root/net/ipv4/tcp_bbr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bbr_full_bw_reached
  2. bbr_max_bw
  3. bbr_bw
  4. bbr_extra_acked
  5. bbr_rate_bytes_per_sec
  6. bbr_bw_to_pacing_rate
  7. bbr_init_pacing_rate_from_rtt
  8. bbr_set_pacing_rate
  9. bbr_min_tso_segs
  10. bbr_tso_segs_goal
  11. bbr_save_cwnd
  12. bbr_cwnd_event
  13. bbr_bdp
  14. bbr_quantization_budget
  15. bbr_inflight
  16. bbr_packets_in_net_at_edt
  17. bbr_ack_aggregation_cwnd
  18. bbr_set_cwnd_to_recover_or_restore
  19. bbr_set_cwnd
  20. bbr_is_next_cycle_phase
  21. bbr_advance_cycle_phase
  22. bbr_update_cycle_phase
  23. bbr_reset_startup_mode
  24. bbr_reset_probe_bw_mode
  25. bbr_reset_mode
  26. bbr_reset_lt_bw_sampling_interval
  27. bbr_reset_lt_bw_sampling
  28. bbr_lt_bw_interval_done
  29. bbr_lt_bw_sampling
  30. bbr_update_bw
  31. bbr_update_ack_aggregation
  32. bbr_check_full_bw_reached
  33. bbr_check_drain
  34. bbr_check_probe_rtt_done
  35. bbr_update_min_rtt
  36. bbr_update_gains
  37. bbr_update_model
  38. bbr_main
  39. bbr_init
  40. bbr_sndbuf_expand
  41. bbr_undo_cwnd
  42. bbr_ssthresh
  43. bbr_get_info
  44. bbr_set_state
  45. bbr_register
  46. bbr_unregister

   1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
   2  *
   3  * BBR congestion control computes the sending rate based on the delivery
   4  * rate (throughput) estimated from ACKs. In a nutshell:
   5  *
   6  *   On each ACK, update our model of the network path:
   7  *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
   8  *      min_rtt = windowed_min(rtt, 10 seconds)
   9  *   pacing_rate = pacing_gain * bottleneck_bandwidth
  10  *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
  11  *
  12  * The core algorithm does not react directly to packet losses or delays,
  13  * although BBR may adjust the size of next send per ACK when loss is
  14  * observed, or adjust the sending rate if it estimates there is a
  15  * traffic policer, in order to keep the drop rate reasonable.
  16  *
  17  * Here is a state transition diagram for BBR:
  18  *
  19  *             |
  20  *             V
  21  *    +---> STARTUP  ----+
  22  *    |        |         |
  23  *    |        V         |
  24  *    |      DRAIN   ----+
  25  *    |        |         |
  26  *    |        V         |
  27  *    +---> PROBE_BW ----+
  28  *    |      ^    |      |
  29  *    |      |    |      |
  30  *    |      +----+      |
  31  *    |                  |
  32  *    +---- PROBE_RTT <--+
  33  *
  34  * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
  35  * When it estimates the pipe is full, it enters DRAIN to drain the queue.
  36  * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
  37  * A long-lived BBR flow spends the vast majority of its time remaining
  38  * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
  39  * in a fair manner, with a small, bounded queue. *If* a flow has been
  40  * continuously sending for the entire min_rtt window, and hasn't seen an RTT
  41  * sample that matches or decreases its min_rtt estimate for 10 seconds, then
  42  * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
  43  * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
  44  * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
  45  * otherwise we enter STARTUP to try to fill the pipe.
  46  *
  47  * BBR is described in detail in:
  48  *   "BBR: Congestion-Based Congestion Control",
  49  *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
  50  *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
  51  *
  52  * There is a public e-mail list for discussing BBR development and testing:
  53  *   https://groups.google.com/forum/#!forum/bbr-dev
  54  *
  55  * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
  56  * otherwise TCP stack falls back to an internal pacing using one high
  57  * resolution timer per TCP socket and may use more resources.
  58  */
  59 #include <linux/module.h>
  60 #include <net/tcp.h>
  61 #include <linux/inet_diag.h>
  62 #include <linux/inet.h>
  63 #include <linux/random.h>
  64 #include <linux/win_minmax.h>
  65 
  66 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
  67  * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
  68  * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
  69  * Since the minimum window is >=4 packets, the lower bound isn't
  70  * an issue. The upper bound isn't an issue with existing technologies.
