root/arch/powerpc/platforms/cell/spufs/switch.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. acquire_spu_lock
  2. release_spu_lock
  3. check_spu_isolate
  4. disable_interrupts
  5. set_watchdog_timer
  6. inhibit_user_access
  7. set_switch_pending
  8. save_mfc_cntl
  9. save_spu_runcntl
  10. save_mfc_sr1
  11. save_spu_status
  12. save_mfc_stopped_status
  13. halt_mfc_decr
  14. save_timebase
  15. remove_other_spu_access
  16. do_mfc_mssync
  17. issue_mfc_tlbie
  18. handle_pending_interrupts
  19. save_mfc_queues
  20. save_ppu_querymask
  21. save_ppu_querytype
  22. save_ppu_tagstatus
  23. save_mfc_csr_tsq
  24. save_mfc_csr_cmd
  25. save_mfc_csr_ato
  26. save_mfc_tclass_id
  27. set_mfc_tclass_id
  28. purge_mfc_queue
  29. wait_purge_complete
  30. setup_mfc_sr1
  31. save_spu_npc
  32. save_spu_privcntl
  33. reset_spu_privcntl
  34. save_spu_lslr
  35. reset_spu_lslr
  36. save_spu_cfg
  37. save_pm_trace
  38. save_mfc_rag
  39. save_ppu_mb_stat
  40. save_ppu_mb
  41. save_ppuint_mb
  42. save_ch_part1
  43. save_spu_mb
  44. save_mfc_cmd
  45. reset_ch
  46. resume_mfc_queue
  47. setup_mfc_slbs
  48. set_switch_active
  49. enable_interrupts
  50. send_mfc_dma
  51. save_ls_16kb
  52. set_spu_npc
  53. set_signot1
  54. set_signot2
  55. send_save_code
  56. set_ppu_querymask
  57. wait_tag_complete
  58. wait_spu_stopped
  59. check_save_status
  60. terminate_spu_app
  61. suspend_mfc_and_halt_decr
  62. wait_suspend_mfc_complete
  63. suspend_spe
  64. clear_spu_status
  65. reset_ch_part1
  66. reset_ch_part2
  67. setup_spu_status_part1
  68. setup_spu_status_part2
  69. restore_mfc_rag
  70. send_restore_code
  71. setup_decr
  72. setup_ppu_mb
  73. setup_ppuint_mb
  74. check_restore_status
  75. restore_spu_privcntl
  76. restore_status_part1
  77. restore_status_part2
  78. restore_ls_16kb
  79. suspend_mfc
  80. clear_interrupts
  81. restore_mfc_queues
  82. restore_ppu_querymask
  83. restore_ppu_querytype
  84. restore_mfc_csr_tsq
  85. restore_mfc_csr_cmd
  86. restore_mfc_csr_ato
  87. restore_mfc_tclass_id
  88. set_llr_event
  89. restore_decr_wrapped
  90. restore_ch_part1
  91. restore_ch_part2
  92. restore_spu_lslr
  93. restore_spu_cfg
  94. restore_pm_trace
  95. restore_spu_npc
  96. restore_spu_mb
  97. check_ppu_mb_stat
  98. check_ppuint_mb_stat
  99. restore_mfc_sr1
  100. set_int_route
  101. restore_other_spu_access
  102. restore_spu_runcntl
  103. restore_mfc_cntl
  104. enable_user_access
  105. reset_switch_active
  106. reenable_interrupts
  107. quiece_spu
  108. save_csa
  109. save_lscsa
  110. force_spu_isolate_exit
  111. stop_spu_isolate
  112. harvest
  113. restore_lscsa
  114. restore_csa
  115. __do_spu_save
  116. __do_spu_restore
  117. spu_save
  118. spu_restore
  119. init_prob
  120. init_priv1
  121. init_priv2
  122. spu_init_csa
  123. spu_fini_csa

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * spu_switch.c
   4  *
   5  * (C) Copyright IBM Corp. 2005
   6  *
   7  * Author: Mark Nutter <mnutter@us.ibm.com>
   8  *
   9  * Host-side part of SPU context switch sequence outlined in
  10  * Synergistic Processor Element, Book IV.
  11  *
  12  * A fully premptive switch of an SPE is very expensive in terms
  13  * of time and system resources.  SPE Book IV indicates that SPE
  14  * allocation should follow a "serially reusable device" model,
  15  * in which the SPE is assigned a task until it completes.  When
  16  * this is not possible, this sequence may be used to premptively
  17  * save, and then later (optionally) restore the context of a
  18  * program executing on an SPE.
  19  */
  20 
  21 #include <linux/export.h>
  22 #include <linux/errno.h>
  23 #include <linux/hardirq.h>
  24 #include <linux/sched.h>
  25 #include <linux/kernel.h>
  26 #include <linux/mm.h>
  27 #include <linux/vmalloc.h>
  28 #include <linux/smp.h>
  29 #include <linux/stddef.h>
  30 #include <linux/unistd.h>
  31 
  32 #include <asm/io.h>
  33 #include <asm/spu.h>
  34 #include <asm/spu_priv1.h>
  35 #include <asm/spu_csa.h>
  36 #include <asm/mmu_context.h>
  37 
  38 #include "spufs.h"
  39 
  40 #include "spu_save_dump.h"
  41 #include "spu_restore_dump.h"
  42 
  43 #if 0
  44 #define POLL_WHILE_TRUE(_c) {                           \
  45     do {                                                \
  46     } while (_c);                                       \
  47   }
  48 #else
  49 #define RELAX_SPIN_COUNT                                1000
  50 #define POLL_WHILE_TRUE(_c) {                           \
  51     do {                                                \
  52         int _i;                                         \
  53         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
  54             cpu_relax();                                \
  55         }                                               \
  56         if (unlikely(_c)) yield();                      \
  57         else break;                                     \
  58     } while (_c);                                       \
  59   }
  60 #endif                          /* debug */
  61 
  62 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
  63 
  64 static inline void acquire_spu_lock(struct spu *spu)
  65 {
  66         /* Save, Step 1:
  67          * Restore, Step 1:
  68          *    Acquire SPU-specific mutual exclusion lock.
  69          *    TBD.
  70          */
  71 }
  72 
  73 static inline void release_spu_lock(struct spu *spu)
  74 {
  75         /* Restore, Step 76:
  76          *    Release SPU-specific mutual exclusion lock.
  77          *    TBD.
  78          */
  79 }
  80 
  81 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
  82 {
  83         struct spu_problem __iomem *prob = spu->problem;
  84         u32 isolate_state;
  85 
  86         /* Save, Step 2:
  87          * Save, Step 6:
  88          *     If SPU_Status[E,L,IS] any field is '1', this
  89          *     SPU is in isolate state and cannot be context
  90          *     saved at this time.
  91          */
  92         isolate_state = SPU_STATUS_ISOLATED_STATE |
  93             SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
  94         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
  95 }
  96 
  97 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
  98 {
  99         /* Save, Step 3:
 100          * Restore, Step 2:
 101          *     Save INT_Mask_class0 in CSA.
 102          *     Write INT_MASK_class0 with value of 0.
 103          *     Save INT_Mask_class1 in CSA.
 104          *     Write INT_MASK_class1 with value of 0.
 105          *     Save INT_Mask_class2 in CSA.
 106          *     Write INT_MASK_class2 with value of 0.
 107          *     Synchronize all three interrupts to be sure
 108          *     we no longer execute a handler on another CPU.
 109          */
 110         spin_lock_irq(&spu->register_lock);
 111         if (csa) {
 112                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
 113                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
 114                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
 115         }
 116         spu_int_mask_set(spu, 0, 0ul);
 117         spu_int_mask_set(spu, 1, 0ul);
 118         spu_int_mask_set(spu, 2, 0ul);
 119         eieio();
 120         spin_unlock_irq(&spu->register_lock);
 121 
 122         /*
 123          * This flag needs to be set before calling synchronize_irq so
 124          * that the update will be visible to the relevant handlers
 125          * via a simple load.
 126          */
 127         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
 128         clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
 129         synchronize_irq(spu->irqs[0]);
 130         synchronize_irq(spu->irqs[1]);
 131         synchronize_irq(spu->irqs[2]);
 132 }
 133 
 134 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
 135 {
 136         /* Save, Step 4:
 137          * Restore, Step 25.
 138          *    Set a software watchdog timer, which specifies the
 139          *    maximum allowable time for a context save sequence.
 140          *
 141          *    For present, this implementation will not set a global
 142          *    watchdog timer, as virtualization & variable system load
 143          *    may cause unpredictable execution times.
 144          */
 145 }
 146 
 147 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
 148 {
 149         /* Save, Step 5:
 150          * Restore, Step 3:
 151          *     Inhibit user-space access (if provided) to this
 152          *     SPU by unmapping the virtual pages assigned to
 153          *     the SPU memory-mapped I/O (MMIO) for problem
 154          *     state. TBD.
