
2315 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2316 read_unlock(&mrt_lock);
2317 rcu_read_unlock();
2318 return err;
2319 }
2320
2321 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2322 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2323 int flags)
2324 {
2325 struct nlmsghdr *nlh;
2326 struct rtmsg *rtm;
2327 int err;
2328
2329 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2330 if (!nlh)
2331 return -EMSGSIZE;
2332
2333 rtm = nlmsg_data(nlh);
2334 rtm->rtm_family = RTNL_FAMILY_IPMR;
2335 rtm->rtm_dst_len = 32;
2336 rtm->rtm_src_len = 32;
2337 rtm->rtm_tos = 0;
2338 rtm->rtm_table = mrt->id;
2339 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2340 goto nla_put_failure;
2341 rtm->rtm_type = RTN_MULTICAST;
2342 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2343 if (c->_c.mfc_flags & MFC_STATIC)
2344 rtm->rtm_protocol = RTPROT_STATIC;
2345 else
2346 rtm->rtm_protocol = RTPROT_MROUTED;
2347 rtm->rtm_flags = 0;
2348
2349 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2350 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2351 goto nla_put_failure;
2352 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2353
2354 if (err < 0 && err != -ENOENT)
2355 goto nla_put_failure;
2356
2357 nlmsg_end(skb, nlh);
2358 return 0;
2359
2360 nla_put_failure:
2361 nlmsg_cancel(skb, nlh);
2362 return -EMSGSIZE;
2363 }
2364
2365 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2366 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2367 int flags)
2368 {
2369 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2370 cmd, flags);
2371 }
2372
2373 static size_t mroute_msgsize(bool unresolved, int maxvif)
2374 {
2375 size_t len =
2376 NLMSG_ALIGN(sizeof(struct rtmsg))
2377 + nla_total_size(4)
2378 + nla_total_size(4)
2379 + nla_total_size(4)
2380 ;
2381
2382 if (!unresolved)
2383 len = len
2384 + nla_total_size(4)
2385 + nla_total_size(0)
2386 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2387
2388 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2389 ;
2390
2391 return len;
2392 }
2393
2394 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2395 int cmd)
2396 {
2397 struct net *net = read_pnet(&mrt->net);
2398 struct sk_buff *skb;
2399 int err = -ENOBUFS;
2400
2401 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2402 mrt->maxvif),
2403 GFP_ATOMIC);
2404 if (!skb)
2405 goto errout;
2406
2407 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2408 if (err < 0)
2409 goto errout;
2410
2411 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2412 return;
2413
2414 errout:
2415 kfree_skb(skb);
2416 if (err < 0)
2417 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2418 }
2419
2420 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2421 {
2422 size_t len =
2423 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2424 + nla_total_size(1)
2425 + nla_total_size(4)
2426 + nla_total_size(4)
2427 + nla_total_size(4)
2428
2429 + nla_total_size(payloadlen)
2430 ;
2431
2432 return len;
2433 }
2434
2435 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2436 {
2437 struct net *net = read_pnet(&mrt->net);
2438 struct nlmsghdr *nlh;
2439 struct rtgenmsg *rtgenm;
2440 struct igmpmsg *msg;
2441 struct sk_buff *skb;
2442 struct nlattr *nla;
2443 int payloadlen;
2444
2445 payloadlen = pkt->len - sizeof(struct igmpmsg);
2446 msg = (struct igmpmsg *)skb_network_header(pkt);
2447
2448 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2449 if (!skb)
2450 goto errout;
2451
2452 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2453 sizeof(struct rtgenmsg), 0);
2454 if (!nlh)
2455 goto errout;
2456 rtgenm = nlmsg_data(nlh);
2457 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2458 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2459 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2460 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2461 msg->im_src.s_addr) ||
2462 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2463 msg->im_dst.s_addr))
2464 goto nla_put_failure;
2465
2466 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2467 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2468 nla_data(nla), payloadlen))
2469 goto nla_put_failure;
2470
2471 nlmsg_end(skb, nlh);
2472
2473 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2474 return;
2475
2476 nla_put_failure:
2477 nlmsg_cancel(skb, nlh);
2478 errout:
2479 kfree_skb(skb);
2480 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2481 }
2482