  71  */
  72 #define BW_SCALE 24
  73 #define BW_UNIT (1 << BW_SCALE)
  74 
  75 #define BBR_SCALE 8     /* scaling factor for fractions in BBR (e.g. gains) */
  76 #define BBR_UNIT (1 << BBR_SCALE)
  77 
  78 /* BBR has the following modes for deciding how fast to send: */
  79 enum bbr_mode {
  80         BBR_STARTUP,    /* ramp up sending rate rapidly to fill pipe */
  81         BBR_DRAIN,      /* drain any queue created during startup */
  82         BBR_PROBE_BW,   /* discover, share bw: pace around estimated bw */
  83         BBR_PROBE_RTT,  /* cut inflight to min to probe min_rtt */
  84 };
  85 
  86 /* BBR congestion control block */
  87 struct bbr {
  88         u32     min_rtt_us;             /* min RTT in min_rtt_win_sec window */
  89         u32     min_rtt_stamp;          /* timestamp of min_rtt_us */
  90         u32     probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
  91         struct minmax bw;       /* Max recent delivery rate in pkts/uS << 24 */
  92         u32     rtt_cnt;            /* count of packet-timed rounds elapsed */
  93         u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
  94         u64     cycle_mstamp;        /* time of this cycle phase start */
  95         u32     mode:3,              /* current bbr_mode in state machine */
  96                 prev_ca_state:3,     /* CA state on previous ACK */
  97                 packet_conservation:1,  /* use packet conservation? */
  98                 round_start:1,       /* start of packet-timed tx->ack round? */
  99                 idle_restart:1,      /* restarting after idle? */
 100                 probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
 101                 unused:13,
 102                 lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
 103                 lt_rtt_cnt:7,        /* round trips in long-term interval */
 104                 lt_use_bw:1;         /* use lt_bw as our bw estimate? */
 105         u32     lt_bw;               /* LT est delivery rate in pkts/uS << 24 */
 106         u32     lt_last_delivered;   /* LT intvl start: tp->delivered */
 107         u32     lt_last_stamp;       /* LT intvl start: tp->delivered_mstamp */
 108         u32     lt_last_lost;        /* LT intvl start: tp->lost */
 109         u32     pacing_gain:10, /* current gain for setting pacing rate */
 110                 cwnd_gain:10,   /* current gain for setting cwnd */
 111                 full_bw_reached:1,   /* reached full bw in Startup? */
 112                 full_bw_cnt:2,  /* number of rounds without large bw gains */
 113                 cycle_idx:3,    /* current index in pacing_gain cycle array */
 114                 has_seen_rtt:1, /* have we seen an RTT sample yet? */
 115                 unused_b:5;
 116         u32     prior_cwnd;     /* prior cwnd upon entering loss recovery */
 117         u32     full_bw;        /* recent bw, to estimate if pipe is full */
 118 
 119         /* For tracking ACK aggregation: */
 120         u64     ack_epoch_mstamp;       /* start of ACK sampling epoch */
 121         u16     extra_acked[2];         /* max excess data ACKed in epoch */
 122         u32     ack_epoch_acked:20,     /* packets (S)ACKed in sampling epoch */
 123                 extra_acked_win_rtts:5, /* age of extra_acked, in round trips */
 124                 extra_acked_win_idx:1,  /* current index in extra_acked array */
 125                 unused_c:6;
 126 };
 127 
 128 #define CYCLE_LEN       8       /* number of phases in a pacing gain cycle */
 129 
 130 /* Window length of bw filter (in rounds): */
 131 static const int bbr_bw_rtts = CYCLE_LEN + 2;
 132 /* Window length of min_rtt filter (in sec): */
 133 static const u32 bbr_min_rtt_win_sec = 10;
 134 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
 135 static const u32 bbr_probe_rtt_mode_ms = 200;
 136 /* Skip TSO below the following bandwidth (bits/sec): */
 137 static const int bbr_min_tso_rate = 1200000;
 138 
 139 /* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
 140  * In order to help drive the network toward lower queues and low latency while
 141  * maintaining high utilization, the average pacing rate aims to be slightly
 142  * lower than the estimated bandwidth. This is an important aspect of the
 143  * design.
 144  */
 145 static const int bbr_pacing_margin_percent = 1;
 146 
 147 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
 148  * that will allow a smoothly increasing pacing rate that will double each RTT
 149  * and send the same number of packets per RTT that an un-paced, slow-starting
 150  * Reno or CUBIC flow would:
 151  */
 152 static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
 153 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
 154  * the queue created in BBR_STARTUP in a single round:
 155  */
 156 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
 157 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
 158 static const int bbr_cwnd_gain  = BBR_UNIT * 2;
 159 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
 160 static const int bbr_pacing_gain[] = {
 161         BBR_UNIT * 5 / 4,       /* probe for more available bw */
 162         BBR_UNIT * 3 / 4,       /* drain queue and/or yield bw to other flows */
 163         BBR_UNIT, BBR_UNIT, BBR_UNIT,   /* cruise at 1.0*bw to utilize pipe, */
 164         BBR_UNIT, BBR_UNIT, BBR_UNIT    /* without creating excess queue... */
 165 };
 166 /* Randomize the starting gain cycling phase over N phases: */
 167 static const u32 bbr_cycle_rand = 7;
 168 
 169 /* Try to keep at least this many packets in flight, if things go smoothly. For
 170  * smooth functioning, a sliding window protocol ACKing every other packet
 171  * needs at least 4 packets in flight:
 172  */
 173 static const u32 bbr_cwnd_min_target = 4;
 174 
 175 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
 176 /* If bw has increased significantly (1.25x), there may be more bw available: */
 177 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
 178 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
 179 static const u32 bbr_full_bw_cnt = 3;
 180 
 181 /* "long-term" ("LT") bandwidth estimator parameters... */
 182 /* The minimum number of rounds in an LT bw sampling interval: */
 183 static const u32 bbr_lt_intvl_min_rtts = 4;
 184 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
 185 static const u32 bbr_lt_loss_thresh = 50;
 186 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
 187 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
 188 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
 189 static const u32 bbr_lt_bw_diff = 4000 / 8;
 190 /* If we estimate we're policed, use lt_bw for this many round trips: */
 191 static const u32 bbr_lt_bw_max_rtts = 48;
 192 
 193 /* Gain factor for adding extra_acked to target cwnd: */
 194 static const int bbr_extra_acked_gain = BBR_UNIT;
 195 /* Window length of extra_acked window. */
 196 static const u32 bbr_extra_acked_win_rtts = 5;
 197 /* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
 198 static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
 199 /* Time period for clamping cwnd increment due to ack aggregation */
 200 static const u32 bbr_extra_acked_max_us = 100 * 1000;
 201 
 202 static void bbr_check_probe_rtt_done(struct sock *sk);
 203 
 204 /* Do we estimate that STARTUP filled the pipe? */
 205 static bool bbr_full_bw_reached(const struct sock *sk)
 206 {
 207         const struct bbr *bbr = inet_csk_ca(sk);
 208 
 209         return bbr->full_bw_reached;
 210 }
 211 
 212 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
 213 static u32 bbr_max_bw(const struct sock *sk)
 214 {
 215         struct bbr *bbr = inet_csk_ca(sk);
 216 
 217         return minmax_get(&bbr->bw);
 218 }
 219 
 220 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
 221 static u32 bbr_bw(const struct sock *sk)
 222 {
 223         struct bbr *bbr = inet_csk_ca(sk);
 224 
 225         return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
 226 }
 227 
 228 /* Return maximum extra acked in past k-2k round trips,
 229  * where k = bbr_extra_acked_win_rtts.
