root/net/vmw_vsock/vmci_transport.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vmci_transport_error_to_vsock_error
  2. vmci_transport_peer_rid
  3. vmci_transport_packet_init
  4. vmci_transport_packet_get_addresses
  5. __vmci_transport_send_control_pkt
  6. vmci_transport_reply_control_pkt_fast
  7. vmci_transport_send_control_pkt_bh
  8. vmci_transport_alloc_send_control_pkt
  9. vmci_transport_send_control_pkt
  10. vmci_transport_send_reset_bh
  11. vmci_transport_send_reset
  12. vmci_transport_send_negotiate
  13. vmci_transport_send_negotiate2
  14. vmci_transport_send_qp_offer
  15. vmci_transport_send_attach
  16. vmci_transport_reply_reset
  17. vmci_transport_send_invalid_bh
  18. vmci_transport_send_wrote_bh
  19. vmci_transport_send_read_bh
  20. vmci_transport_send_wrote
  21. vmci_transport_send_read
  22. vmci_transport_send_waiting_write
  23. vmci_transport_send_waiting_read
  24. vmci_transport_shutdown
  25. vmci_transport_send_conn_request
  26. vmci_transport_send_conn_request2
  27. vmci_transport_get_pending
  28. vmci_transport_release_pending
  29. vmci_transport_is_trusted
  30. vmci_transport_allow_dgram
  31. vmci_transport_queue_pair_alloc
  32. vmci_transport_datagram_create_hnd
  33. vmci_transport_recv_dgram_cb
  34. vmci_transport_stream_allow
  35. vmci_transport_recv_stream_cb
  36. vmci_transport_handle_detach
  37. vmci_transport_peer_detach_cb
  38. vmci_transport_qp_resumed_cb
  39. vmci_transport_recv_pkt_work
  40. vmci_transport_recv_listen
  41. vmci_transport_recv_connecting_server
  42. vmci_transport_recv_connecting_client
  43. vmci_transport_recv_connecting_client_negotiate
  44. vmci_transport_recv_connecting_client_invalid
  45. vmci_transport_recv_connected
  46. vmci_transport_socket_init
  47. vmci_transport_free_resources
  48. vmci_transport_cleanup
  49. vmci_transport_destruct
  50. vmci_transport_release
  51. vmci_transport_dgram_bind
  52. vmci_transport_dgram_enqueue
  53. vmci_transport_dgram_dequeue
  54. vmci_transport_dgram_allow
  55. vmci_transport_connect
  56. vmci_transport_stream_dequeue
  57. vmci_transport_stream_enqueue
  58. vmci_transport_stream_has_data
  59. vmci_transport_stream_has_space
  60. vmci_transport_stream_rcvhiwat
  61. vmci_transport_stream_is_active
  62. vmci_transport_get_buffer_size
  63. vmci_transport_get_min_buffer_size
  64. vmci_transport_get_max_buffer_size
  65. vmci_transport_set_buffer_size
  66. vmci_transport_set_min_buffer_size
  67. vmci_transport_set_max_buffer_size
  68. vmci_transport_notify_poll_in
  69. vmci_transport_notify_poll_out
  70. vmci_transport_notify_recv_init
  71. vmci_transport_notify_recv_pre_block
  72. vmci_transport_notify_recv_pre_dequeue
  73. vmci_transport_notify_recv_post_dequeue
  74. vmci_transport_notify_send_init
  75. vmci_transport_notify_send_pre_block
  76. vmci_transport_notify_send_pre_enqueue
  77. vmci_transport_notify_send_post_enqueue
  78. vmci_transport_old_proto_override
  79. vmci_transport_proto_to_notify_struct
  80. vmci_transport_new_proto_supported_versions
  81. vmci_transport_get_local_cid
  82. vmci_transport_init
  83. vmci_transport_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * VMware vSockets Driver
   4  *
   5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   6  */
   7 
   8 #include <linux/types.h>
   9 #include <linux/bitops.h>
  10 #include <linux/cred.h>
  11 #include <linux/init.h>
  12 #include <linux/io.h>
  13 #include <linux/kernel.h>
  14 #include <linux/kmod.h>
  15 #include <linux/list.h>
  16 #include <linux/module.h>
  17 #include <linux/mutex.h>
  18 #include <linux/net.h>
  19 #include <linux/poll.h>
  20 #include <linux/skbuff.h>
  21 #include <linux/smp.h>
  22 #include <linux/socket.h>
  23 #include <linux/stddef.h>
  24 #include <linux/unistd.h>
  25 #include <linux/wait.h>
  26 #include <linux/workqueue.h>
  27 #include <net/sock.h>
  28 #include <net/af_vsock.h>
  29 
  30 #include "vmci_transport_notify.h"
  31 
  32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
  33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
  34 static void vmci_transport_peer_detach_cb(u32 sub_id,
  35                                           const struct vmci_event_data *ed,
  36                                           void *client_data);
  37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
  38 static void vmci_transport_cleanup(struct work_struct *work);
  39 static int vmci_transport_recv_listen(struct sock *sk,
  40                                       struct vmci_transport_packet *pkt);
  41 static int vmci_transport_recv_connecting_server(
  42                                         struct sock *sk,
  43                                         struct sock *pending,
  44                                         struct vmci_transport_packet *pkt);
  45 static int vmci_transport_recv_connecting_client(
  46                                         struct sock *sk,
  47                                         struct vmci_transport_packet *pkt);
  48 static int vmci_transport_recv_connecting_client_negotiate(
  49                                         struct sock *sk,
  50                                         struct vmci_transport_packet *pkt);
  51 static int vmci_transport_recv_connecting_client_invalid(
  52                                         struct sock *sk,
  53                                         struct vmci_transport_packet *pkt);
  54 static int vmci_transport_recv_connected(struct sock *sk,
  55                                          struct vmci_transport_packet *pkt);
  56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
  57 static u16 vmci_transport_new_proto_supported_versions(void);
  58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
  59                                                   bool old_pkt_proto);
  60 
  61 struct vmci_transport_recv_pkt_info {
  62         struct work_struct work;
  63         struct sock *sk;
  64         struct vmci_transport_packet pkt;
  65 };
  66 
  67 static LIST_HEAD(vmci_transport_cleanup_list);
  68 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
  69 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
  70 
  71 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
  72                                                            VMCI_INVALID_ID };
  73 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
  74 
  75 static int PROTOCOL_OVERRIDE = -1;
  76 
  77 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