 155          */
 156 }
 157 
 158 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
 159 {
 160         /* Save, Step 7:
 161          * Restore, Step 5:
 162          *     Set a software context switch pending flag.
 163          *     Done above in Step 3 - disable_interrupts().
 164          */
 165 }
 166 
 167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
 168 {
 169         struct spu_priv2 __iomem *priv2 = spu->priv2;
 170 
 171         /* Save, Step 8:
 172          *     Suspend DMA and save MFC_CNTL.
 173          */
 174         switch (in_be64(&priv2->mfc_control_RW) &
 175                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
 176         case MFC_CNTL_SUSPEND_IN_PROGRESS:
 177                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
 178                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
 179                                  MFC_CNTL_SUSPEND_COMPLETE);
 180                 /* fall through */
 181         case MFC_CNTL_SUSPEND_COMPLETE:
 182                 if (csa)
 183                         csa->priv2.mfc_control_RW =
 184                                 in_be64(&priv2->mfc_control_RW) |
 185                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
 186                 break;
 187         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
 188                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
 189                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
 190                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
 191                                  MFC_CNTL_SUSPEND_COMPLETE);
 192                 if (csa)
 193                         csa->priv2.mfc_control_RW =
 194                                 in_be64(&priv2->mfc_control_RW) &
 195                                 ~MFC_CNTL_SUSPEND_DMA_QUEUE &
 196                                 ~MFC_CNTL_SUSPEND_MASK;
 197                 break;
 198         }
 199 }
 200 
 201 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
 202 {
 203         struct spu_problem __iomem *prob = spu->problem;
 204 
 205         /* Save, Step 9:
 206          *     Save SPU_Runcntl in the CSA.  This value contains
 207          *     the "Application Desired State".
 208          */
 209         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
 210 }
 211 
 212 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
 213 {
 214         /* Save, Step 10:
 215          *     Save MFC_SR1 in the CSA.
 216          */
 217         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
 218 }
 219 
 220 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
 221 {
 222         struct spu_problem __iomem *prob = spu->problem;
 223 
 224         /* Save, Step 11:
 225          *     Read SPU_Status[R], and save to CSA.
 226          */
 227         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
 228                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
 229         } else {
 230                 u32 stopped;
 231 
 232                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
 233                 eieio();
 234                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
 235                                 SPU_STATUS_RUNNING);
 236                 stopped =
 237                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
 238                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
 239                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
 240                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
 241                 else
 242                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
 243         }
 244 }
 245 
 246 static inline void save_mfc_stopped_status(struct spu_state *csa,
 247                 struct spu *spu)
 248 {
 249         struct spu_priv2 __iomem *priv2 = spu->priv2;
 250         const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
 251                         MFC_CNTL_DMA_QUEUES_EMPTY;
 252 
 253         /* Save, Step 12:
 254          *     Read MFC_CNTL[Ds].  Update saved copy of
 255          *     CSA.MFC_CNTL[Ds].
 256          *
 257          * update: do the same with MFC_CNTL[Q].
 258          */
 259         csa->priv2.mfc_control_RW &= ~mask;
 260         csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
 261 }
 262 
 263 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
 264 {
 265         struct spu_priv2 __iomem *priv2 = spu->priv2;
 266 
 267         /* Save, Step 13:
 268          *     Write MFC_CNTL[Dh] set to a '1' to halt
 269          *     the decrementer.
 270          */
 271         out_be64(&priv2->mfc_control_RW,
 272                  MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
 273         eieio();
 274 }
 275 
 276 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
 277 {
 278         /* Save, Step 14:
 279          *    Read PPE Timebase High and Timebase low registers
 280          *    and save in CSA.  TBD.
 281          */
 282         csa->suspend_time = get_cycles();
 283 }
 284 
 285 static inline void remove_other_spu_access(struct spu_state *csa,
 286                                            struct spu *spu)
 287 {
 288         /* Save, Step 15:
 289          *     Remove other SPU access to this SPU by unmapping
 290          *     this SPU's pages from their address space.  TBD.
 291          */
 292 }
 293 
 294 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
 295 {
 296         struct spu_problem __iomem *prob = spu->problem;
 297 
 298         /* Save, Step 16:
 299          * Restore, Step 11.
 300          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
 301          *     for a value of 0.
 302          */
 303         out_be64(&prob->spc_mssync_RW, 1UL);
 304         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
 305 }
 306 
 307 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
 308 {
 309         /* Save, Step 17:
 310          * Restore, Step 12.
 311          * Restore, Step 48.
 312          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
 313          *     Then issue a PPE sync instruction.
 314          */
 315         spu_tlb_invalidate(spu);
 316         mb();
 317 }
 318 
 319 static inline void handle_pending_interrupts(struct spu_state *csa,
 320                                              struct spu *spu)
 321 {
 322         /* Save, Step 18:
 323          *     Handle any pending interrupts from this SPU
 324          *     here.  This is OS or hypervisor specific.  One
 325          *     option is to re-enable interrupts to handle any
 326          *     pending interrupts, with the interrupt handlers
 327          *     recognizing the software Context Switch Pending
 328          *     flag, to ensure the SPU execution or MFC command
 329          *     queue is not restarted.  TBD.
 330          */
 331 }
 332 
 333 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
 334 {
 335         struct spu_priv2 __iomem *priv2 = spu->priv2;
 336         int i;
 337 
 338         /* Save, Step 19:
 339          *     If MFC_Cntl[Se]=0 then save
 340          *     MFC command queues.
 341          */
 342         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
 343                 for (i = 0; i < 8; i++) {
 344                         csa->priv2.puq[i].mfc_cq_data0_RW =
 345                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
 346                         csa->priv2.puq[i].mfc_cq_data1_RW =
 347                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
 348                         csa->priv2.puq[i].mfc_cq_data2_RW =
 349                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
 350                         csa->priv2.puq[i].mfc_cq_data3_RW =
 351                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
 352                 }
 353                 for (i = 0; i < 16; i++) {
 354                         csa->priv2.spuq[i].mfc_cq_data0_RW =
 355                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
 356                         csa->priv2.spuq[i].mfc_cq_data1_RW =
 357                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
 358                         csa->priv2.spuq[i].mfc_cq_data2_RW =
 359                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
 360                         csa->priv2.spuq[i].mfc_cq_data3_RW =
 361                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
 362                 }
 363         }
 364 }
 365 
 366 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
 367 {
 368         struct spu_problem __iomem *prob = spu->problem;
 369 
 370         /* Save, Step 20:
 371          *     Save the PPU_QueryMask register
 372          *     in the CSA.
 373          */
 374         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
 375 }
 376 
 377 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
 378 {
 379         struct spu_problem __iomem *prob = spu->problem;
 380 
 381         /* Save, Step 21:
 382          *     Save the PPU_QueryType register
 383          *     in the CSA.
 384          */
 385         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
 386 }
 387 
 388 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
 389 {
 390         struct spu_problem __iomem *prob = spu->problem;
 391 
 392         /* Save the Prxy_TagStatus register in the CSA.
 393          *
 394          * It is unnecessary to restore dma_tagstatus_R, however,
 395          * dma_tagstatus_R in the CSA is accessed via backing_ops, so
 396          * we must save it.
 397          */
 398         csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
 399 }
 400 
 401 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
 402 {
 403         struct spu_priv2 __iomem *priv2 = spu->priv2;
 404 
 405         /* Save, Step 22:
 406          *     Save the MFC_CSR_TSQ register
 407          *     in the LSCSA.
 408          */
 409         csa->priv2.spu_tag_status_query_RW =
 410             in_be64(&priv2->spu_tag_status_query_RW);
 411 }
 412 
 413 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
 414 {
 415         struct spu_priv2 __iomem *priv2 = spu->priv2;
 416 
 417         /* Save, Step 23:
 418          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
 419          *     registers in the CSA.
 420          */
 421         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
 422         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
 423 }
 424 
 425 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
 426 {
 427         struct spu_priv2 __iomem *priv2 = spu->priv2;
 428 
 429         /* Save, Step 24:
 430          *     Save the MFC_CSR_ATO register in
 431          *     the CSA.
 432          */
 433         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
 434 }
 435 
 436 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
 437 {
 438         /* Save, Step 25:
 439          *     Save the MFC_TCLASS_ID register in
 440          *     the CSA.
 441          */
 442         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
 443 }
 444 
 445 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
 446 {
 447         /* Save, Step 26:
 448          * Restore, Step 23.
 449          *     Write the MFC_TCLASS_ID register with
 450          *     the value 0x10000000.
 451          */
 452         spu_mfc_tclass_id_set(spu, 0x10000000);
 453         eieio();
 454 }
 455 
 456 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
 457 {
 458         struct spu_priv2 __iomem *priv2 = spu->priv2;
 459 
 460         /* Save, Step 27:
 461          * Restore, Step 14.