 230  */
 231 static u16 bbr_extra_acked(const struct sock *sk)
 232 {
 233         struct bbr *bbr = inet_csk_ca(sk);
 234 
 235         return max(bbr->extra_acked[0], bbr->extra_acked[1]);
 236 }
 237 
 238 /* Return rate in bytes per second, optionally with a gain.
 239  * The order here is chosen carefully to avoid overflow of u64. This should
 240  * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
 241  */
 242 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
 243 {
 244         unsigned int mss = tcp_sk(sk)->mss_cache;
 245 
 246         rate *= mss;
 247         rate *= gain;
 248         rate >>= BBR_SCALE;
 249         rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent);
 250         return rate >> BW_SCALE;
 251 }
 252 
 253 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
 254 static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
 255 {
 256         u64 rate = bw;
 257 
 258         rate = bbr_rate_bytes_per_sec(sk, rate, gain);
 259         rate = min_t(u64, rate, sk->sk_max_pacing_rate);
 260         return rate;
 261 }
 262 
 263 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
 264 static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
 265 {
 266         struct tcp_sock *tp = tcp_sk(sk);
 267         struct bbr *bbr = inet_csk_ca(sk);
 268         u64 bw;
 269         u32 rtt_us;
 270 
 271         if (tp->srtt_us) {              /* any RTT sample yet? */
 272                 rtt_us = max(tp->srtt_us >> 3, 1U);
 273                 bbr->has_seen_rtt = 1;
 274         } else {                         /* no RTT sample yet */
 275                 rtt_us = USEC_PER_MSEC;  /* use nominal default RTT */
 276         }
 277         bw = (u64)tp->snd_cwnd * BW_UNIT;
 278         do_div(bw, rtt_us);
 279         sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
 280 }
 281 
 282 /* Pace using current bw estimate and a gain factor. */
 283 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
 284 {
 285         struct tcp_sock *tp = tcp_sk(sk);
 286         struct bbr *bbr = inet_csk_ca(sk);
 287         unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
 288 
 289         if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
 290                 bbr_init_pacing_rate_from_rtt(sk);
 291         if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
 292                 sk->sk_pacing_rate = rate;
 293 }
 294 
 295 /* override sysctl_tcp_min_tso_segs */
 296 static u32 bbr_min_tso_segs(struct sock *sk)
 297 {
 298         return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
 299 }
 300 
 301 static u32 bbr_tso_segs_goal(struct sock *sk)
 302 {
 303         struct tcp_sock *tp = tcp_sk(sk);
 304         u32 segs, bytes;
 305 
 306         /* Sort of tcp_tso_autosize() but ignoring
 307          * driver provided sk_gso_max_size.
 308          */
 309         bytes = min_t(unsigned long,
 310                       sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
 311                       GSO_MAX_SIZE - 1 - MAX_TCP_HEADER);
 312         segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
 313 
 314         return min(segs, 0x7FU);
 315 }
 316 
 317 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
 318 static void bbr_save_cwnd(struct sock *sk)
 319 {
 320         struct tcp_sock *tp = tcp_sk(sk);
 321         struct bbr *bbr = inet_csk_ca(sk);
 322 
 323         if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
 324                 bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
 325         else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
 326                 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
 327 }
 328 
 329 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
 330 {
 331         struct tcp_sock *tp = tcp_sk(sk);
 332         struct bbr *bbr = inet_csk_ca(sk);
 333 
 334         if (event == CA_EVENT_TX_START && tp->app_limited) {
 335                 bbr->idle_restart = 1;
 336                 bbr->ack_epoch_mstamp = tp->tcp_mstamp;
 337                 bbr->ack_epoch_acked = 0;
 338                 /* Avoid pointless buffer overflows: pace at est. bw if we don't
 339                  * need more speed (we're restarting from idle and app-limited).
 340                  */
 341                 if (bbr->mode == BBR_PROBE_BW)
 342                         bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
 343                 else if (bbr->mode == BBR_PROBE_RTT)
 344                         bbr_check_probe_rtt_done(sk);
 345         }
 346 }
 347 
 348 /* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
 349  *
 350  * bdp = ceil(bw * min_rtt * gain)
 351  *
 352  * The key factor, gain, controls the amount of queue. While a small gain
 353  * builds a smaller queue, it becomes more vulnerable to noise in RTT
 354  * measurements (e.g., delayed ACKs or other ACK compression effects). This
 355  * noise may cause BBR to under-estimate the rate.
 356  */
 357 static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
 358 {
 359         struct bbr *bbr = inet_csk_ca(sk);
 360         u32 bdp;
 361         u64 w;
 362 
 363         /* If we've never had a valid RTT sample, cap cwnd at the initial
 364          * default. This should only happen when the connection is not using TCP
 365          * timestamps and has retransmitted all of the SYN/SYNACK/data packets
 366          * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
 367          * case we need to slow-start up toward something safe: TCP_INIT_CWND.
 368          */
 369         if (unlikely(bbr->min_rtt_us == ~0U))    /* no valid RTT samples yet? */
 370                 return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
 371 
 372         w = (u64)bw * bbr->min_rtt_us;
 373 
 374         /* Apply a gain to the given value, remove the BW_SCALE shift, and
 375          * round the value up to avoid a negative feedback loop.
 376          */
 377         bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
 378 
 379         return bdp;
 380 }
 381 
 382 /* To achieve full performance in high-speed paths, we budget enough cwnd to
 383  * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
 384  *   - one skb in sending host Qdisc,
 385  *   - one skb in sending host TSO/GSO engine
 386  *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
 387  * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
 388  * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
 389  * which allows 2 outstanding 2-packet sequences, to try to keep pipe
 390  * full even with ACK-every-other-packet delayed ACKs.