  78 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
  79 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
  80 
  81 /* The default peer timeout indicates how long we will wait for a peer response
  82  * to a control message.
  83  */
  84 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
  85 
  86 /* Helper function to convert from a VMCI error code to a VSock error code. */
  87 
  88 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
  89 {
  90         switch (vmci_error) {
  91         case VMCI_ERROR_NO_MEM:
  92                 return -ENOMEM;
  93         case VMCI_ERROR_DUPLICATE_ENTRY:
  94         case VMCI_ERROR_ALREADY_EXISTS:
  95                 return -EADDRINUSE;
  96         case VMCI_ERROR_NO_ACCESS:
  97                 return -EPERM;
  98         case VMCI_ERROR_NO_RESOURCES:
  99                 return -ENOBUFS;
 100         case VMCI_ERROR_INVALID_RESOURCE:
 101                 return -EHOSTUNREACH;
 102         case VMCI_ERROR_INVALID_ARGS:
 103         default:
 104                 break;
 105         }
 106         return -EINVAL;
 107 }
 108 
 109 static u32 vmci_transport_peer_rid(u32 peer_cid)
 110 {
 111         if (VMADDR_CID_HYPERVISOR == peer_cid)
 112                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
 113 
 114         return VMCI_TRANSPORT_PACKET_RID;
 115 }
 116 
 117 static inline void
 118 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
 119                            struct sockaddr_vm *src,
 120                            struct sockaddr_vm *dst,
 121                            u8 type,
 122                            u64 size,
 123                            u64 mode,
 124                            struct vmci_transport_waiting_info *wait,
 125                            u16 proto,
 126                            struct vmci_handle handle)
 127 {
 128         /* We register the stream control handler as an any cid handle so we
 129          * must always send from a source address of VMADDR_CID_ANY
 130          */
 131         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
 132                                        VMCI_TRANSPORT_PACKET_RID);
 133         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
 134                                        vmci_transport_peer_rid(dst->svm_cid));
 135         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
 136         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
 137         pkt->type = type;
 138         pkt->src_port = src->svm_port;
 139         pkt->dst_port = dst->svm_port;
 140         memset(&pkt->proto, 0, sizeof(pkt->proto));
 141         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
 142 
 143         switch (pkt->type) {
 144         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
 145                 pkt->u.size = 0;
 146                 break;
 147 
 148         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
 149         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
 150                 pkt->u.size = size;
 151                 break;
 152 
 153         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
 154         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
 155                 pkt->u.handle = handle;
 156                 break;
 157 
 158         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
 159         case VMCI_TRANSPORT_PACKET_TYPE_READ:
 160         case VMCI_TRANSPORT_PACKET_TYPE_RST:
 161                 pkt->u.size = 0;
 162                 break;
 163 
 164         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
 165                 pkt->u.mode = mode;
 166                 break;
 167 
 168         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
 169         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
 170                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
 171                 break;
 172 
 173         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
 174         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
 175                 pkt->u.size = size;
 176                 pkt->proto = proto;
 177                 break;
 178         }
 179 }
 180 
 181 static inline void
 182 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
 183                                     struct sockaddr_vm *local,
 184                                     struct sockaddr_vm *remote)
 185 {
 186         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
 187         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
 188 }
 189 
 190 static int
 191 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
 192                                   struct sockaddr_vm *src,
 193                                   struct sockaddr_vm *dst,
 194                                   enum vmci_transport_packet_type type,
 195                                   u64 size,
 196                                   u64 mode,
 197                                   struct vmci_transport_waiting_info *wait,
 198                                   u16 proto,
 199                                   struct vmci_handle handle,
 200                                   bool convert_error)
 201 {
 202         int err;
 203 
 204         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
 205                                    proto, handle);
 206         err = vmci_datagram_send(&pkt->dg);
 207         if (convert_error && (err < 0))
 208                 return vmci_transport_error_to_vsock_error(err);
 209 
 210         return err;
 211 }
 212 
 213 static int
 214 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
 215                                       enum vmci_transport_packet_type type,
 216                                       u64 size,
 217                                       u64 mode,
 218                                       struct vmci_transport_waiting_info *wait,
 219                                       struct vmci_handle handle)
 220 {
 221         struct vmci_transport_packet reply;
 222         struct sockaddr_vm src, dst;
 223 
 224         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
 225                 return 0;
 226         } else {
 227                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
 228                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
 229                                                          type,
 230                                                          size, mode, wait,