 462          *     Write MFC_CNTL[Pc]=1 (purge queue).
 463          */
 464         out_be64(&priv2->mfc_control_RW,
 465                         MFC_CNTL_PURGE_DMA_REQUEST |
 466                         MFC_CNTL_SUSPEND_MASK);
 467         eieio();
 468 }
 469 
 470 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
 471 {
 472         struct spu_priv2 __iomem *priv2 = spu->priv2;
 473 
 474         /* Save, Step 28:
 475          *     Poll MFC_CNTL[Ps] until value '11' is read
 476          *     (purge complete).
 477          */
 478         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
 479                          MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
 480                          MFC_CNTL_PURGE_DMA_COMPLETE);
 481 }
 482 
 483 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
 484 {
 485         /* Save, Step 30:
 486          * Restore, Step 18:
 487          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
 488          *     MFC_SR1[TL,R,Pr,T] set correctly for the
 489          *     OS specific environment.
 490          *
 491          *     Implementation note: The SPU-side code
 492          *     for save/restore is privileged, so the
 493          *     MFC_SR1[Pr] bit is not set.
 494          *
 495          */
 496         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
 497                               MFC_STATE1_RELOCATE_MASK |
 498                               MFC_STATE1_BUS_TLBIE_MASK));
 499 }
 500 
 501 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
 502 {
 503         struct spu_problem __iomem *prob = spu->problem;
 504 
 505         /* Save, Step 31:
 506          *     Save SPU_NPC in the CSA.
 507          */
 508         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
 509 }
 510 
 511 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
 512 {
 513         struct spu_priv2 __iomem *priv2 = spu->priv2;
 514 
 515         /* Save, Step 32:
 516          *     Save SPU_PrivCntl in the CSA.
 517          */
 518         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
 519 }
 520 
 521 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
 522 {
 523         struct spu_priv2 __iomem *priv2 = spu->priv2;
 524 
 525         /* Save, Step 33:
 526          * Restore, Step 16:
 527          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
 528          */
 529         out_be64(&priv2->spu_privcntl_RW, 0UL);
 530         eieio();
 531 }
 532 
 533 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
 534 {
 535         struct spu_priv2 __iomem *priv2 = spu->priv2;
 536 
 537         /* Save, Step 34:
 538          *     Save SPU_LSLR in the CSA.
 539          */
 540         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
 541 }
 542 
 543 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
 544 {
 545         struct spu_priv2 __iomem *priv2 = spu->priv2;
 546 
 547         /* Save, Step 35:
 548          * Restore, Step 17.
 549          *     Reset SPU_LSLR.
 550          */
 551         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
 552         eieio();
 553 }
 554 
 555 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
 556 {
 557         struct spu_priv2 __iomem *priv2 = spu->priv2;
 558 
 559         /* Save, Step 36:
 560          *     Save SPU_Cfg in the CSA.
 561          */
 562         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
 563 }
 564 
 565 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
 566 {
 567         /* Save, Step 37:
 568          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
 569          *     Not performed by this implementation.
 570          */
 571 }
 572 
 573 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
 574 {
 575         /* Save, Step 38:
 576          *     Save RA_GROUP_ID register and the
 577          *     RA_ENABLE reigster in the CSA.
 578          */
 579         csa->priv1.resource_allocation_groupID_RW =
 580                 spu_resource_allocation_groupID_get(spu);
 581         csa->priv1.resource_allocation_enable_RW =
 582                 spu_resource_allocation_enable_get(spu);
 583 }
 584 
 585 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
 586 {
 587         struct spu_problem __iomem *prob = spu->problem;
 588 
 589         /* Save, Step 39:
 590          *     Save MB_Stat register in the CSA.
 591          */
 592         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
 593 }
 594 
 595 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
 596 {
 597         struct spu_problem __iomem *prob = spu->problem;
 598 
 599         /* Save, Step 40:
 600          *     Save the PPU_MB register in the CSA.
 601          */
 602         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
 603 }
 604 
 605 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
 606 {
 607         struct spu_priv2 __iomem *priv2 = spu->priv2;
 608 
 609         /* Save, Step 41:
 610          *     Save the PPUINT_MB register in the CSA.
 611          */
 612         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
 613 }
 614 
 615 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
 616 {
 617         struct spu_priv2 __iomem *priv2 = spu->priv2;
 618         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
 619         int i;
 620 
 621         /* Save, Step 42:
 622          */
 623 
 624         /* Save CH 1, without channel count */
 625         out_be64(&priv2->spu_chnlcntptr_RW, 1);
 626         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
 627 
 628         /* Save the following CH: [0,3,4,24,25,27] */
 629         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
 630                 idx = ch_indices[i];
 631                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
 632                 eieio();
 633                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
 634                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
 635                 out_be64(&priv2->spu_chnldata_RW, 0UL);
 636                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
 637                 eieio();
 638         }
 639 }
 640 
 641 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
 642 {
 643         struct spu_priv2 __iomem *priv2 = spu->priv2;
 644         int i;
 645 
 646         /* Save, Step 43:
 647          *     Save SPU Read Mailbox Channel.
 648          */
 649         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
 650         eieio();
 651         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
 652         for (i = 0; i < 4; i++) {
 653                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
 654         }
 655         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
 656         eieio();
 657 }
 658 
 659 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
 660 {
 661         struct spu_priv2 __iomem *priv2 = spu->priv2;
 662 
 663         /* Save, Step 44:
 664          *     Save MFC_CMD Channel.
 665          */
 666         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
 667         eieio();
 668         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
 669         eieio();
 670 }
 671 
 672 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
 673 {
 674         struct spu_priv2 __iomem *priv2 = spu->priv2;
 675         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
 676         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
 677         u64 idx;
 678         int i;
 679 
 680         /* Save, Step 45:
 681          *     Reset the following CH: [21, 23, 28, 30]
 682          */
 683         for (i = 0; i < 4; i++) {
 684                 idx = ch_indices[i];
 685                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
 686                 eieio();
 687                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
 688                 eieio();
 689         }
 690 }
 691 
 692 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
 693 {
 694         struct spu_priv2 __iomem *priv2 = spu->priv2;
 695 
 696         /* Save, Step 46:
 697          * Restore, Step 25.
 698          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
 699          */
 700         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
 701 }
 702 
 703 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
 704                 unsigned int *code, int code_size)
 705 {
 706         /* Save, Step 47:
 707          * Restore, Step 30.
 708          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
 709          *     register, then initialize SLB_VSID and SLB_ESID
 710          *     to provide access to SPU context save code and
 711          *     LSCSA.
 712          *
 713          *     This implementation places both the context
 714          *     switch code and LSCSA in kernel address space.
 715          *
 716          *     Further this implementation assumes that the
 717          *     MFC_SR1[R]=1 (in other words, assume that
 718          *     translation is desired by OS environment).
 719          */
 720         spu_invalidate_slbs(spu);
 721         spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
 722 }
 723 
 724 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
 725 {
 726         /* Save, Step 48:
 727          * Restore, Step 23.
 728          *     Change the software context switch pending flag
 729          *     to context switch active.  This implementation does
 730          *     not uses a switch active flag.
 731          *
 732          * Now that we have saved the mfc in the csa, we can add in the
 733          * restart command if an exception occurred.
 734          */
 735         if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
 736                 csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
 737         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
 738         mb();
 739 }
 740 
 741 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
 742 {
 743         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
 744             CLASS1_ENABLE_STORAGE_FAULT_INTR;
 745 
 746         /* Save, Step 49:
 747          * Restore, Step 22:
 748          *     Reset and then enable interrupts, as
 749          *     needed by OS.
 750          *
 751          *     This implementation enables only class1
 752          *     (translation) interrupts.
 753          */
 754         spin_lock_irq(&spu->register_lock);
 755         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
 756         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
 757         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
 758         spu_int_mask_set(spu, 0, 0ul);
 759         spu_int_mask_set(spu, 1, class1_mask);
 760         spu_int_mask_set(spu, 2, 0ul);
 761         spin_unlock_irq(&spu->register_lock);
 762 }
 763 
 764 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
 765                                unsigned int ls_offset, unsigned int size,
 766                                unsigned int tag, unsigned int rclass,
 767                                unsigned int cmd)
 768 {
 769         struct spu_problem __iomem *prob = spu->problem;
 770         union mfc_tag_size_class_cmd command;
 771         unsigned int transfer_size;
 772         volatile unsigned int status = 0x0;
 773 
 774         while (size > 0) {
 775                 transfer_size =
 776                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
 777                 command.u.mfc_size = transfer_size;
 778                 command.u.mfc_tag = tag;
 779                 command.u.mfc_rclassid = rclass;
 780                 command.u.mfc_cmd = cmd;
 781                 do {
 782                         out_be32(&prob->mfc_lsa_W, ls_offset);
 783                         out_be64(&prob->mfc_ea_W, ea);
 784                         out_be64(&prob->mfc_union_W.all64, command.all64);
 785                         status =
 786                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
 787                         if (unlikely(status & 0x2)) {
 788                                 cpu_relax();
 789                         }
 790                 } while (status & 0x3);
 791                 size -= transfer_size;
 792                 ea += transfer_size;
 793                 ls_offset += transfer_size;
 794         }
 795         return 0;
 796 }
 797 
 798 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
 799 {
 800         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
 801         unsigned int ls_offset = 0x0;
 802         unsigned int size = 16384;
 803         unsigned int tag = 0;
 804         unsigned int rclass = 0;
 805         unsigned int cmd = MFC_PUT_CMD;
 806 
 807         /* Save, Step 50:
 808          *     Issue a DMA command to copy the first 16K bytes
 809          *     of local storage to the CSA.