 391  */
 392 static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
 393 {
 394         struct bbr *bbr = inet_csk_ca(sk);
 395 
 396         /* Allow enough full-sized skbs in flight to utilize end systems. */
 397         cwnd += 3 * bbr_tso_segs_goal(sk);
 398 
 399         /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
 400         cwnd = (cwnd + 1) & ~1U;
 401 
 402         /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
 403         if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0)
 404                 cwnd += 2;
 405 
 406         return cwnd;
 407 }
 408 
 409 /* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
 410 static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
 411 {
 412         u32 inflight;
 413 
 414         inflight = bbr_bdp(sk, bw, gain);
 415         inflight = bbr_quantization_budget(sk, inflight);
 416 
 417         return inflight;
 418 }
 419 
 420 /* With pacing at lower layers, there's often less data "in the network" than
 421  * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
 422  * we often have several skbs queued in the pacing layer with a pre-scheduled
 423  * earliest departure time (EDT). BBR adapts its pacing rate based on the
 424  * inflight level that it estimates has already been "baked in" by previous
 425  * departure time decisions. We calculate a rough estimate of the number of our
 426  * packets that might be in the network at the earliest departure time for the
 427  * next skb scheduled:
 428  *   in_network_at_edt = inflight_at_edt - (EDT - now) * bw
 429  * If we're increasing inflight, then we want to know if the transmit of the
 430  * EDT skb will push inflight above the target, so inflight_at_edt includes
 431  * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
 432  * then estimate if inflight will sink too low just before the EDT transmit.
 433  */
 434 static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
 435 {
 436         struct tcp_sock *tp = tcp_sk(sk);
 437         struct bbr *bbr = inet_csk_ca(sk);
 438         u64 now_ns, edt_ns, interval_us;
 439         u32 interval_delivered, inflight_at_edt;
 440 
 441         now_ns = tp->tcp_clock_cache;
 442         edt_ns = max(tp->tcp_wstamp_ns, now_ns);
 443         interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
 444         interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
 445         inflight_at_edt = inflight_now;
 446         if (bbr->pacing_gain > BBR_UNIT)              /* increasing inflight */
 447                 inflight_at_edt += bbr_tso_segs_goal(sk);  /* include EDT skb */
 448         if (interval_delivered >= inflight_at_edt)
 449                 return 0;
 450         return inflight_at_edt - interval_delivered;
 451 }
 452 
 453 /* Find the cwnd increment based on estimate of ack aggregation */
 454 static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
 455 {
 456         u32 max_aggr_cwnd, aggr_cwnd = 0;
 457 
 458         if (bbr_extra_acked_gain && bbr_full_bw_reached(sk)) {
 459                 max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us)
 460                                 / BW_UNIT;
 461                 aggr_cwnd = (bbr_extra_acked_gain * bbr_extra_acked(sk))
 462                              >> BBR_SCALE;
 463                 aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
 464         }
 465 
 466         return aggr_cwnd;
 467 }
 468 
 469 /* An optimization in BBR to reduce losses: On the first round of recovery, we
 470  * follow the packet conservation principle: send P packets per P packets acked.
 471  * After that, we slow-start and send at most 2*P packets per P packets acked.
 472  * After recovery finishes, or upon undo, we restore the cwnd we had when
 473  * recovery started (capped by the target cwnd based on estimated BDP).
 474  *
 475  * TODO(ycheng/ncardwell): implement a rate-based approach.
 476  */
 477 static bool bbr_set_cwnd_to_recover_or_restore(
 478         struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
 479 {
 480         struct tcp_sock *tp = tcp_sk(sk);
 481         struct bbr *bbr = inet_csk_ca(sk);
 482         u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
 483         u32 cwnd = tp->snd_cwnd;
 484 
 485         /* An ACK for P pkts should release at most 2*P packets. We do this
 486          * in two steps. First, here we deduct the number of lost packets.
 487          * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
 488          */
 489         if (rs->losses > 0)
 490                 cwnd = max_t(s32, cwnd - rs->losses, 1);
 491 
 492         if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
 493                 /* Starting 1st round of Recovery, so do packet conservation. */
 494                 bbr->packet_conservation = 1;
 495                 bbr->next_rtt_delivered = tp->delivered;  /* start round now */
 496                 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
 497                 cwnd = tcp_packets_in_flight(tp) + acked;
 498         } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
 499                 /* Exiting loss recovery; restore cwnd saved before recovery. */
 500                 cwnd = max(cwnd, bbr->prior_cwnd);
 501                 bbr->packet_conservation = 0;
 502         }
 503         bbr->prev_ca_state = state;
 504 
 505         if (bbr->packet_conservation) {
 506                 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
 507                 return true;    /* yes, using packet conservation */
 508         }
 509         *new_cwnd = cwnd;
 510         return false;
 511 }
 512 
 513 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
 514  * has drawn us down below target), or snap down to target if we're above it.
 515  */
 516 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
 517                          u32 acked, u32 bw, int gain)
 518 {
 519         struct tcp_sock *tp = tcp_sk(sk);
 520         struct bbr *bbr = inet_csk_ca(sk);
 521         u32 cwnd = tp->snd_cwnd, target_cwnd = 0;
 522 
 523         if (!acked)
 524                 goto done;  /* no packet fully ACKed; just apply caps */
 525 
 526         if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
 527                 goto done;
 528 
 529         target_cwnd = bbr_bdp(sk, bw, gain);
 530 
 531         /* Increment the cwnd to account for excess ACKed data that seems
 532          * due to aggregation (of data and/or ACKs) visible in the ACK stream.