 231                                                          VSOCK_PROTO_INVALID,
 232                                                          handle, true);
 233         }
 234 }
 235 
 236 static int
 237 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
 238                                    struct sockaddr_vm *dst,
 239                                    enum vmci_transport_packet_type type,
 240                                    u64 size,
 241                                    u64 mode,
 242                                    struct vmci_transport_waiting_info *wait,
 243                                    struct vmci_handle handle)
 244 {
 245         /* Note that it is safe to use a single packet across all CPUs since
 246          * two tasklets of the same type are guaranteed to not ever run
 247          * simultaneously. If that ever changes, or VMCI stops using tasklets,
 248          * we can use per-cpu packets.
 249          */
 250         static struct vmci_transport_packet pkt;
 251 
 252         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
 253                                                  size, mode, wait,
 254                                                  VSOCK_PROTO_INVALID, handle,
 255                                                  false);
 256 }
 257 
 258 static int
 259 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
 260                                       struct sockaddr_vm *dst,
 261                                       enum vmci_transport_packet_type type,
 262                                       u64 size,
 263                                       u64 mode,
 264                                       struct vmci_transport_waiting_info *wait,
 265                                       u16 proto,
 266                                       struct vmci_handle handle)
 267 {
 268         struct vmci_transport_packet *pkt;
 269         int err;
 270 
 271         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
 272         if (!pkt)
 273                 return -ENOMEM;
 274 
 275         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
 276                                                 mode, wait, proto, handle,
 277                                                 true);
 278         kfree(pkt);
 279 
 280         return err;
 281 }
 282 
 283 static int
 284 vmci_transport_send_control_pkt(struct sock *sk,
 285                                 enum vmci_transport_packet_type type,
 286                                 u64 size,
 287                                 u64 mode,
 288                                 struct vmci_transport_waiting_info *wait,
 289                                 u16 proto,
 290                                 struct vmci_handle handle)
 291 {
 292         struct vsock_sock *vsk;
 293 
 294         vsk = vsock_sk(sk);
 295 
 296         if (!vsock_addr_bound(&vsk->local_addr))
 297                 return -EINVAL;
 298 
 299         if (!vsock_addr_bound(&vsk->remote_addr))
 300                 return -EINVAL;
 301 
 302         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
 303                                                      &vsk->remote_addr,
 304                                                      type, size, mode,
 305                                                      wait, proto, handle);
 306 }
 307 
 308 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
 309                                         struct sockaddr_vm *src,
 310                                         struct vmci_transport_packet *pkt)
 311 {
 312         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
 313                 return 0;
 314         return vmci_transport_send_control_pkt_bh(
 315                                         dst, src,
 316                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
 317                                         0, NULL, VMCI_INVALID_HANDLE);
 318 }
 319 
 320 static int vmci_transport_send_reset(struct sock *sk,
 321                                      struct vmci_transport_packet *pkt)
 322 {
 323         struct sockaddr_vm *dst_ptr;
 324         struct sockaddr_vm dst;
 325         struct vsock_sock *vsk;
 326 
 327         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
 328                 return 0;
 329 
 330         vsk = vsock_sk(sk);
 331 
 332         if (!vsock_addr_bound(&vsk->local_addr))
 333                 return -EINVAL;
 334 
 335         if (vsock_addr_bound(&vsk->remote_addr)) {
 336                 dst_ptr = &vsk->remote_addr;
 337         } else {
 338                 vsock_addr_init(&dst, pkt->dg.src.context,
 339                                 pkt->src_port);
 340                 dst_ptr = &dst;
 341         }
 342         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
 343                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
 344                                              0, 0, NULL, VSOCK_PROTO_INVALID,
 345                                              VMCI_INVALID_HANDLE);
 346 }
 347 
 348 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
 349 {
 350         return vmci_transport_send_control_pkt(
 351                                         sk,
 352                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
 353                                         size, 0, NULL,
 354                                         VSOCK_PROTO_INVALID,
 355                                         VMCI_INVALID_HANDLE);
 356 }
 357 
 358 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
 359                                           u16 version)
 360 {
 361         return vmci_transport_send_control_pkt(
 362                                         sk,
 363                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
 364                                         size, 0, NULL, version,
 365                                         VMCI_INVALID_HANDLE);
 366 }
 367 
 368 static int vmci_transport_send_qp_offer(struct sock *sk,
 369                                         struct vmci_handle handle)
 370 {
 371         return vmci_transport_send_control_pkt(
 372                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
 373                                         0, NULL,
 374                                         VSOCK_PROTO_INVALID, handle);
 375 }
 376 
 377 static int vmci_transport_send_attach(struct sock *sk,