 810          */
 811         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
 812 }
 813 
 814 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
 815 {
 816         struct spu_problem __iomem *prob = spu->problem;
 817 
 818         /* Save, Step 51:
 819          * Restore, Step 31.
 820          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
 821          *     point address of context save code in local
 822          *     storage.
 823          *
 824          *     This implementation uses SPU-side save/restore
 825          *     programs with entry points at LSA of 0.
 826          */
 827         out_be32(&prob->spu_npc_RW, 0);
 828         eieio();
 829 }
 830 
 831 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
 832 {
 833         struct spu_problem __iomem *prob = spu->problem;
 834         union {
 835                 u64 ull;
 836                 u32 ui[2];
 837         } addr64;
 838 
 839         /* Save, Step 52:
 840          * Restore, Step 32:
 841          *    Write SPU_Sig_Notify_1 register with upper 32-bits
 842          *    of the CSA.LSCSA effective address.
 843          */
 844         addr64.ull = (u64) csa->lscsa;
 845         out_be32(&prob->signal_notify1, addr64.ui[0]);
 846         eieio();
 847 }
 848 
 849 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
 850 {
 851         struct spu_problem __iomem *prob = spu->problem;
 852         union {
 853                 u64 ull;
 854                 u32 ui[2];
 855         } addr64;
 856 
 857         /* Save, Step 53:
 858          * Restore, Step 33:
 859          *    Write SPU_Sig_Notify_2 register with lower 32-bits
 860          *    of the CSA.LSCSA effective address.
 861          */
 862         addr64.ull = (u64) csa->lscsa;
 863         out_be32(&prob->signal_notify2, addr64.ui[1]);
 864         eieio();
 865 }
 866 
 867 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
 868 {
 869         unsigned long addr = (unsigned long)&spu_save_code[0];
 870         unsigned int ls_offset = 0x0;
 871         unsigned int size = sizeof(spu_save_code);
 872         unsigned int tag = 0;
 873         unsigned int rclass = 0;
 874         unsigned int cmd = MFC_GETFS_CMD;
 875 
 876         /* Save, Step 54:
 877          *     Issue a DMA command to copy context save code
 878          *     to local storage and start SPU.
 879          */
 880         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
 881 }
 882 
 883 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
 884 {
 885         struct spu_problem __iomem *prob = spu->problem;
 886 
 887         /* Save, Step 55:
 888          * Restore, Step 38.
 889          *     Write PPU_QueryMask=1 (enable Tag Group 0)
 890          *     and issue eieio instruction.
 891          */
 892         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
 893         eieio();
 894 }
 895 
 896 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
 897 {
 898         struct spu_problem __iomem *prob = spu->problem;
 899         u32 mask = MFC_TAGID_TO_TAGMASK(0);
 900         unsigned long flags;
 901 
 902         /* Save, Step 56:
 903          * Restore, Step 39.
 904          * Restore, Step 39.
 905          * Restore, Step 46.
 906          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
 907          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
 908          *     Complete Interrupt.  Write INT_Stat_Class0 or
 909          *     INT_Stat_Class2 with value of 'handled'.
 910          */
 911         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
 912 
 913         local_irq_save(flags);
 914         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
 915         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
 916         local_irq_restore(flags);
 917 }
 918 
 919 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
 920 {
 921         struct spu_problem __iomem *prob = spu->problem;
 922         unsigned long flags;
 923 
 924         /* Save, Step 57:
 925          * Restore, Step 40.
 926          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
 927          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
 928          *     or INT_Stat_class2 with value of handled.
 929          */
 930         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
 931 
 932         local_irq_save(flags);
 933         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
 934         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
 935         local_irq_restore(flags);
 936 }
 937 
 938 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
 939 {
 940         struct spu_problem __iomem *prob = spu->problem;
 941         u32 complete;
 942 
 943         /* Save, Step 54:
 944          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
 945          *     context save succeeded, otherwise context save
 946          *     failed.
 947          */
 948         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
 949                     SPU_STATUS_STOPPED_BY_STOP);
 950         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
 951 }
 952 
 953 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
 954 {
 955         /* Restore, Step 4:
 956          *    If required, notify the "using application" that
 957          *    the SPU task has been terminated.  TBD.
 958          */
 959 }
 960 
 961 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
 962                 struct spu *spu)
 963 {
 964         struct spu_priv2 __iomem *priv2 = spu->priv2;
 965 
 966         /* Restore, Step 7:
 967          *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
 968          *     the queue and halt the decrementer.
 969          */
 970         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
 971                  MFC_CNTL_DECREMENTER_HALTED);
 972         eieio();
 973 }
 974 
 975 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
 976                                              struct spu *spu)
 977 {
 978         struct spu_priv2 __iomem *priv2 = spu->priv2;
 979 
 980         /* Restore, Step 8:
 981          * Restore, Step 47.
 982          *     Poll MFC_CNTL[Ss] until 11 is returned.
 983          */
 984         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
 985                          MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
 986                          MFC_CNTL_SUSPEND_COMPLETE);
 987 }
 988 
 989 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
 990 {
 991         struct spu_problem __iomem *prob = spu->problem;
 992 
 993         /* Restore, Step 9:
 994          *    If SPU_Status[R]=1, stop SPU execution
 995          *    and wait for stop to complete.
 996          *
 997          *    Returns       1 if SPU_Status[R]=1 on entry.
 998          *                  0 otherwise
 999          */
1000         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1001                 if (in_be32(&prob->spu_status_R) &
1002                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1003                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1004                                         SPU_STATUS_RUNNING);
1005                 }
1006                 if ((in_be32(&prob->spu_status_R) &
1007                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1008                     || (in_be32(&prob->spu_status_R) &
1009                         SPU_STATUS_ISOLATED_STATE)) {
1010                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1011                         eieio();
1012                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1013                                         SPU_STATUS_RUNNING);
1014                         out_be32(&prob->spu_runcntl_RW, 0x2);
1015                         eieio();
1016                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1017                                         SPU_STATUS_RUNNING);
1018                 }
1019                 if (in_be32(&prob->spu_status_R) &
1020                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1021                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1022                         eieio();
1023                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1024                                         SPU_STATUS_RUNNING);
1025                 }
1026                 return 1;
1027         }
1028         return 0;
1029 }
1030 
1031 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1032 {
1033         struct spu_problem __iomem *prob = spu->problem;
1034 
1035         /* Restore, Step 10:
1036          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1037          *    release SPU from isolate state.
1038          */
1039         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1040                 if (in_be32(&prob->spu_status_R) &
1041                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1042                         spu_mfc_sr1_set(spu,
1043                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1044                         eieio();
1045                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1046                         eieio();
1047                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1048                                         SPU_STATUS_RUNNING);
1049                 }
1050                 if ((in_be32(&prob->spu_status_R) &
1051                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1052                     || (in_be32(&prob->spu_status_R) &
1053                         SPU_STATUS_ISOLATED_STATE)) {
1054                         spu_mfc_sr1_set(spu,
1055                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1056                         eieio();
1057                         out_be32(&prob->spu_runcntl_RW, 0x2);
1058                         eieio();
1059                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1060                                         SPU_STATUS_RUNNING);
1061                 }
1062         }
1063 }
1064 
1065 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1066 {
1067         struct spu_priv2 __iomem *priv2 = spu->priv2;
1068         u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1069         u64 idx;
1070         int i;
1071 
1072         /* Restore, Step 20:
1073          */
1074 
1075         /* Reset CH 1 */
1076         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1077         out_be64(&priv2->spu_chnldata_RW, 0UL);
1078 
1079         /* Reset the following CH: [0,3,4,24,25,27] */
1080         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1081                 idx = ch_indices[i];
1082                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1083                 eieio();
1084                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1085                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1086                 eieio();
1087         }
1088 }
1089 
1090 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1091 {
1092         struct spu_priv2 __iomem *priv2 = spu->priv2;
1093         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1094         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1095         u64 idx;
1096         int i;
1097 
1098         /* Restore, Step 21:
1099          *     Reset the following CH: [21, 23, 28, 29, 30]
1100          */
1101         for (i = 0; i < 5; i++) {
1102                 idx = ch_indices[i];
1103                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1104                 eieio();
1105                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1106                 eieio();
1107         }
1108 }
1109 
1110 static inline void setup_spu_status_part1(struct spu_state *csa,
1111                                           struct spu *spu)
1112 {
1113         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1114         u32 status_I = SPU_STATUS_INVALID_INSTR;
1115         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1116         u32 status_S = SPU_STATUS_SINGLE_STEP;
1117         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1118         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1119         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1120         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1121         u32 status_code;
1122 
1123         /* Restore, Step 27:
1124          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1125          *     instruction sequence to the end of the SPU based restore
1126          *     code (after the "context restored" stop and signal) to
1127          *     restore the correct SPU status.