2483 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2484 const struct nlmsghdr *nlh,
2485 struct nlattr **tb,
2486 struct netlink_ext_ack *extack)
2487 {
2488 struct rtmsg *rtm;
2489 int i, err;
2490
2491 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2492 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2493 return -EINVAL;
2494 }
2495
2496 if (!netlink_strict_get_check(skb))
2497 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2498 rtm_ipv4_policy, extack);
2499
2500 rtm = nlmsg_data(nlh);
2501 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2502 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2503 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2504 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2505 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2506 return -EINVAL;
2507 }
2508
2509 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2510 rtm_ipv4_policy, extack);
2511 if (err)
2512 return err;
2513
2514 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2515 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2516 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2517 return -EINVAL;
2518 }
2519
2520 for (i = 0; i <= RTA_MAX; i++) {
2521 if (!tb[i])
2522 continue;
2523
2524 switch (i) {
2525 case RTA_SRC:
2526 case RTA_DST:
2527 case RTA_TABLE:
2528 break;
2529 default:
2530 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2531 return -EINVAL;
2532 }
2533 }
2534
2535 return 0;
2536 }
2537
2538 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2539 struct netlink_ext_ack *extack)
2540 {
2541 struct net *net = sock_net(in_skb->sk);
2542 struct nlattr *tb[RTA_MAX + 1];
2543 struct sk_buff *skb = NULL;
2544 struct mfc_cache *cache;
2545 struct mr_table *mrt;
2546 __be32 src, grp;
2547 u32 tableid;
2548 int err;
2549
2550 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2551 if (err < 0)
2552 goto errout;
2553
2554 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2555 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2556 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2557
2558 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2559 if (!mrt) {
2560 err = -ENOENT;
2561 goto errout_free;
2562 }
2563
2564
2565 rcu_read_lock();
2566 cache = ipmr_cache_find(mrt, src, grp);
2567 rcu_read_unlock();
2568 if (!cache) {
2569 err = -ENOENT;
2570 goto errout_free;
2571 }
2572
2573 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2574 if (!skb) {
2575 err = -ENOBUFS;
2576 goto errout_free;
2577 }
2578
2579 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2580 nlh->nlmsg_seq, cache,
2581 RTM_NEWROUTE, 0);
2582 if (err < 0)
2583 goto errout_free;
2584
2585 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2586
2587 errout:
2588 return err;
2589
2590 errout_free:
2591 kfree_skb(skb);
2592 goto errout;
2593 }
2594
2595 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2596 {
2597 struct fib_dump_filter filter = {};
2598 int err;
2599
2600 if (cb->strict_check) {
2601 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2602 &filter, cb);
2603 if (err < 0)
2604 return err;
2605 }
2606
2607 if (filter.table_id) {
2608 struct mr_table *mrt;
2609
2610 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2611 if (!mrt) {
2612 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2613 return skb->len;
2614
2615 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2616 return -ENOENT;
2617 }
2618 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2619 &mfc_unres_lock, &filter);
2620 return skb->len ? : err;
2621 }
2622
2623 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2624 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2625 }
2626
2627 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2628 [RTA_SRC] = { .type = NLA_U32 },
2629 [RTA_DST] = { .type = NLA_U32 },
2630 [RTA_IIF] = { .type = NLA_U32 },
2631 [RTA_TABLE] = { .type = NLA_U32 },
2632 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2633 };
2634
2635 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2636 {
2637 switch (rtm_protocol) {
2638 case RTPROT_STATIC:
2639 case RTPROT_MROUTED:
2640 return true;
2641 }
2642 return false;
2643 }
2644
2645 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2646 {
2647 struct rtnexthop *rtnh = nla_data(nla);
2648 int remaining = nla_len(nla), vifi = 0;
2649
2650 while (rtnh_ok(rtnh, remaining)) {
2651 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2652 if (++vifi == MAXVIFS)
2653 break;