 378                                       struct vmci_handle handle)
 379 {
 380         return vmci_transport_send_control_pkt(
 381                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
 382                                         0, 0, NULL, VSOCK_PROTO_INVALID,
 383                                         handle);
 384 }
 385 
 386 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
 387 {
 388         return vmci_transport_reply_control_pkt_fast(
 389                                                 pkt,
 390                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
 391                                                 0, 0, NULL,
 392                                                 VMCI_INVALID_HANDLE);
 393 }
 394 
 395 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
 396                                           struct sockaddr_vm *src)
 397 {
 398         return vmci_transport_send_control_pkt_bh(
 399                                         dst, src,
 400                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
 401                                         0, 0, NULL, VMCI_INVALID_HANDLE);
 402 }
 403 
 404 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
 405                                  struct sockaddr_vm *src)
 406 {
 407         return vmci_transport_send_control_pkt_bh(
 408                                         dst, src,
 409                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
 410                                         0, NULL, VMCI_INVALID_HANDLE);
 411 }
 412 
 413 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
 414                                 struct sockaddr_vm *src)
 415 {
 416         return vmci_transport_send_control_pkt_bh(
 417                                         dst, src,
 418                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
 419                                         0, NULL, VMCI_INVALID_HANDLE);
 420 }
 421 
 422 int vmci_transport_send_wrote(struct sock *sk)
 423 {
 424         return vmci_transport_send_control_pkt(
 425                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
 426                                         0, NULL, VSOCK_PROTO_INVALID,
 427                                         VMCI_INVALID_HANDLE);
 428 }
 429 
 430 int vmci_transport_send_read(struct sock *sk)
 431 {
 432         return vmci_transport_send_control_pkt(
 433                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
 434                                         0, NULL, VSOCK_PROTO_INVALID,
 435                                         VMCI_INVALID_HANDLE);
 436 }
 437 
 438 int vmci_transport_send_waiting_write(struct sock *sk,
 439                                       struct vmci_transport_waiting_info *wait)
 440 {
 441         return vmci_transport_send_control_pkt(
 442                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
 443                                 0, 0, wait, VSOCK_PROTO_INVALID,
 444                                 VMCI_INVALID_HANDLE);
 445 }
 446 
 447 int vmci_transport_send_waiting_read(struct sock *sk,
 448                                      struct vmci_transport_waiting_info *wait)
 449 {
 450         return vmci_transport_send_control_pkt(
 451                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
 452                                 0, 0, wait, VSOCK_PROTO_INVALID,
 453                                 VMCI_INVALID_HANDLE);
 454 }
 455 
 456 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
 457 {
 458         return vmci_transport_send_control_pkt(
 459                                         &vsk->sk,
 460                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
 461                                         0, mode, NULL,
 462                                         VSOCK_PROTO_INVALID,
 463                                         VMCI_INVALID_HANDLE);
 464 }
 465 
 466 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
 467 {
 468         return vmci_transport_send_control_pkt(sk,
 469                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
 470                                         size, 0, NULL,
 471                                         VSOCK_PROTO_INVALID,
 472                                         VMCI_INVALID_HANDLE);
 473 }
 474 
 475 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
 476                                              u16 version)
 477 {
 478         return vmci_transport_send_control_pkt(
 479                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
 480                                         size, 0, NULL, version,
 481                                         VMCI_INVALID_HANDLE);
 482 }
 483 
 484 static struct sock *vmci_transport_get_pending(
 485                                         struct sock *listener,
 486                                         struct vmci_transport_packet *pkt)
 487 {
 488         struct vsock_sock *vlistener;
 489         struct vsock_sock *vpending;
 490         struct sock *pending;
 491         struct sockaddr_vm src;
 492 
 493         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
 494 
 495         vlistener = vsock_sk(listener);
 496 
 497         list_for_each_entry(vpending, &vlistener->pending_links,
 498                             pending_links) {
 499                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
 500                     pkt->dst_port == vpending->local_addr.svm_port) {
 501                         pending = sk_vsock(vpending);
 502                         sock_hold(pending);
 503                         goto found;
 504                 }
 505         }
 506 
 507         pending = NULL;
 508 found:
 509         return pending;
 510 
 511 }
 512 
 513 static void vmci_transport_release_pending(struct sock *pending)
 514 {
 515         sock_put(pending);
 516 }
 517 
 518 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
 519  * trusted sockets 2) sockets from applications running as the same user as the
 520  * VM (this is only true for the host side and only when using hosted products)
 521  */
 522 
 523 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
 524 {
 525         return vsock->trusted ||
 526                vmci_is_context_owner(peer_cid, vsock->owner->uid);
 527 }
 528 
 529 /* We allow sending datagrams to and receiving datagrams from a restricted VM
 530  * only if it is trusted as described in vmci_transport_is_trusted.