1128          *
1129          *     NOTE: Rather than modifying the SPU executable, we
1130          *     instead add a new 'stopped_status' field to the
1131          *     LSCSA.  The SPU-side restore reads this field and
1132          *     takes the appropriate action when exiting.
1133          */
1134 
1135         status_code =
1136             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1137         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1138 
1139                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1140                  * by Stop and Signal instruction, followed by 'br -4'.
1141                  *
1142                  */
1143                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1144                 csa->lscsa->stopped_status.slot[1] = status_code;
1145 
1146         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1147 
1148                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1149                  * by Stop and Signal instruction, followed by
1150                  * 'br -4'.
1151                  */
1152                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1153                 csa->lscsa->stopped_status.slot[1] = status_code;
1154 
1155         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1156 
1157                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1158                  * followed by 'br -4'.
1159                  */
1160                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1161                 csa->lscsa->stopped_status.slot[1] = status_code;
1162 
1163         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1164 
1165                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1166                  * by 'br -4'.
1167                  */
1168                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1169                 csa->lscsa->stopped_status.slot[1] = status_code;
1170 
1171         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1172 
1173                 /* SPU_Status[P]=1 - Stop and Signal instruction
1174                  * followed by 'br -4'.
1175                  */
1176                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1177                 csa->lscsa->stopped_status.slot[1] = status_code;
1178 
1179         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1180 
1181                 /* SPU_Status[H]=1 - Halt Conditional, followed
1182                  * by 'br -4'.
1183                  */
1184                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1185 
1186         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1187 
1188                 /* SPU_Status[S]=1 - Two nop instructions.
1189                  */
1190                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1191 
1192         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1193 
1194                 /* SPU_Status[I]=1 - Illegal instruction followed
1195                  * by 'br -4'.
1196                  */
1197                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1198 
1199         }
1200 }
1201 
1202 static inline void setup_spu_status_part2(struct spu_state *csa,
1203                                           struct spu *spu)
1204 {
1205         u32 mask;
1206 
1207         /* Restore, Step 28:
1208          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1209          *     add a 'br *' instruction to the end of
1210          *     the SPU based restore code.
1211          *
1212          *     NOTE: Rather than modifying the SPU executable, we
1213          *     instead add a new 'stopped_status' field to the
1214          *     LSCSA.  The SPU-side restore reads this field and
1215          *     takes the appropriate action when exiting.
1216          */
1217         mask = SPU_STATUS_INVALID_INSTR |
1218             SPU_STATUS_SINGLE_STEP |
1219             SPU_STATUS_STOPPED_BY_HALT |
1220             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1221         if (!(csa->prob.spu_status_R & mask)) {
1222                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1223         }
1224 }
1225 
1226 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1227 {
1228         /* Restore, Step 29:
1229          *     Restore RA_GROUP_ID register and the
1230          *     RA_ENABLE reigster from the CSA.
1231          */
1232         spu_resource_allocation_groupID_set(spu,
1233                         csa->priv1.resource_allocation_groupID_RW);
1234         spu_resource_allocation_enable_set(spu,
1235                         csa->priv1.resource_allocation_enable_RW);
1236 }
1237 
1238 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1239 {
1240         unsigned long addr = (unsigned long)&spu_restore_code[0];
1241         unsigned int ls_offset = 0x0;
1242         unsigned int size = sizeof(spu_restore_code);
1243         unsigned int tag = 0;
1244         unsigned int rclass = 0;
1245         unsigned int cmd = MFC_GETFS_CMD;
1246 
1247         /* Restore, Step 37:
1248          *     Issue MFC DMA command to copy context
1249          *     restore code to local storage.
1250          */
1251         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1252 }
1253 
1254 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1255 {
1256         /* Restore, Step 34:
1257          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1258          *     running) then adjust decrementer, set
1259          *     decrementer running status in LSCSA,
1260          *     and set decrementer "wrapped" status
1261          *     in LSCSA.
1262          */
1263         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1264                 cycles_t resume_time = get_cycles();
1265                 cycles_t delta_time = resume_time - csa->suspend_time;
1266 
1267                 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1268                 if (csa->lscsa->decr.slot[0] < delta_time) {
1269                         csa->lscsa->decr_status.slot[0] |=
1270                                  SPU_DECR_STATUS_WRAPPED;
1271                 }
1272 
1273                 csa->lscsa->decr.slot[0] -= delta_time;
1274         } else {
1275                 csa->lscsa->decr_status.slot[0] = 0;
1276         }
1277 }
1278 
1279 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1280 {
1281         /* Restore, Step 35:
1282          *     Copy the CSA.PU_MB data into the LSCSA.
1283          */
1284         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1285 }
1286 
1287 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1288 {
1289         /* Restore, Step 36:
1290          *     Copy the CSA.PUINT_MB data into the LSCSA.
1291          */
1292         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1293 }
1294 
1295 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1296 {
1297         struct spu_problem __iomem *prob = spu->problem;
1298         u32 complete;
1299 
1300         /* Restore, Step 40:
1301          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1302          *     context restore succeeded, otherwise context restore
1303          *     failed.
1304          */
1305         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1306                     SPU_STATUS_STOPPED_BY_STOP);
1307         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1308 }
1309 
1310 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1311 {
1312         struct spu_priv2 __iomem *priv2 = spu->priv2;
1313 
1314         /* Restore, Step 41:
1315          *     Restore SPU_PrivCntl from the CSA.
1316          */
1317         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1318         eieio();
1319 }
1320 
1321 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1322 {
1323         struct spu_problem __iomem *prob = spu->problem;
1324         u32 mask;
1325 
1326         /* Restore, Step 42:
1327          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1328          *     restore the error or single step state.
1329          */
1330         mask = SPU_STATUS_INVALID_INSTR |
1331             SPU_STATUS_SINGLE_STEP |
1332             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1333         if (csa->prob.spu_status_R & mask) {
1334                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1335                 eieio();
1336                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1337                                 SPU_STATUS_RUNNING);
1338         }
1339 }
1340 
1341 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1342 {
1343         struct spu_problem __iomem *prob = spu->problem;
1344         u32 mask;
1345 
1346         /* Restore, Step 43:
1347          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1348          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1349          *     then write '00' to SPU_RunCntl[R0R1] and wait
1350          *     for SPU_Status[R]=0.
1351          */
1352         mask = SPU_STATUS_INVALID_INSTR |
1353             SPU_STATUS_SINGLE_STEP |
1354             SPU_STATUS_STOPPED_BY_HALT |
1355             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1356         if (!(csa->prob.spu_status_R & mask)) {
1357                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1358                 eieio();
1359                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1360                                  SPU_STATUS_RUNNING);
1361                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1362                 eieio();
1363                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1364                                 SPU_STATUS_RUNNING);
1365         }
1366 }
1367 
1368 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1369 {
1370         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1371         unsigned int ls_offset = 0x0;
1372         unsigned int size = 16384;
1373         unsigned int tag = 0;
1374         unsigned int rclass = 0;
1375         unsigned int cmd = MFC_GET_CMD;
1376 
1377         /* Restore, Step 44:
1378          *     Issue a DMA command to restore the first
1379          *     16kb of local storage from CSA.
1380          */
1381         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1382 }
1383 
1384 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1385 {
1386         struct spu_priv2 __iomem *priv2 = spu->priv2;
1387 
1388         /* Restore, Step 47.
1389          *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1390          *     the queue.
1391          */
1392         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1393         eieio();
1394 }
1395 
1396 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1397 {
1398         /* Restore, Step 49:
1399          *     Write INT_MASK_class0 with value of 0.
1400          *     Write INT_MASK_class1 with value of 0.
1401          *     Write INT_MASK_class2 with value of 0.
1402          *     Write INT_STAT_class0 with value of -1.
1403          *     Write INT_STAT_class1 with value of -1.
1404          *     Write INT_STAT_class2 with value of -1.