 533          */
 534         target_cwnd += bbr_ack_aggregation_cwnd(sk);
 535         target_cwnd = bbr_quantization_budget(sk, target_cwnd);
 536 
 537         /* If we're below target cwnd, slow start cwnd toward target cwnd. */
 538         if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
 539                 cwnd = min(cwnd + acked, target_cwnd);
 540         else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
 541                 cwnd = cwnd + acked;
 542         cwnd = max(cwnd, bbr_cwnd_min_target);
 543 
 544 done:
 545         tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);   /* apply global cap */
 546         if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
 547                 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
 548 }
 549 
 550 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
 551 static bool bbr_is_next_cycle_phase(struct sock *sk,
 552                                     const struct rate_sample *rs)
 553 {
 554         struct tcp_sock *tp = tcp_sk(sk);
 555         struct bbr *bbr = inet_csk_ca(sk);
 556         bool is_full_length =
 557                 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
 558                 bbr->min_rtt_us;
 559         u32 inflight, bw;
 560 
 561         /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
 562          * use the pipe without increasing the queue.
 563          */
 564         if (bbr->pacing_gain == BBR_UNIT)
 565                 return is_full_length;          /* just use wall clock time */
 566 
 567         inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
 568         bw = bbr_max_bw(sk);
 569 
 570         /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
 571          * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
 572          * small (e.g. on a LAN). We do not persist if packets are lost, since
 573          * a path with small buffers may not hold that much.
 574          */
 575         if (bbr->pacing_gain > BBR_UNIT)
 576                 return is_full_length &&
 577                         (rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
 578                          inflight >= bbr_inflight(sk, bw, bbr->pacing_gain));
 579 
 580         /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
 581          * probing didn't find more bw. If inflight falls to match BDP then we
 582          * estimate queue is drained; persisting would underutilize the pipe.
 583          */
 584         return is_full_length ||
 585                 inflight <= bbr_inflight(sk, bw, BBR_UNIT);
 586 }
 587 
 588 static void bbr_advance_cycle_phase(struct sock *sk)
 589 {
 590         struct tcp_sock *tp = tcp_sk(sk);
 591         struct bbr *bbr = inet_csk_ca(sk);
 592 
 593         bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
 594         bbr->cycle_mstamp = tp->delivered_mstamp;
 595 }
 596 
 597 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
 598 static void bbr_update_cycle_phase(struct sock *sk,
 599                                    const struct rate_sample *rs)
 600 {
 601         struct bbr *bbr = inet_csk_ca(sk);
 602 
 603         if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
 604                 bbr_advance_cycle_phase(sk);
 605 }
 606 
 607 static void bbr_reset_startup_mode(struct sock *sk)
 608 {
 609         struct bbr *bbr = inet_csk_ca(sk);
 610 
 611         bbr->mode = BBR_STARTUP;
 612 }
 613 
 614 static void bbr_reset_probe_bw_mode(struct sock *sk)
 615 {
 616         struct bbr *bbr = inet_csk_ca(sk);
 617 
 618         bbr->mode = BBR_PROBE_BW;
 619         bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
 620         bbr_advance_cycle_phase(sk);    /* flip to next phase of gain cycle */
 621 }
 622 
 623 static void bbr_reset_mode(struct sock *sk)
 624 {
 625         if (!bbr_full_bw_reached(sk))
 626                 bbr_reset_startup_mode(sk);
 627         else
 628                 bbr_reset_probe_bw_mode(sk);
 629 }
 630 
 631 /* Start a new long-term sampling interval. */
 632 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
 633 {
 634         struct tcp_sock *tp = tcp_sk(sk);
 635         struct bbr *bbr = inet_csk_ca(sk);
 636 
 637         bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
 638         bbr->lt_last_delivered = tp->delivered;
 639         bbr->lt_last_lost = tp->lost;
 640         bbr->lt_rtt_cnt = 0;
 641 }
 642 
 643 /* Completely reset long-term bandwidth sampling. */
 644 static void bbr_reset_lt_bw_sampling(struct sock *sk)
 645 {
 646         struct bbr *bbr = inet_csk_ca(sk);
 647 
 648         bbr->lt_bw = 0;
 649         bbr->lt_use_bw = 0;
 650         bbr->lt_is_sampling = false;
 651         bbr_reset_lt_bw_sampling_interval(sk);
 652 }
 653 
 654 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
 655 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
 656 {
 657         struct bbr *bbr = inet_csk_ca(sk);
 658         u32 diff;
 659 
 660         if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
 661                 /* Is new bw close to the lt_bw from the previous interval? */
 662                 diff = abs(bw - bbr->lt_bw);
 663                 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
 664                     (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
 665                      bbr_lt_bw_diff)) {
 666                         /* All criteria are met; estimate we're policed. */
 667                         bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
 668                         bbr->lt_use_bw = 1;
 669                         bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
 670                         bbr->lt_rtt_cnt = 0;
 671                         return;
 672                 }
 673         }
 674         bbr->lt_bw = bw;
 675         bbr_reset_lt_bw_sampling_interval(sk);
 676 }
 677 
 678 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
 679  * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
 680  * explicitly models their policed rate, to reduce unnecessary losses. We
 681  * estimate that we're policed if we see 2 consecutive sampling intervals with
 682  * consistent throughput and high packet loss. If we think we're being policed,
 683  * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
 684  */
 685 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
 686 {
 687         struct tcp_sock *tp = tcp_sk(sk);
 688         struct bbr *bbr = inet_csk_ca(sk);
 689         u32 lost, delivered;
 690         u64 bw;
 691         u32 t;
 692 
 693         if (bbr->lt_use_bw) {   /* already using long-term rate, lt_bw? */
 694                 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
 695                     ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
 696                         bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
 697                         bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
 698                 }
 699                 return;
 700         }
 701 
 702         /* Wait for the first loss before sampling, to let the policer exhaust
 703          * its tokens and estimate the steady-state rate allowed by the policer.
 704          * Starting samples earlier includes bursts that over-estimate the bw.