 531  */
 532 
 533 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
 534 {
 535         if (VMADDR_CID_HYPERVISOR == peer_cid)
 536                 return true;
 537 
 538         if (vsock->cached_peer != peer_cid) {
 539                 vsock->cached_peer = peer_cid;
 540                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
 541                     (vmci_context_get_priv_flags(peer_cid) &
 542                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
 543                         vsock->cached_peer_allow_dgram = false;
 544                 } else {
 545                         vsock->cached_peer_allow_dgram = true;
 546                 }
 547         }
 548 
 549         return vsock->cached_peer_allow_dgram;
 550 }
 551 
 552 static int
 553 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
 554                                 struct vmci_handle *handle,
 555                                 u64 produce_size,
 556                                 u64 consume_size,
 557                                 u32 peer, u32 flags, bool trusted)
 558 {
 559         int err = 0;
 560 
 561         if (trusted) {
 562                 /* Try to allocate our queue pair as trusted. This will only
 563                  * work if vsock is running in the host.
 564                  */
 565 
 566                 err = vmci_qpair_alloc(qpair, handle, produce_size,
 567                                        consume_size,
 568                                        peer, flags,
 569                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
 570                 if (err != VMCI_ERROR_NO_ACCESS)
 571                         goto out;
 572 
 573         }
 574 
 575         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
 576                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
 577 out:
 578         if (err < 0) {
 579                 pr_err("Could not attach to queue pair with %d\n",
 580                        err);
 581                 err = vmci_transport_error_to_vsock_error(err);
 582         }
 583 
 584         return err;
 585 }
 586 
 587 static int
 588 vmci_transport_datagram_create_hnd(u32 resource_id,
 589                                    u32 flags,
 590                                    vmci_datagram_recv_cb recv_cb,
 591                                    void *client_data,
 592                                    struct vmci_handle *out_handle)
 593 {
 594         int err = 0;
 595 
 596         /* Try to allocate our datagram handler as trusted. This will only work
 597          * if vsock is running in the host.
 598          */
 599 
 600         err = vmci_datagram_create_handle_priv(resource_id, flags,
 601                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
 602                                                recv_cb,
 603                                                client_data, out_handle);
 604 
 605         if (err == VMCI_ERROR_NO_ACCESS)
 606                 err = vmci_datagram_create_handle(resource_id, flags,
 607                                                   recv_cb, client_data,
 608                                                   out_handle);
 609 
 610         return err;
 611 }
 612 
 613 /* This is invoked as part of a tasklet that's scheduled when the VMCI
 614  * interrupt fires.  This is run in bottom-half context and if it ever needs to
 615  * sleep it should defer that work to a work queue.
 616  */
 617 
 618 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
 619 {
 620         struct sock *sk;
 621         size_t size;
 622         struct sk_buff *skb;
 623         struct vsock_sock *vsk;
 624 
 625         sk = (struct sock *)data;
 626 
 627         /* This handler is privileged when this module is running on the host.
 628          * We will get datagrams from all endpoints (even VMs that are in a
 629          * restricted context). If we get one from a restricted context then
 630          * the destination socket must be trusted.
 631          *
 632          * NOTE: We access the socket struct without holding the lock here.
 633          * This is ok because the field we are interested is never modified
 634          * outside of the create and destruct socket functions.
 635          */
 636         vsk = vsock_sk(sk);
 637         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
 638                 return VMCI_ERROR_NO_ACCESS;
 639 
 640         size = VMCI_DG_SIZE(dg);
 641 
 642         /* Attach the packet to the socket's receive queue as an sk_buff. */
 643         skb = alloc_skb(size, GFP_ATOMIC);
 644         if (!skb)
 645                 return VMCI_ERROR_NO_MEM;
 646 
 647         /* sk_receive_skb() will do a sock_put(), so hold here. */
 648         sock_hold(sk);
 649         skb_put(skb, size);
 650         memcpy(skb->data, dg, size);
 651         sk_receive_skb(sk, skb, 0);
 652 
 653         return VMCI_SUCCESS;
 654 }
 655 
 656 static bool vmci_transport_stream_allow(u32 cid, u32 port)
 657 {
 658         static const u32 non_socket_contexts[] = {
 659                 VMADDR_CID_RESERVED,
 660         };
 661         int i;
 662 
 663         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
 664 
 665         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
 666                 if (cid == non_socket_contexts[i])
 667                         return false;
 668         }
 669 
 670         return true;
 671 }
 672 
 673 /* This is invoked as part of a tasklet that's scheduled when the VMCI
 674  * interrupt fires.  This is run in bottom-half context but it defers most of
 675  * its work to the packet handling work queue.