1405          */
1406         spin_lock_irq(&spu->register_lock);
1407         spu_int_mask_set(spu, 0, 0ul);
1408         spu_int_mask_set(spu, 1, 0ul);
1409         spu_int_mask_set(spu, 2, 0ul);
1410         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1411         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1412         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1413         spin_unlock_irq(&spu->register_lock);
1414 }
1415 
1416 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1417 {
1418         struct spu_priv2 __iomem *priv2 = spu->priv2;
1419         int i;
1420 
1421         /* Restore, Step 50:
1422          *     If MFC_Cntl[Se]!=0 then restore
1423          *     MFC command queues.
1424          */
1425         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1426                 for (i = 0; i < 8; i++) {
1427                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1428                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1429                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1430                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1431                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1432                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1433                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1434                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1435                 }
1436                 for (i = 0; i < 16; i++) {
1437                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1438                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1439                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1440                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1441                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1442                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1443                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1444                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1445                 }
1446         }
1447         eieio();
1448 }
1449 
1450 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1451 {
1452         struct spu_problem __iomem *prob = spu->problem;
1453 
1454         /* Restore, Step 51:
1455          *     Restore the PPU_QueryMask register from CSA.
1456          */
1457         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1458         eieio();
1459 }
1460 
1461 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1462 {
1463         struct spu_problem __iomem *prob = spu->problem;
1464 
1465         /* Restore, Step 52:
1466          *     Restore the PPU_QueryType register from CSA.
1467          */
1468         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1469         eieio();
1470 }
1471 
1472 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1473 {
1474         struct spu_priv2 __iomem *priv2 = spu->priv2;
1475 
1476         /* Restore, Step 53:
1477          *     Restore the MFC_CSR_TSQ register from CSA.
1478          */
1479         out_be64(&priv2->spu_tag_status_query_RW,
1480                  csa->priv2.spu_tag_status_query_RW);
1481         eieio();
1482 }
1483 
1484 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1485 {
1486         struct spu_priv2 __iomem *priv2 = spu->priv2;
1487 
1488         /* Restore, Step 54:
1489          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1490          *     registers from CSA.
1491          */
1492         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1493         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1494         eieio();
1495 }
1496 
1497 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1498 {
1499         struct spu_priv2 __iomem *priv2 = spu->priv2;
1500 
1501         /* Restore, Step 55:
1502          *     Restore the MFC_CSR_ATO register from CSA.
1503          */
1504         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1505 }
1506 
1507 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1508 {
1509         /* Restore, Step 56:
1510          *     Restore the MFC_TCLASS_ID register from CSA.
1511          */
1512         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1513         eieio();
1514 }
1515 
1516 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1517 {
1518         u64 ch0_cnt, ch0_data;
1519         u64 ch1_data;
1520 
1521         /* Restore, Step 57:
1522          *    Set the Lock Line Reservation Lost Event by:
1523          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1524          *      2. If CSA.SPU_Channel_0_Count=0 and
1525          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1526          *         CSA.SPU_Event_Status[Lr]=0 then set
1527          *         CSA.SPU_Event_Status_Count=1.
1528          */
1529         ch0_cnt = csa->spu_chnlcnt_RW[0];
1530         ch0_data = csa->spu_chnldata_RW[0];
1531         ch1_data = csa->spu_chnldata_RW[1];
1532         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1533         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1534             (ch1_data & MFC_LLR_LOST_EVENT)) {
1535                 csa->spu_chnlcnt_RW[0] = 1;
1536         }
1537 }
1538 
1539 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1540 {
1541         /* Restore, Step 58:
1542          *     If the status of the CSA software decrementer
1543          *     "wrapped" flag is set, OR in a '1' to
1544          *     CSA.SPU_Event_Status[Tm].
1545          */
1546         if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1547                 return;
1548 
1549         if ((csa->spu_chnlcnt_RW[0] == 0) &&
1550             (csa->spu_chnldata_RW[1] & 0x20) &&
1551             !(csa->spu_chnldata_RW[0] & 0x20))
1552                 csa->spu_chnlcnt_RW[0] = 1;
1553 
1554         csa->spu_chnldata_RW[0] |= 0x20;
1555 }
1556 
1557 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1558 {
1559         struct spu_priv2 __iomem *priv2 = spu->priv2;
1560         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1561         int i;
1562 
1563         /* Restore, Step 59:
1564          *      Restore the following CH: [0,3,4,24,25,27]
1565          */
1566         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1567                 idx = ch_indices[i];
1568                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1569                 eieio();
1570                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1571                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1572                 eieio();
1573         }
1574 }
1575 
1576 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1577 {
1578         struct spu_priv2 __iomem *priv2 = spu->priv2;
1579         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1580         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1581         u64 idx;
1582         int i;
1583 
1584         /* Restore, Step 60:
1585          *     Restore the following CH: [9,21,23].
1586          */
1587         ch_counts[0] = 1UL;
1588         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1589         ch_counts[2] = 1UL;
1590         for (i = 0; i < 3; i++) {
1591                 idx = ch_indices[i];
1592                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1593                 eieio();
1594                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1595                 eieio();
1596         }
1597 }
1598 
1599 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1600 {
1601         struct spu_priv2 __iomem *priv2 = spu->priv2;
1602 
1603         /* Restore, Step 61:
1604          *     Restore the SPU_LSLR register from CSA.
1605          */
1606         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1607         eieio();
1608 }
1609 
1610 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1611 {
1612         struct spu_priv2 __iomem *priv2 = spu->priv2;
1613 
1614         /* Restore, Step 62:
1615          *     Restore the SPU_Cfg register from CSA.
1616          */
1617         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1618         eieio();
1619 }
1620 
1621 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1622 {
1623         /* Restore, Step 63:
1624          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1625          *     Not performed by this implementation.
1626          */
1627 }
1628 
1629 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1630 {
1631         struct spu_problem __iomem *prob = spu->problem;
1632 
1633         /* Restore, Step 64:
1634          *     Restore SPU_NPC from CSA.
1635          */
1636         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1637         eieio();
1638 }
1639 
1640 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1641 {
1642         struct spu_priv2 __iomem *priv2 = spu->priv2;
1643         int i;
1644 
1645         /* Restore, Step 65:
1646          *     Restore MFC_RdSPU_MB from CSA.
1647          */
1648         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1649         eieio();
1650         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1651         for (i = 0; i < 4; i++) {
1652                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1653         }
1654         eieio();
1655 }
1656 
1657 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1658 {
1659         struct spu_problem __iomem *prob = spu->problem;
1660         u32 dummy = 0;
1661 
1662         /* Restore, Step 66:
1663          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1664          *     read from the PPU_MB register.
1665          */
1666         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1667                 dummy = in_be32(&prob->pu_mb_R);
1668                 eieio();
1669         }
1670 }
1671 
1672 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1673 {
1674         struct spu_priv2 __iomem *priv2 = spu->priv2;
1675         u64 dummy = 0UL;
1676 
1677         /* Restore, Step 66:
1678          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1679          *     read from the PPUINT_MB register.
1680          */
1681         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1682                 dummy = in_be64(&priv2->puint_mb_R);
1683                 eieio();
1684                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1685                 eieio();
1686         }
1687 }
1688 
1689 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1690 {
1691         /* Restore, Step 69:
1692          *     Restore the MFC_SR1 register from CSA.
1693          */
1694         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1695         eieio();
1696 }
1697 
1698 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1699 {
1700         struct spu_context *ctx = spu->ctx;
1701 
1702         spu_cpu_affinity_set(spu, ctx->last_ran);
1703 }
1704 
1705 static inline void restore_other_spu_access(struct spu_state *csa,
1706                                             struct spu *spu)
1707 {
1708         /* Restore, Step 70:
1709          *     Restore other SPU mappings to this SPU. TBD.
1710          */
1711 }
1712 
1713 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1714 {
1715         struct spu_problem __iomem *prob = spu->problem;
1716 
1717         /* Restore, Step 71:
1718          *     If CSA.SPU_Status[R]=1 then write
1719          *     SPU_RunCntl[R0R1]='01'.
1720          */
1721         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1722                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1723                 eieio();
1724         }
1725 }
1726 
1727 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1728 {
1729         struct spu_priv2 __iomem *priv2 = spu->priv2;
1730 
1731         /* Restore, Step 72:
1732          *    Restore the MFC_CNTL register for the CSA.
1733          */
1734         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1735         eieio();
1736 
1737         /*
1738          * The queue is put back into the same state that was evident prior to
1739          * the context switch. The suspend flag is added to the saved state in
1740          * the csa, if the operational state was suspending or suspended. In
1741          * this case, the code that suspended the mfc is responsible for
1742          * continuing it. Note that SPE faults do not change the operational
1743          * state of the spu.
1744          */
1745 }
1746 
1747 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1748 {
1749         /* Restore, Step 73:
1750          *     Enable user-space access (if provided) to this
1751          *     SPU by mapping the virtual pages assigned to
1752          *     the SPU memory-mapped I/O (MMIO) for problem
1753          *     state. TBD.