2654 rtnh = rtnh_next(rtnh, &remaining);
2655 }
2656
2657 return remaining > 0 ? -EINVAL : vifi;
2658 }
2659
2660
2661 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2662 struct mfcctl *mfcc, int *mrtsock,
2663 struct mr_table **mrtret,
2664 struct netlink_ext_ack *extack)
2665 {
2666 struct net_device *dev = NULL;
2667 u32 tblid = RT_TABLE_DEFAULT;
2668 struct mr_table *mrt;
2669 struct nlattr *attr;
2670 struct rtmsg *rtm;
2671 int ret, rem;
2672
2673 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2674 rtm_ipmr_policy, extack);
2675 if (ret < 0)
2676 goto out;
2677 rtm = nlmsg_data(nlh);
2678
2679 ret = -EINVAL;
2680 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2681 rtm->rtm_type != RTN_MULTICAST ||
2682 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2683 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2684 goto out;
2685
2686 memset(mfcc, 0, sizeof(*mfcc));
2687 mfcc->mfcc_parent = -1;
2688 ret = 0;
2689 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2690 switch (nla_type(attr)) {
2691 case RTA_SRC:
2692 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2693 break;
2694 case RTA_DST:
2695 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2696 break;
2697 case RTA_IIF:
2698 dev = __dev_get_by_index(net, nla_get_u32(attr));
2699 if (!dev) {
2700 ret = -ENODEV;
2701 goto out;
2702 }
2703 break;
2704 case RTA_MULTIPATH:
2705 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2706 ret = -EINVAL;
2707 goto out;
2708 }
2709 break;
2710 case RTA_PREFSRC:
2711 ret = 1;
2712 break;
2713 case RTA_TABLE:
2714 tblid = nla_get_u32(attr);
2715 break;
2716 }
2717 }
2718 mrt = ipmr_get_table(net, tblid);
2719 if (!mrt) {
2720 ret = -ENOENT;
2721 goto out;
2722 }
2723 *mrtret = mrt;
2724 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2725 if (dev)
2726 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2727
2728 out:
2729 return ret;
2730 }
2731
2732
2733 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2734 struct netlink_ext_ack *extack)
2735 {
2736 struct net *net = sock_net(skb->sk);
2737 int ret, mrtsock, parent;
2738 struct mr_table *tbl;
2739 struct mfcctl mfcc;
2740
2741 mrtsock = 0;
2742 tbl = NULL;
2743 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2744 if (ret < 0)
2745 return ret;
2746
2747 parent = ret ? mfcc.mfcc_parent : -1;
2748 if (nlh->nlmsg_type == RTM_NEWROUTE)
2749 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2750 else
2751 return ipmr_mfc_delete(tbl, &mfcc, parent);
2752 }
2753
2754 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2755 {
2756 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2757
2758 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2759 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2760 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2761 mrt->mroute_reg_vif_num) ||
2762 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2763 mrt->mroute_do_assert) ||
2764 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2765 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2766 mrt->mroute_do_wrvifwhole))
2767 return false;
2768
2769 return true;
2770 }
2771
2772 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2773 {
2774 struct nlattr *vif_nest;
2775 struct vif_device *vif;
2776
2777
2778 if (!VIF_EXISTS(mrt, vifid))
2779 return true;
2780
2781 vif = &mrt->vif_table[vifid];
2782 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2783 if (!vif_nest)
2784 return false;
2785 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2786 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2787 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2788 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2789 IPMRA_VIFA_PAD) ||
2790 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2791 IPMRA_VIFA_PAD) ||
2792 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2793 IPMRA_VIFA_PAD) ||
2794 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2795 IPMRA_VIFA_PAD) ||
2796 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2797 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2798 nla_nest_cancel(skb, vif_nest);
2799 return false;
2800 }
2801 nla_nest_end(skb, vif_nest);
2802
2803 return true;
2804 }
2805
2806 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2807 struct netlink_ext_ack *extack)
2808 {
2809 struct ifinfomsg *ifm;
2810
2811 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2812 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2813 return -EINVAL;
2814 }