 705          */
 706         if (!bbr->lt_is_sampling) {
 707                 if (!rs->losses)
 708                         return;
 709                 bbr_reset_lt_bw_sampling_interval(sk);
 710                 bbr->lt_is_sampling = true;
 711         }
 712 
 713         /* To avoid underestimates, reset sampling if we run out of data. */
 714         if (rs->is_app_limited) {
 715                 bbr_reset_lt_bw_sampling(sk);
 716                 return;
 717         }
 718 
 719         if (bbr->round_start)
 720                 bbr->lt_rtt_cnt++;      /* count round trips in this interval */
 721         if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
 722                 return;         /* sampling interval needs to be longer */
 723         if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
 724                 bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
 725                 return;
 726         }
 727 
 728         /* End sampling interval when a packet is lost, so we estimate the
 729          * policer tokens were exhausted. Stopping the sampling before the
 730          * tokens are exhausted under-estimates the policed rate.
 731          */
 732         if (!rs->losses)
 733                 return;
 734 
 735         /* Calculate packets lost and delivered in sampling interval. */
 736         lost = tp->lost - bbr->lt_last_lost;
 737         delivered = tp->delivered - bbr->lt_last_delivered;
 738         /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
 739         if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
 740                 return;
 741 
 742         /* Find average delivery rate in this sampling interval. */
 743         t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
 744         if ((s32)t < 1)
 745                 return;         /* interval is less than one ms, so wait */
 746         /* Check if can multiply without overflow */
 747         if (t >= ~0U / USEC_PER_MSEC) {
 748                 bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
 749                 return;
 750         }
 751         t *= USEC_PER_MSEC;
 752         bw = (u64)delivered * BW_UNIT;
 753         do_div(bw, t);
 754         bbr_lt_bw_interval_done(sk, bw);
 755 }
 756 
 757 /* Estimate the bandwidth based on how fast packets are delivered */
 758 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
 759 {
 760         struct tcp_sock *tp = tcp_sk(sk);
 761         struct bbr *bbr = inet_csk_ca(sk);
 762         u64 bw;
 763 
 764         bbr->round_start = 0;
 765         if (rs->delivered < 0 || rs->interval_us <= 0)
 766                 return; /* Not a valid observation */
 767 
 768         /* See if we've reached the next RTT */
 769         if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
 770                 bbr->next_rtt_delivered = tp->delivered;
 771                 bbr->rtt_cnt++;
 772                 bbr->round_start = 1;
 773                 bbr->packet_conservation = 0;
 774         }
 775 
 776         bbr_lt_bw_sampling(sk, rs);
 777 
 778         /* Divide delivered by the interval to find a (lower bound) bottleneck
 779          * bandwidth sample. Delivered is in packets and interval_us in uS and
 780          * ratio will be <<1 for most connections. So delivered is first scaled.
 781          */
 782         bw = div64_long((u64)rs->delivered * BW_UNIT, rs->interval_us);
 783 
 784         /* If this sample is application-limited, it is likely to have a very
 785          * low delivered count that represents application behavior rather than
 786          * the available network rate. Such a sample could drag down estimated
 787          * bw, causing needless slow-down. Thus, to continue to send at the
 788          * last measured network rate, we filter out app-limited samples unless
 789          * they describe the path bw at least as well as our bw model.
 790          *
 791          * So the goal during app-limited phase is to proceed with the best
 792          * network rate no matter how long. We automatically leave this
 793          * phase when app writes faster than the network can deliver :)
 794          */
 795         if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
 796                 /* Incorporate new sample into our max bw filter. */
 797                 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
 798         }
 799 }
 800 
 801 /* Estimates the windowed max degree of ack aggregation.
 802  * This is used to provision extra in-flight data to keep sending during
 803  * inter-ACK silences.
 804  *
 805  * Degree of ack aggregation is estimated as extra data acked beyond expected.
 806  *
 807  * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
 808  * cwnd += max_extra_acked
 809  *
 810  * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
 811  * Max filter is an approximate sliding window of 5-10 (packet timed) round
 812  * trips.
 813  */
 814 static void bbr_update_ack_aggregation(struct sock *sk,
 815                                        const struct rate_sample *rs)
 816 {
 817         u32 epoch_us, expected_acked, extra_acked;
 818         struct bbr *bbr = inet_csk_ca(sk);
 819         struct tcp_sock *tp = tcp_sk(sk);
 820 
 821         if (!bbr_extra_acked_gain || rs->acked_sacked <= 0 ||
 822             rs->delivered < 0 || rs->interval_us <= 0)
 823                 return;
 824 
 825         if (bbr->round_start) {
 826                 bbr->extra_acked_win_rtts = min(0x1F,
 827                                                 bbr->extra_acked_win_rtts + 1);
 828                 if (bbr->extra_acked_win_rtts >= bbr_extra_acked_win_rtts) {
 829                         bbr->extra_acked_win_rtts = 0;
 830                         bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ?
 831                                                    0 : 1;
 832                         bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
 833                 }
 834         }
 835 
 836         /* Compute how many packets we expected to be delivered over epoch. */
 837         epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp,
 838                                       bbr->ack_epoch_mstamp);
 839         expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT;
 840 
 841         /* Reset the aggregation epoch if ACK rate is below expected rate or
 842          * significantly large no. of ack received since epoch (potentially
 843          * quite old epoch).