 676  */
 677 
 678 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
 679 {
 680         struct sock *sk;
 681         struct sockaddr_vm dst;
 682         struct sockaddr_vm src;
 683         struct vmci_transport_packet *pkt;
 684         struct vsock_sock *vsk;
 685         bool bh_process_pkt;
 686         int err;
 687 
 688         sk = NULL;
 689         err = VMCI_SUCCESS;
 690         bh_process_pkt = false;
 691 
 692         /* Ignore incoming packets from contexts without sockets, or resources
 693          * that aren't vsock implementations.
 694          */
 695 
 696         if (!vmci_transport_stream_allow(dg->src.context, -1)
 697             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
 698                 return VMCI_ERROR_NO_ACCESS;
 699 
 700         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
 701                 /* Drop datagrams that do not contain full VSock packets. */
 702                 return VMCI_ERROR_INVALID_ARGS;
 703 
 704         pkt = (struct vmci_transport_packet *)dg;
 705 
 706         /* Find the socket that should handle this packet.  First we look for a
 707          * connected socket and if there is none we look for a socket bound to
 708          * the destintation address.
 709          */
 710         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
 711         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
 712 
 713         sk = vsock_find_connected_socket(&src, &dst);
 714         if (!sk) {
 715                 sk = vsock_find_bound_socket(&dst);
 716                 if (!sk) {
 717                         /* We could not find a socket for this specified
 718                          * address.  If this packet is a RST, we just drop it.
 719                          * If it is another packet, we send a RST.  Note that
 720                          * we do not send a RST reply to RSTs so that we do not
 721                          * continually send RSTs between two endpoints.
 722                          *
 723                          * Note that since this is a reply, dst is src and src
 724                          * is dst.
 725                          */
 726                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
 727                                 pr_err("unable to send reset\n");
 728 
 729                         err = VMCI_ERROR_NOT_FOUND;
 730                         goto out;
 731                 }
 732         }
 733 
 734         /* If the received packet type is beyond all types known to this
 735          * implementation, reply with an invalid message.  Hopefully this will
 736          * help when implementing backwards compatibility in the future.
 737          */
 738         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
 739                 vmci_transport_send_invalid_bh(&dst, &src);
 740                 err = VMCI_ERROR_INVALID_ARGS;
 741                 goto out;
 742         }
 743 
 744         /* This handler is privileged when this module is running on the host.
 745          * We will get datagram connect requests from all endpoints (even VMs
 746          * that are in a restricted context). If we get one from a restricted
 747          * context then the destination socket must be trusted.
 748          *
 749          * NOTE: We access the socket struct without holding the lock here.
 750          * This is ok because the field we are interested is never modified
 751          * outside of the create and destruct socket functions.
 752          */
 753         vsk = vsock_sk(sk);
 754         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
 755                 err = VMCI_ERROR_NO_ACCESS;
 756                 goto out;
 757         }
 758 
 759         /* We do most everything in a work queue, but let's fast path the
 760          * notification of reads and writes to help data transfer performance.
 761          * We can only do this if there is no process context code executing
 762          * for this socket since that may change the state.
 763          */
 764         bh_lock_sock(sk);
 765 
 766         if (!sock_owned_by_user(sk)) {
 767                 /* The local context ID may be out of date, update it. */
 768                 vsk->local_addr.svm_cid = dst.svm_cid;
 769 
 770                 if (sk->sk_state == TCP_ESTABLISHED)
 771                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
 772                                         sk, pkt, true, &dst, &src,
 773                                         &bh_process_pkt);
 774         }
 775 
 776         bh_unlock_sock(sk);
 777 
 778         if (!bh_process_pkt) {
 779                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
 780 
 781                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
 782                 if (!recv_pkt_info) {
 783                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
 784                                 pr_err("unable to send reset\n");
 785 
 786                         err = VMCI_ERROR_NO_MEM;
 787                         goto out;
 788                 }
 789 
 790                 recv_pkt_info->sk = sk;
 791                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
 792                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
 793 
 794                 schedule_work(&recv_pkt_info->work);
 795                 /* Clear sk so that the reference count incremented by one of
 796                  * the Find functions above is not decremented below.  We need
 797                  * that reference count for the packet handler we've scheduled
 798                  * to run.
 799                  */
 800                 sk = NULL;
 801         }
 802 
 803 out:
 804         if (sk)
 805                 sock_put(sk);
 806 
 807         return err;
 808 }
 809 
 810 static void vmci_transport_handle_detach(struct sock *sk)
 811 {
 812         struct vsock_sock *vsk;
 813 
 814         vsk = vsock_sk(sk);
 815         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
 816                 sock_set_flag(sk, SOCK_DONE);
 817 
 818                 /* On a detach the peer will not be sending or receiving
 819                  * anymore.
 820                  */
 821                 vsk->peer_shutdown = SHUTDOWN_MASK;
 822 
 823                 /* We should not be sending anymore since the peer won't be
 824                  * there to receive, but we can still receive if there is data
 825                  * left in our consume queue. If the local endpoint is a host,
 826                  * we can't call vsock_stream_has_data, since that may block,
 827                  * but a host endpoint can't read data once the VM has
 828                  * detached, so there is no available data in that case.