2815
2816 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2817 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2818 return -EINVAL;
2819 }
2820
2821 ifm = nlmsg_data(nlh);
2822 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2823 ifm->ifi_change || ifm->ifi_index) {
2824 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2825 return -EINVAL;
2826 }
2827
2828 return 0;
2829 }
2830
2831 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2832 {
2833 struct net *net = sock_net(skb->sk);
2834 struct nlmsghdr *nlh = NULL;
2835 unsigned int t = 0, s_t;
2836 unsigned int e = 0, s_e;
2837 struct mr_table *mrt;
2838
2839 if (cb->strict_check) {
2840 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2841
2842 if (err < 0)
2843 return err;
2844 }
2845
2846 s_t = cb->args[0];
2847 s_e = cb->args[1];
2848
2849 ipmr_for_each_table(mrt, net) {
2850 struct nlattr *vifs, *af;
2851 struct ifinfomsg *hdr;
2852 u32 i;
2853
2854 if (t < s_t)
2855 goto skip_table;
2856 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2857 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2858 sizeof(*hdr), NLM_F_MULTI);
2859 if (!nlh)
2860 break;
2861
2862 hdr = nlmsg_data(nlh);
2863 memset(hdr, 0, sizeof(*hdr));
2864 hdr->ifi_family = RTNL_FAMILY_IPMR;
2865
2866 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2867 if (!af) {
2868 nlmsg_cancel(skb, nlh);
2869 goto out;
2870 }
2871
2872 if (!ipmr_fill_table(mrt, skb)) {
2873 nlmsg_cancel(skb, nlh);
2874 goto out;
2875 }
2876
2877 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2878 if (!vifs) {
2879 nla_nest_end(skb, af);
2880 nlmsg_end(skb, nlh);
2881 goto out;
2882 }
2883 for (i = 0; i < mrt->maxvif; i++) {
2884 if (e < s_e)
2885 goto skip_entry;
2886 if (!ipmr_fill_vif(mrt, i, skb)) {
2887 nla_nest_end(skb, vifs);
2888 nla_nest_end(skb, af);
2889 nlmsg_end(skb, nlh);
2890 goto out;
2891 }
2892 skip_entry:
2893 e++;
2894 }
2895 s_e = 0;
2896 e = 0;
2897 nla_nest_end(skb, vifs);
2898 nla_nest_end(skb, af);
2899 nlmsg_end(skb, nlh);
2900 skip_table:
2901 t++;
2902 }
2903
2904 out:
2905 cb->args[1] = e;
2906 cb->args[0] = t;
2907
2908 return skb->len;
2909 }
2910
2911 #ifdef CONFIG_PROC_FS
2912
2913
2914
2915
2916 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2917 __acquires(mrt_lock)
2918 {
2919 struct mr_vif_iter *iter = seq->private;
2920 struct net *net = seq_file_net(seq);
2921 struct mr_table *mrt;
2922
2923 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2924 if (!mrt)
2925 return ERR_PTR(-ENOENT);
2926
2927 iter->mrt = mrt;
2928
2929 read_lock(&mrt_lock);
2930 return mr_vif_seq_start(seq, pos);
2931 }
2932
2933 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2934 __releases(mrt_lock)
2935 {
2936 read_unlock(&mrt_lock);
2937 }
2938
2939 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2940 {
2941 struct mr_vif_iter *iter = seq->private;
2942 struct mr_table *mrt = iter->mrt;
2943
2944 if (v == SEQ_START_TOKEN) {
2945 seq_puts(seq,
2946 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2947 } else {
2948 const struct vif_device *vif = v;
2949 const char *name = vif->dev ?
2950 vif->dev->name : "none";
2951
2952 seq_printf(seq,
2953 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2954 vif - mrt->vif_table,
2955 name, vif->bytes_in, vif->pkt_in,
2956 vif->bytes_out, vif->pkt_out,
2957 vif->flags, vif->local, vif->remote);
2958 }
2959 return 0;
2960 }
2961
2962 static const struct seq_operations ipmr_vif_seq_ops = {
2963 .start = ipmr_vif_seq_start,
2964 .next = mr_vif_seq_next,
2965 .stop = ipmr_vif_seq_stop,
2966 .show = ipmr_vif_seq_show,
2967 };
2968
2969 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2970 {
2971 struct net *net = seq_file_net(seq);
2972 struct mr_table *mrt;
2973
2974 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2975 if (!mrt)
2976 return ERR_PTR(-ENOENT);
2977
2978 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2979 }
2980
2981 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2982 {
2983 int n;
2984
2985 if (v == SEQ_START_TOKEN) {
2986 seq_puts(seq,
2987 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2988 } else {
2989 const struct mfc_cache *mfc = v;
2990 const struct mr_mfc_iter *it = seq->private;
2991 const struct mr_table *mrt = it->mrt;
2992
2993 seq_printf(seq, "%08X %08X %-3hd",
2994 (__force u32) mfc->mfc_mcastgrp,
2995 (__force u32) mfc->mfc_origin,
2996 mfc->_c.mfc_parent);
2997
2998 if (it->cache != &mrt->mfc_unres_queue) {