 844          */
 845         if (bbr->ack_epoch_acked <= expected_acked ||
 846             (bbr->ack_epoch_acked + rs->acked_sacked >=
 847              bbr_ack_epoch_acked_reset_thresh)) {
 848                 bbr->ack_epoch_acked = 0;
 849                 bbr->ack_epoch_mstamp = tp->delivered_mstamp;
 850                 expected_acked = 0;
 851         }
 852 
 853         /* Compute excess data delivered, beyond what was expected. */
 854         bbr->ack_epoch_acked = min_t(u32, 0xFFFFF,
 855                                      bbr->ack_epoch_acked + rs->acked_sacked);
 856         extra_acked = bbr->ack_epoch_acked - expected_acked;
 857         extra_acked = min(extra_acked, tp->snd_cwnd);
 858         if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
 859                 bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
 860 }
 861 
 862 /* Estimate when the pipe is full, using the change in delivery rate: BBR
 863  * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
 864  * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
 865  * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
 866  * higher rwin, 3: we get higher delivery rate samples. Or transient
 867  * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
 868  * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
 869  */
 870 static void bbr_check_full_bw_reached(struct sock *sk,
 871                                       const struct rate_sample *rs)
 872 {
 873         struct bbr *bbr = inet_csk_ca(sk);
 874         u32 bw_thresh;
 875 
 876         if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
 877                 return;
 878 
 879         bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
 880         if (bbr_max_bw(sk) >= bw_thresh) {
 881                 bbr->full_bw = bbr_max_bw(sk);
 882                 bbr->full_bw_cnt = 0;
 883                 return;
 884         }
 885         ++bbr->full_bw_cnt;
 886         bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
 887 }
 888 
 889 /* If pipe is probably full, drain the queue and then enter steady-state. */
 890 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
 891 {
 892         struct bbr *bbr = inet_csk_ca(sk);
 893 
 894         if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
 895                 bbr->mode = BBR_DRAIN;  /* drain queue we created */
 896                 tcp_sk(sk)->snd_ssthresh =
 897                                 bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
 898         }       /* fall through to check if in-flight is already small: */
 899         if (bbr->mode == BBR_DRAIN &&
 900             bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <=
 901             bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
 902                 bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
 903 }
 904 
 905 static void bbr_check_probe_rtt_done(struct sock *sk)
 906 {
 907         struct tcp_sock *tp = tcp_sk(sk);
 908         struct bbr *bbr = inet_csk_ca(sk);
 909 
 910         if (!(bbr->probe_rtt_done_stamp &&
 911               after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
 912                 return;
 913 
 914         bbr->min_rtt_stamp = tcp_jiffies32;  /* wait a while until PROBE_RTT */
 915         tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
 916         bbr_reset_mode(sk);
 917 }
 918 
 919 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
 920  * periodically drain the bottleneck queue, to converge to measure the true
 921  * min_rtt (unloaded propagation delay). This allows the flows to keep queues
 922  * small (reducing queuing delay and packet loss) and achieve fairness among
 923  * BBR flows.
 924  *
 925  * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
 926  * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
 927  * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
 928  * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
 929  * re-enter the previous mode. BBR uses 200ms to approximately bound the
 930  * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
 931  *
 932  * Note that flows need only pay 2% if they are busy sending over the last 10
 933  * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
 934  * natural silences or low-rate periods within 10 seconds where the rate is low
 935  * enough for long enough to drain its queue in the bottleneck. We pick up
 936  * these min RTT measurements opportunistically with our min_rtt filter. :-)
 937  */
 938 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
 939 {
 940         struct tcp_sock *tp = tcp_sk(sk);
 941         struct bbr *bbr = inet_csk_ca(sk);
 942         bool filter_expired;
 943 
 944         /* Track min RTT seen in the min_rtt_win_sec filter window: */
 945         filter_expired = after(tcp_jiffies32,
 946                                bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
 947         if (rs->rtt_us >= 0 &&
 948             (rs->rtt_us <= bbr->min_rtt_us ||
 949              (filter_expired && !rs->is_ack_delayed))) {
 950                 bbr->min_rtt_us = rs->rtt_us;
 951                 bbr->min_rtt_stamp = tcp_jiffies32;
 952         }
 953 
 954         if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
 955             !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
 956                 bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
 957                 bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
 958                 bbr->probe_rtt_done_stamp = 0;
 959         }
 960 
 961         if (bbr->mode == BBR_PROBE_RTT) {
 962                 /* Ignore low rate samples during this mode. */
 963                 tp->app_limited =
 964                         (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
 965                 /* Maintain min packets in flight for max(200 ms, 1 round). */
 966                 if (!bbr->probe_rtt_done_stamp &&
 967                     tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
 968                         bbr->probe_rtt_done_stamp = tcp_jiffies32 +
 969                                 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
 970                         bbr->probe_rtt_round_done = 0;
 971                         bbr->next_rtt_delivered = tp->delivered;
 972                 } else if (bbr->probe_rtt_done_stamp) {
 973                         if (bbr->round_start)
 974                                 bbr->probe_rtt_round_done = 1;
 975                         if (bbr->probe_rtt_round_done)
 976                                 bbr_check_probe_rtt_done(sk);
 977                 }
 978         }
 979         /* Restart after idle ends only once we process a new S/ACK for data */
 980         if (rs->delivered > 0)
 981                 bbr->idle_restart = 0;
 982 }
 983 
 984 static void bbr_update_gains(struct sock *sk)
 985 {
 986         struct bbr *bbr = inet_csk_ca(sk);
 987 
 988         switch (bbr->mode) {
 989         case BBR_STARTUP:
 990                 bbr->pacing_gain = bbr_high_gain;
 991                 bbr->cwnd_gain   = bbr_high_gain;
 992                 break;
 993         case BBR_DRAIN:
 994                 bbr->pacing_gain = bbr_drain_gain;      /* slow, to drain */
 995                 bbr->cwnd_gain   = bbr_high_gain;       /* keep cwnd */
 996                 break;
 997         case BBR_PROBE_BW:
 998                 bbr->pacing_gain = (bbr->lt_use_bw ?