1754          */
1755 }
1756 
1757 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1758 {
1759         /* Restore, Step 74:
1760          *     Reset the "context switch active" flag.
1761          *     Not performed by this implementation.
1762          */
1763 }
1764 
1765 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1766 {
1767         /* Restore, Step 75:
1768          *     Re-enable SPU interrupts.
1769          */
1770         spin_lock_irq(&spu->register_lock);
1771         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1772         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1773         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1774         spin_unlock_irq(&spu->register_lock);
1775 }
1776 
1777 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1778 {
1779         /*
1780          * Combined steps 2-18 of SPU context save sequence, which
1781          * quiesce the SPU state (disable SPU execution, MFC command
1782          * queues, decrementer, SPU interrupts, etc.).
1783          *
1784          * Returns      0 on success.
1785          *              2 if failed step 2.
1786          *              6 if failed step 6.
1787          */
1788 
1789         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1790                 return 2;
1791         }
1792         disable_interrupts(prev, spu);          /* Step 3. */
1793         set_watchdog_timer(prev, spu);          /* Step 4. */
1794         inhibit_user_access(prev, spu);         /* Step 5. */
1795         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1796                 return 6;
1797         }
1798         set_switch_pending(prev, spu);          /* Step 7. */
1799         save_mfc_cntl(prev, spu);               /* Step 8. */
1800         save_spu_runcntl(prev, spu);            /* Step 9. */
1801         save_mfc_sr1(prev, spu);                /* Step 10. */
1802         save_spu_status(prev, spu);             /* Step 11. */
1803         save_mfc_stopped_status(prev, spu);     /* Step 12. */
1804         halt_mfc_decr(prev, spu);               /* Step 13. */
1805         save_timebase(prev, spu);               /* Step 14. */
1806         remove_other_spu_access(prev, spu);     /* Step 15. */
1807         do_mfc_mssync(prev, spu);               /* Step 16. */
1808         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1809         handle_pending_interrupts(prev, spu);   /* Step 18. */
1810 
1811         return 0;
1812 }
1813 
1814 static void save_csa(struct spu_state *prev, struct spu *spu)
1815 {
1816         /*
1817          * Combine steps 19-44 of SPU context save sequence, which
1818          * save regions of the privileged & problem state areas.
1819          */
1820 
1821         save_mfc_queues(prev, spu);     /* Step 19. */
1822         save_ppu_querymask(prev, spu);  /* Step 20. */
1823         save_ppu_querytype(prev, spu);  /* Step 21. */
1824         save_ppu_tagstatus(prev, spu);  /* NEW.     */
1825         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1826         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1827         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1828         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1829         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1830         save_mfc_cmd(prev, spu);        /* Step 26a - moved from 44. */
1831         purge_mfc_queue(prev, spu);     /* Step 27. */
1832         wait_purge_complete(prev, spu); /* Step 28. */
1833         setup_mfc_sr1(prev, spu);       /* Step 30. */
1834         save_spu_npc(prev, spu);        /* Step 31. */
1835         save_spu_privcntl(prev, spu);   /* Step 32. */
1836         reset_spu_privcntl(prev, spu);  /* Step 33. */
1837         save_spu_lslr(prev, spu);       /* Step 34. */
1838         reset_spu_lslr(prev, spu);      /* Step 35. */
1839         save_spu_cfg(prev, spu);        /* Step 36. */
1840         save_pm_trace(prev, spu);       /* Step 37. */
1841         save_mfc_rag(prev, spu);        /* Step 38. */
1842         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1843         save_ppu_mb(prev, spu);         /* Step 40. */
1844         save_ppuint_mb(prev, spu);      /* Step 41. */
1845         save_ch_part1(prev, spu);       /* Step 42. */
1846         save_spu_mb(prev, spu);         /* Step 43. */
1847         reset_ch(prev, spu);            /* Step 45. */
1848 }
1849 
1850 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1851 {
1852         /*
1853          * Perform steps 46-57 of SPU context save sequence,
1854          * which save regions of the local store and register
1855          * file.
1856          */
1857 
1858         resume_mfc_queue(prev, spu);    /* Step 46. */
1859         /* Step 47. */
1860         setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1861         set_switch_active(prev, spu);   /* Step 48. */
1862         enable_interrupts(prev, spu);   /* Step 49. */
1863         save_ls_16kb(prev, spu);        /* Step 50. */
1864         set_spu_npc(prev, spu);         /* Step 51. */
1865         set_signot1(prev, spu);         /* Step 52. */
1866         set_signot2(prev, spu);         /* Step 53. */
1867         send_save_code(prev, spu);      /* Step 54. */
1868         set_ppu_querymask(prev, spu);   /* Step 55. */
1869         wait_tag_complete(prev, spu);   /* Step 56. */
1870         wait_spu_stopped(prev, spu);    /* Step 57. */
1871 }
1872 
1873 static void force_spu_isolate_exit(struct spu *spu)
1874 {
1875         struct spu_problem __iomem *prob = spu->problem;
1876         struct spu_priv2 __iomem *priv2 = spu->priv2;
1877 
1878         /* Stop SPE execution and wait for completion. */
1879         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1880         iobarrier_rw();
1881         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1882 
1883         /* Restart SPE master runcntl. */
1884         spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1885         iobarrier_w();
1886 
1887         /* Initiate isolate exit request and wait for completion. */
1888         out_be64(&priv2->spu_privcntl_RW, 4LL);
1889         iobarrier_w();
1890         out_be32(&prob->spu_runcntl_RW, 2);
1891         iobarrier_rw();
1892         POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1893                                 & SPU_STATUS_STOPPED_BY_STOP));
1894 
1895         /* Reset load request to normal. */
1896         out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1897         iobarrier_w();
1898 }
1899 
1900 /**
1901  * stop_spu_isolate
1902  *      Check SPU run-control state and force isolated
1903  *      exit function as necessary.
1904  */
1905 static void stop_spu_isolate(struct spu *spu)
1906 {
1907         struct spu_problem __iomem *prob = spu->problem;
1908 
1909         if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1910                 /* The SPU is in isolated state; the only way
1911                  * to get it out is to perform an isolated
1912                  * exit (clean) operation.
1913                  */
1914                 force_spu_isolate_exit(spu);
1915         }
1916 }
1917 
1918 static void harvest(struct spu_state *prev, struct spu *spu)
1919 {
1920         /*
1921          * Perform steps 2-25 of SPU context restore sequence,
1922          * which resets an SPU either after a failed save, or
1923          * when using SPU for first time.
1924          */
1925 
1926         disable_interrupts(prev, spu);          /* Step 2.  */
1927         inhibit_user_access(prev, spu);         /* Step 3.  */
1928         terminate_spu_app(prev, spu);           /* Step 4.  */
1929         set_switch_pending(prev, spu);          /* Step 5.  */
1930         stop_spu_isolate(spu);                  /* NEW.     */
1931         remove_other_spu_access(prev, spu);     /* Step 6.  */
1932         suspend_mfc_and_halt_decr(prev, spu);   /* Step 7.  */
1933         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1934         if (!suspend_spe(prev, spu))            /* Step 9.  */
1935                 clear_spu_status(prev, spu);    /* Step 10. */
1936         do_mfc_mssync(prev, spu);               /* Step 11. */
1937         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1938         handle_pending_interrupts(prev, spu);   /* Step 13. */
1939         purge_mfc_queue(prev, spu);             /* Step 14. */
1940         wait_purge_complete(prev, spu);         /* Step 15. */
1941         reset_spu_privcntl(prev, spu);          /* Step 16. */
1942         reset_spu_lslr(prev, spu);              /* Step 17. */
1943         setup_mfc_sr1(prev, spu);               /* Step 18. */
1944         spu_invalidate_slbs(spu);               /* Step 19. */
1945         reset_ch_part1(prev, spu);              /* Step 20. */
1946         reset_ch_part2(prev, spu);              /* Step 21. */
1947         enable_interrupts(prev, spu);           /* Step 22. */
1948         set_switch_active(prev, spu);           /* Step 23. */
1949         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1950         resume_mfc_queue(prev, spu);            /* Step 25. */
1951 }
1952 
1953 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1954 {
1955         /*
1956          * Perform steps 26-40 of SPU context restore sequence,
1957          * which restores regions of the local store and register
1958          * file.