2999 seq_printf(seq, " %8lu %8lu %8lu",
3000 mfc->_c.mfc_un.res.pkt,
3001 mfc->_c.mfc_un.res.bytes,
3002 mfc->_c.mfc_un.res.wrong_if);
3003 for (n = mfc->_c.mfc_un.res.minvif;
3004 n < mfc->_c.mfc_un.res.maxvif; n++) {
3005 if (VIF_EXISTS(mrt, n) &&
3006 mfc->_c.mfc_un.res.ttls[n] < 255)
3007 seq_printf(seq,
3008 " %2d:%-3d",
3009 n, mfc->_c.mfc_un.res.ttls[n]);
3010 }
3011 } else {
3012
3013
3014
3015 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3016 }
3017 seq_putc(seq, '\n');
3018 }
3019 return 0;
3020 }
3021
3022 static const struct seq_operations ipmr_mfc_seq_ops = {
3023 .start = ipmr_mfc_seq_start,
3024 .next = mr_mfc_seq_next,
3025 .stop = mr_mfc_seq_stop,
3026 .show = ipmr_mfc_seq_show,
3027 };
3028 #endif
3029
3030 #ifdef CONFIG_IP_PIMSM_V2
3031 static const struct net_protocol pim_protocol = {
3032 .handler = pim_rcv,
3033 .netns_ok = 1,
3034 };
3035 #endif
3036
3037 static unsigned int ipmr_seq_read(struct net *net)
3038 {
3039 ASSERT_RTNL();
3040
3041 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3042 }
3043
3044 static int ipmr_dump(struct net *net, struct notifier_block *nb)
3045 {
3046 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3047 ipmr_mr_table_iter, &mrt_lock);
3048 }
3049
3050 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3051 .family = RTNL_FAMILY_IPMR,
3052 .fib_seq_read = ipmr_seq_read,
3053 .fib_dump = ipmr_dump,
3054 .owner = THIS_MODULE,
3055 };
3056
3057 static int __net_init ipmr_notifier_init(struct net *net)
3058 {
3059 struct fib_notifier_ops *ops;
3060
3061 net->ipv4.ipmr_seq = 0;
3062
3063 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3064 if (IS_ERR(ops))
3065 return PTR_ERR(ops);
3066 net->ipv4.ipmr_notifier_ops = ops;
3067
3068 return 0;
3069 }
3070
3071 static void __net_exit ipmr_notifier_exit(struct net *net)
3072 {
3073 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3074 net->ipv4.ipmr_notifier_ops = NULL;
3075 }
3076
3077
3078 static int __net_init ipmr_net_init(struct net *net)
3079 {
3080 int err;
3081
3082 err = ipmr_notifier_init(net);
3083 if (err)
3084 goto ipmr_notifier_fail;
3085
3086 err = ipmr_rules_init(net);
3087 if (err < 0)
3088 goto ipmr_rules_fail;
3089
3090 #ifdef CONFIG_PROC_FS
3091 err = -ENOMEM;
3092 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3093 sizeof(struct mr_vif_iter)))
3094 goto proc_vif_fail;
3095 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3096 sizeof(struct mr_mfc_iter)))
3097 goto proc_cache_fail;
3098 #endif
3099 return 0;
3100
3101 #ifdef CONFIG_PROC_FS
3102 proc_cache_fail:
3103 remove_proc_entry("ip_mr_vif", net->proc_net);
3104 proc_vif_fail:
3105 ipmr_rules_exit(net);
3106 #endif
3107 ipmr_rules_fail:
3108 ipmr_notifier_exit(net);
3109 ipmr_notifier_fail:
3110 return err;
3111 }
3112
3113 static void __net_exit ipmr_net_exit(struct net *net)
3114 {
3115 #ifdef CONFIG_PROC_FS
3116 remove_proc_entry("ip_mr_cache", net->proc_net);
3117 remove_proc_entry("ip_mr_vif", net->proc_net);
3118 #endif
3119 ipmr_notifier_exit(net);
3120 ipmr_rules_exit(net);
3121 }
3122
3123 static struct pernet_operations ipmr_net_ops = {
3124 .init = ipmr_net_init,
3125 .exit = ipmr_net_exit,
3126 };
3127
3128 int __init ip_mr_init(void)
3129 {
3130 int err;
3131
3132 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3133 sizeof(struct mfc_cache),
3134 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3135 NULL);
3136
3137 err = register_pernet_subsys(&ipmr_net_ops);
3138 if (err)
3139 goto reg_pernet_fail;
3140
3141 err = register_netdevice_notifier(&ip_mr_notifier);
3142 if (err)
3143 goto reg_notif_fail;
3144 #ifdef CONFIG_IP_PIMSM_V2
3145 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3146 pr_err("%s: can't add PIM protocol\n", __func__);
3147 err = -EAGAIN;
3148 goto add_proto_fail;
3149 }
3150 #endif
3151 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3152 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3153 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3154 ipmr_rtm_route, NULL, 0);
3155 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3156 ipmr_rtm_route, NULL, 0);
3157
3158 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3159 NULL, ipmr_rtm_dumplink, 0);
3160 return 0;
3161
3162 #ifdef CONFIG_IP_PIMSM_V2
3163 add_proto_fail:
3164 unregister_netdevice_notifier(&ip_mr_notifier);
3165 #endif
3166 reg_notif_fail:
3167 unregister_pernet_subsys(&ipmr_net_ops);
3168 reg_pernet_fail:
3169 kmem_cache_destroy(mrt_cachep);
3170 return err;
3171 }