 999                                     BBR_UNIT :
1000                                     bbr_pacing_gain[bbr->cycle_idx]);
1001                 bbr->cwnd_gain   = bbr_cwnd_gain;
1002                 break;
1003         case BBR_PROBE_RTT:
1004                 bbr->pacing_gain = BBR_UNIT;
1005                 bbr->cwnd_gain   = BBR_UNIT;
1006                 break;
1007         default:
1008                 WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
1009                 break;
1010         }
1011 }
1012 
1013 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
1014 {
1015         bbr_update_bw(sk, rs);
1016         bbr_update_ack_aggregation(sk, rs);
1017         bbr_update_cycle_phase(sk, rs);
1018         bbr_check_full_bw_reached(sk, rs);
1019         bbr_check_drain(sk, rs);
1020         bbr_update_min_rtt(sk, rs);
1021         bbr_update_gains(sk);
1022 }
1023 
1024 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
1025 {
1026         struct bbr *bbr = inet_csk_ca(sk);
1027         u32 bw;
1028 
1029         bbr_update_model(sk, rs);
1030 
1031         bw = bbr_bw(sk);
1032         bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
1033         bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
1034 }
1035 
1036 static void bbr_init(struct sock *sk)
1037 {
1038         struct tcp_sock *tp = tcp_sk(sk);
1039         struct bbr *bbr = inet_csk_ca(sk);
1040 
1041         bbr->prior_cwnd = 0;
1042         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1043         bbr->rtt_cnt = 0;
1044         bbr->next_rtt_delivered = 0;
1045         bbr->prev_ca_state = TCP_CA_Open;
1046         bbr->packet_conservation = 0;
1047 
1048         bbr->probe_rtt_done_stamp = 0;
1049         bbr->probe_rtt_round_done = 0;
1050         bbr->min_rtt_us = tcp_min_rtt(tp);
1051         bbr->min_rtt_stamp = tcp_jiffies32;
1052 
1053         minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
1054 
1055         bbr->has_seen_rtt = 0;
1056         bbr_init_pacing_rate_from_rtt(sk);
1057 
1058         bbr->round_start = 0;
1059         bbr->idle_restart = 0;
1060         bbr->full_bw_reached = 0;
1061         bbr->full_bw = 0;
1062         bbr->full_bw_cnt = 0;
1063         bbr->cycle_mstamp = 0;
1064         bbr->cycle_idx = 0;
1065         bbr_reset_lt_bw_sampling(sk);
1066         bbr_reset_startup_mode(sk);
1067 
1068         bbr->ack_epoch_mstamp = tp->tcp_mstamp;
1069         bbr->ack_epoch_acked = 0;
1070         bbr->extra_acked_win_rtts = 0;
1071         bbr->extra_acked_win_idx = 0;
1072         bbr->extra_acked[0] = 0;
1073         bbr->extra_acked[1] = 0;
1074 
1075         cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
1076 }
1077 
1078 static u32 bbr_sndbuf_expand(struct sock *sk)
1079 {
1080         /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
1081         return 3;
1082 }
1083 
1084 /* In theory BBR does not need to undo the cwnd since it does not
1085  * always reduce cwnd on losses (see bbr_main()). Keep it for now.
1086  */
1087 static u32 bbr_undo_cwnd(struct sock *sk)
1088 {
1089         struct bbr *bbr = inet_csk_ca(sk);
1090 
1091         bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
1092         bbr->full_bw_cnt = 0;
1093         bbr_reset_lt_bw_sampling(sk);
1094         return tcp_sk(sk)->snd_cwnd;
1095 }
1096 
1097 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
1098 static u32 bbr_ssthresh(struct sock *sk)
1099 {
1100         bbr_save_cwnd(sk);
1101         return tcp_sk(sk)->snd_ssthresh;
1102 }
1103 
1104 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
1105                            union tcp_cc_info *info)
1106 {
1107         if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
1108             ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
1109                 struct tcp_sock *tp = tcp_sk(sk);
1110                 struct bbr *bbr = inet_csk_ca(sk);
1111                 u64 bw = bbr_bw(sk);
1112 
1113                 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
1114                 memset(&info->bbr, 0, sizeof(info->bbr));
1115                 info->bbr.bbr_bw_lo             = (u32)bw;
1116                 info->bbr.bbr_bw_hi             = (u32)(bw >> 32);
1117                 info->bbr.bbr_min_rtt           = bbr->min_rtt_us;
1118                 info->bbr.bbr_pacing_gain       = bbr->pacing_gain;
1119                 info->bbr.bbr_cwnd_gain         = bbr->cwnd_gain;
1120                 *attr = INET_DIAG_BBRINFO;
1121                 return sizeof(info->bbr);
1122         }
1123         return 0;
1124 }
1125 
1126 static void bbr_set_state(struct sock *sk, u8 new_state)
1127 {
1128         struct bbr *bbr = inet_csk_ca(sk);
1129 
1130         if (new_state == TCP_CA_Loss) {
1131                 struct rate_sample rs = { .losses = 1 };
1132 
1133                 bbr->prev_ca_state = TCP_CA_Loss;
1134                 bbr->full_bw = 0;
1135                 bbr->round_start = 1;   /* treat RTO like end of a round */
1136                 bbr_lt_bw_sampling(sk, &rs);
1137         }
1138 }
1139 
1140 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
1141         .flags          = TCP_CONG_NON_RESTRICTED,
1142         .name           = "bbr",
1143         .owner          = THIS_MODULE,
1144         .init           = bbr_init,
1145         .cong_control   = bbr_main,
1146         .sndbuf_expand  = bbr_sndbuf_expand,
1147         .undo_cwnd      = bbr_undo_cwnd,
1148         .cwnd_event     = bbr_cwnd_event,
1149         .ssthresh       = bbr_ssthresh,
1150         .min_tso_segs   = bbr_min_tso_segs,
1151         .get_info       = bbr_get_info,
1152         .set_state      = bbr_set_state,
1153 };
1154 
1155 static int __init bbr_register(void)
1156 {
1157         BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
1158         return tcp_register_congestion_control(&tcp_bbr_cong_ops);
1159 }
1160 
1161 static void __exit bbr_unregister(void)
1162 {
1163         tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
1164 }
1165 
1166 module_init(bbr_register);
1167 module_exit(bbr_unregister);
1168 
1169 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
1170 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
1171 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
1172 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
1173 MODULE_LICENSE("Dual BSD/GPL");
1174 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");

/* [<][>][^][v][top][bottom][index][help] */