 829                  */
 830                 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
 831                     vsock_stream_has_data(vsk) <= 0) {
 832                         if (sk->sk_state == TCP_SYN_SENT) {
 833                                 /* The peer may detach from a queue pair while
 834                                  * we are still in the connecting state, i.e.,
 835                                  * if the peer VM is killed after attaching to
 836                                  * a queue pair, but before we complete the
 837                                  * handshake. In that case, we treat the detach
 838                                  * event like a reset.
 839                                  */
 840 
 841                                 sk->sk_state = TCP_CLOSE;
 842                                 sk->sk_err = ECONNRESET;
 843                                 sk->sk_error_report(sk);
 844                                 return;
 845                         }
 846                         sk->sk_state = TCP_CLOSE;
 847                 }
 848                 sk->sk_state_change(sk);
 849         }
 850 }
 851 
 852 static void vmci_transport_peer_detach_cb(u32 sub_id,
 853                                           const struct vmci_event_data *e_data,
 854                                           void *client_data)
 855 {
 856         struct vmci_transport *trans = client_data;
 857         const struct vmci_event_payload_qp *e_payload;
 858 
 859         e_payload = vmci_event_data_const_payload(e_data);
 860 
 861         /* XXX This is lame, we should provide a way to lookup sockets by
 862          * qp_handle.
 863          */
 864         if (vmci_handle_is_invalid(e_payload->handle) ||
 865             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
 866                 return;
 867 
 868         /* We don't ask for delayed CBs when we subscribe to this event (we
 869          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
 870          * guarantees in that case about what context we might be running in,
 871          * so it could be BH or process, blockable or non-blockable.  So we
 872          * need to account for all possible contexts here.
 873          */
 874         spin_lock_bh(&trans->lock);
 875         if (!trans->sk)
 876                 goto out;
 877 
 878         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
 879          * where trans->sk isn't locked.
 880          */
 881         bh_lock_sock(trans->sk);
 882 
 883         vmci_transport_handle_detach(trans->sk);
 884 
 885         bh_unlock_sock(trans->sk);
 886  out:
 887         spin_unlock_bh(&trans->lock);
 888 }
 889 
 890 static void vmci_transport_qp_resumed_cb(u32 sub_id,
 891                                          const struct vmci_event_data *e_data,
 892                                          void *client_data)
 893 {
 894         vsock_for_each_connected_socket(vmci_transport_handle_detach);
 895 }
 896 
 897 static void vmci_transport_recv_pkt_work(struct work_struct *work)
 898 {
 899         struct vmci_transport_recv_pkt_info *recv_pkt_info;
 900         struct vmci_transport_packet *pkt;
 901         struct sock *sk;
 902 
 903         recv_pkt_info =
 904                 container_of(work, struct vmci_transport_recv_pkt_info, work);
 905         sk = recv_pkt_info->sk;
 906         pkt = &recv_pkt_info->pkt;
 907 
 908         lock_sock(sk);
 909 
 910         /* The local context ID may be out of date. */
 911         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
 912 
 913         switch (sk->sk_state) {
 914         case TCP_LISTEN:
 915                 vmci_transport_recv_listen(sk, pkt);
 916                 break;
 917         case TCP_SYN_SENT:
 918                 /* Processing of pending connections for servers goes through
 919                  * the listening socket, so see vmci_transport_recv_listen()
 920                  * for that path.
 921                  */
 922                 vmci_transport_recv_connecting_client(sk, pkt);
 923                 break;
 924         case TCP_ESTABLISHED:
 925                 vmci_transport_recv_connected(sk, pkt);
 926                 break;
 927         default:
 928                 /* Because this function does not run in the same context as
 929                  * vmci_transport_recv_stream_cb it is possible that the
 930                  * socket has closed. We need to let the other side know or it
 931                  * could be sitting in a connect and hang forever. Send a
 932                  * reset to prevent that.
 933                  */
 934                 vmci_transport_send_reset(sk, pkt);
 935                 break;
 936         }
 937 
 938         release_sock(sk);
 939         kfree(recv_pkt_info);
 940         /* Release reference obtained in the stream callback when we fetched
 941          * this socket out of the bound or connected list.
 942          */
 943         sock_put(sk);
 944 }
 945 
 946 static int vmci_transport_recv_listen(struct sock *sk,
 947                                       struct vmci_transport_packet *pkt)
 948 {
 949         struct sock *pending;
 950         struct vsock_sock *vpending;
 951         int err;
 952         u64 qp_size;
 953         bool old_request = false;
 954         bool old_pkt_proto = false;
 955 
 956         err = 0;
 957 
 958         /* Because we are in the listen state, we could be receiving a packet
 959          * for ourself or any previous connection requests that we received.
 960          * If it's the latter, we try to find a socket in our list of pending
 961          * connections and, if we do, call the appropriate handler for the
 962          * state that that socket is in.  Otherwise we try to service the
 963          * connection request.