1959          */
1960 
1961         set_watchdog_timer(next, spu);          /* Step 26. */
1962         setup_spu_status_part1(next, spu);      /* Step 27. */
1963         setup_spu_status_part2(next, spu);      /* Step 28. */
1964         restore_mfc_rag(next, spu);             /* Step 29. */
1965         /* Step 30. */
1966         setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1967         set_spu_npc(next, spu);                 /* Step 31. */
1968         set_signot1(next, spu);                 /* Step 32. */
1969         set_signot2(next, spu);                 /* Step 33. */
1970         setup_decr(next, spu);                  /* Step 34. */
1971         setup_ppu_mb(next, spu);                /* Step 35. */
1972         setup_ppuint_mb(next, spu);             /* Step 36. */
1973         send_restore_code(next, spu);           /* Step 37. */
1974         set_ppu_querymask(next, spu);           /* Step 38. */
1975         wait_tag_complete(next, spu);           /* Step 39. */
1976         wait_spu_stopped(next, spu);            /* Step 40. */
1977 }
1978 
1979 static void restore_csa(struct spu_state *next, struct spu *spu)
1980 {
1981         /*
1982          * Combine steps 41-76 of SPU context restore sequence, which
1983          * restore regions of the privileged & problem state areas.
1984          */
1985 
1986         restore_spu_privcntl(next, spu);        /* Step 41. */
1987         restore_status_part1(next, spu);        /* Step 42. */
1988         restore_status_part2(next, spu);        /* Step 43. */
1989         restore_ls_16kb(next, spu);             /* Step 44. */
1990         wait_tag_complete(next, spu);           /* Step 45. */
1991         suspend_mfc(next, spu);                 /* Step 46. */
1992         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
1993         issue_mfc_tlbie(next, spu);             /* Step 48. */
1994         clear_interrupts(next, spu);            /* Step 49. */
1995         restore_mfc_queues(next, spu);          /* Step 50. */
1996         restore_ppu_querymask(next, spu);       /* Step 51. */
1997         restore_ppu_querytype(next, spu);       /* Step 52. */
1998         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
1999         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
2000         restore_mfc_csr_ato(next, spu);         /* Step 55. */
2001         restore_mfc_tclass_id(next, spu);       /* Step 56. */
2002         set_llr_event(next, spu);               /* Step 57. */
2003         restore_decr_wrapped(next, spu);        /* Step 58. */
2004         restore_ch_part1(next, spu);            /* Step 59. */
2005         restore_ch_part2(next, spu);            /* Step 60. */
2006         restore_spu_lslr(next, spu);            /* Step 61. */
2007         restore_spu_cfg(next, spu);             /* Step 62. */
2008         restore_pm_trace(next, spu);            /* Step 63. */
2009         restore_spu_npc(next, spu);             /* Step 64. */
2010         restore_spu_mb(next, spu);              /* Step 65. */
2011         check_ppu_mb_stat(next, spu);           /* Step 66. */
2012         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2013         spu_invalidate_slbs(spu);               /* Modified Step 68. */
2014         restore_mfc_sr1(next, spu);             /* Step 69. */
2015         set_int_route(next, spu);               /* NEW      */
2016         restore_other_spu_access(next, spu);    /* Step 70. */
2017         restore_spu_runcntl(next, spu);         /* Step 71. */
2018         restore_mfc_cntl(next, spu);            /* Step 72. */
2019         enable_user_access(next, spu);          /* Step 73. */
2020         reset_switch_active(next, spu);         /* Step 74. */
2021         reenable_interrupts(next, spu);         /* Step 75. */
2022 }
2023 
2024 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2025 {
2026         int rc;
2027 
2028         /*
2029          * SPU context save can be broken into three phases:
2030          *
2031          *     (a) quiesce [steps 2-16].
2032          *     (b) save of CSA, performed by PPE [steps 17-42]
2033          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2034          *
2035          * Returns      0 on success.
2036          *              2,6 if failed to quiece SPU
2037          *              53 if SPU-side of save failed.
2038          */
2039 
2040         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2041         switch (rc) {
2042         default:
2043         case 2:
2044         case 6:
2045                 harvest(prev, spu);
2046                 return rc;
2047                 break;
2048         case 0:
2049                 break;
2050         }
2051         save_csa(prev, spu);                    /* Steps 17-43. */
2052         save_lscsa(prev, spu);                  /* Steps 44-53. */
2053         return check_save_status(prev, spu);    /* Step 54.     */
2054 }
2055 
2056 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2057 {
2058         int rc;
2059 
2060         /*
2061          * SPU context restore can be broken into three phases:
2062          *
2063          *    (a) harvest (or reset) SPU [steps 2-24].
2064          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2065          *    (c) restore CSA [steps 41-76], performed by PPE.
2066          *
2067          * The 'harvest' step is not performed here, but rather
2068          * as needed below.
2069          */
2070 
2071         restore_lscsa(next, spu);               /* Steps 24-39. */
2072         rc = check_restore_status(next, spu);   /* Step 40.     */
2073         switch (rc) {
2074         default:
2075                 /* Failed. Return now. */
2076                 return rc;
2077                 break;
2078         case 0:
2079                 /* Fall through to next step. */
2080                 break;
2081         }
2082         restore_csa(next, spu);
2083 
2084         return 0;
2085 }
2086 
2087 /**
2088  * spu_save - SPU context save, with locking.
2089  * @prev: pointer to SPU context save area, to be saved.
2090  * @spu: pointer to SPU iomem structure.
2091  *
2092  * Acquire locks, perform the save operation then return.
2093  */
2094 int spu_save(struct spu_state *prev, struct spu *spu)
2095 {
2096         int rc;
2097 
2098         acquire_spu_lock(spu);          /* Step 1.     */
2099         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2100         release_spu_lock(spu);
2101         if (rc != 0 && rc != 2 && rc != 6) {
2102                 panic("%s failed on SPU[%d], rc=%d.\n",
2103                       __func__, spu->number, rc);
2104         }
2105         return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(spu_save);
2108 
2109 /**
2110  * spu_restore - SPU context restore, with harvest and locking.
2111  * @new: pointer to SPU context save area, to be restored.
2112  * @spu: pointer to SPU iomem structure.
2113  *
2114  * Perform harvest + restore, as we may not be coming
2115  * from a previous successful save operation, and the
2116  * hardware state is unknown.
2117  */
2118 int spu_restore(struct spu_state *new, struct spu *spu)
2119 {
2120         int rc;
2121 
2122         acquire_spu_lock(spu);
2123         harvest(NULL, spu);
2124         spu->slb_replace = 0;
2125         rc = __do_spu_restore(new, spu);
2126         release_spu_lock(spu);
2127         if (rc) {
2128                 panic("%s failed on SPU[%d] rc=%d.\n",
2129                        __func__, spu->number, rc);
2130         }
2131         return rc;
2132 }
2133 EXPORT_SYMBOL_GPL(spu_restore);
2134 
2135 static void init_prob(struct spu_state *csa)
2136 {
2137         csa->spu_chnlcnt_RW[9] = 1;
2138         csa->spu_chnlcnt_RW[21] = 16;
2139         csa->spu_chnlcnt_RW[23] = 1;
2140         csa->spu_chnlcnt_RW[28] = 1;
2141         csa->spu_chnlcnt_RW[30] = 1;
2142         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2143         csa->prob.mb_stat_R = 0x000400;
2144 }
2145 
2146 static void init_priv1(struct spu_state *csa)
2147 {
2148         /* Enable decode, relocate, tlbie response, master runcntl. */
2149         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2150             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2151             MFC_STATE1_PROBLEM_STATE_MASK |
2152             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2153 
2154         /* Enable OS-specific set of interrupts. */
2155         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2156             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2157             CLASS0_ENABLE_SPU_ERROR_INTR;
2158         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2159             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2160         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2161             CLASS2_ENABLE_SPU_HALT_INTR |
2162             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2163 }
2164 
2165 static void init_priv2(struct spu_state *csa)
2166 {
2167         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2168         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2169             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2170             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2171 }
2172 
2173 /**
2174  * spu_alloc_csa - allocate and initialize an SPU context save area.
2175  *
2176  * Allocate and initialize the contents of an SPU context save area.
2177  * This includes enabling address translation, interrupt masks, etc.,
2178  * as appropriate for the given OS environment.
2179  *
2180  * Note that storage for the 'lscsa' is allocated separately,
2181  * as it is by far the largest of the context save regions,
2182  * and may need to be pinned or otherwise specially aligned.
2183  */
2184 int spu_init_csa(struct spu_state *csa)
2185 {
2186         int rc;
2187 
2188         if (!csa)
2189                 return -EINVAL;
2190         memset(csa, 0, sizeof(struct spu_state));
2191 
2192         rc = spu_alloc_lscsa(csa);
2193         if (rc)
2194                 return rc;
2195 
2196         spin_lock_init(&csa->register_lock);
2197 
2198         init_prob(csa);
2199         init_priv1(csa);
2200         init_priv2(csa);
2201 
2202         return 0;
2203 }
2204 
2205 void spu_fini_csa(struct spu_state *csa)
2206 {
2207         spu_free_lscsa(csa);
2208 }

/* [<][>][^][v][top][bottom][index][help] */