 964          */
 965         pending = vmci_transport_get_pending(sk, pkt);
 966         if (pending) {
 967                 lock_sock(pending);
 968 
 969                 /* The local context ID may be out of date. */
 970                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
 971 
 972                 switch (pending->sk_state) {
 973                 case TCP_SYN_SENT:
 974                         err = vmci_transport_recv_connecting_server(sk,
 975                                                                     pending,
 976                                                                     pkt);
 977                         break;
 978                 default:
 979                         vmci_transport_send_reset(pending, pkt);
 980                         err = -EINVAL;
 981                 }
 982 
 983                 if (err < 0)
 984                         vsock_remove_pending(sk, pending);
 985 
 986                 release_sock(pending);
 987                 vmci_transport_release_pending(pending);
 988 
 989                 return err;
 990         }
 991 
 992         /* The listen state only accepts connection requests.  Reply with a
 993          * reset unless we received a reset.
 994          */
 995 
 996         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
 997               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
 998                 vmci_transport_reply_reset(pkt);
 999                 return -EINVAL;
1000         }
1001 
1002         if (pkt->u.size == 0) {
1003                 vmci_transport_reply_reset(pkt);
1004                 return -EINVAL;
1005         }
1006 
1007         /* If this socket can't accommodate this connection request, we send a
1008          * reset.  Otherwise we create and initialize a child socket and reply
1009          * with a connection negotiation.
1010          */
1011         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1012                 vmci_transport_reply_reset(pkt);
1013                 return -ECONNREFUSED;
1014         }
1015 
1016         pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1017                                  sk->sk_type, 0);
1018         if (!pending) {
1019                 vmci_transport_send_reset(sk, pkt);
1020                 return -ENOMEM;
1021         }
1022 
1023         vpending = vsock_sk(pending);
1024 
1025         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1026                         pkt->dst_port);
1027         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1028                         pkt->src_port);
1029 
1030         /* If the proposed size fits within our min/max, accept it. Otherwise
1031          * propose our own size.
1032          */
1033         if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1034             pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1035                 qp_size = pkt->u.size;
1036         } else {
1037                 qp_size = vmci_trans(vpending)->queue_pair_size;
1038         }
1039 
1040         /* Figure out if we are using old or new requests based on the
1041          * overrides pkt types sent by our peer.
1042          */
1043         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1044                 old_request = old_pkt_proto;
1045         } else {
1046                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1047                         old_request = true;
1048                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1049                         old_request = false;
1050 
1051         }
1052 
1053         if (old_request) {
1054                 /* Handle a REQUEST (or override) */
1055                 u16 version = VSOCK_PROTO_INVALID;
1056                 if (vmci_transport_proto_to_notify_struct(
1057                         pending, &version, true))
1058                         err = vmci_transport_send_negotiate(pending, qp_size);
1059                 else
1060                         err = -EINVAL;
1061 
1062         } else {
1063                 /* Handle a REQUEST2 (or override) */
1064                 int proto_int = pkt->proto;
1065                 int pos;
1066                 u16 active_proto_version = 0;
1067 
1068                 /* The list of possible protocols is the intersection of all
1069                  * protocols the client supports ... plus all the protocols we
1070                  * support.
1071                  */
1072                 proto_int &= vmci_transport_new_proto_supported_versions();
1073 
1074                 /* We choose the highest possible protocol version and use that
1075                  * one.
1076                  */
1077                 pos = fls(proto_int);
1078                 if (pos) {
1079                         active_proto_version = (1 << (pos - 1));
1080                         if (vmci_transport_proto_to_notify_struct(
1081                                 pending, &active_proto_version, false))
1082                                 err = vmci_transport_send_negotiate2(pending,
1083                                                         qp_size,
1084                                                         active_proto_version);
1085                         else
1086                                 err = -EINVAL;
1087 
1088                 } else {
1089                         err = -EINVAL;
1090                 }
1091         }
1092 
1093         if (err < 0) {
1094                 vmci_transport_send_reset(sk, pkt);
1095                 sock_put(pending);
1096                 err = vmci_transport_error_to_vsock_error(err);
1097                 goto out;
1098         }
1099 
1100         vsock_add_pending(sk, pending);
1101         sk->sk_ack_backlog++;
1102 
1103         pending->sk_state = TCP_SYN_SENT;
1104         vmci_trans(vpending)->produce_size =
1105                 vmci_trans(vpending)->consume_size = qp_size;
1106         vmci_trans(vpending)->queue_pair_size = qp_size;
1107 
1108         vmci_trans(vpending)->notify_ops->process_request(pending);
1109 
1110         /* We might never receive another message for this socket and it's not
1111          * connected to any process, so we have to ensure it gets cleaned up
1112          * ourself.  Our delayed work function will take care of that.  Note
1113          * that we do not ever cancel this function since we have few
1114          * guarantees about its state when calling cancel_delayed_work().
1115          * Instead we hold a reference on the socket for that function and make
1116          * it capable of handling cases where it needs to do nothing but
1117          * release that reference.
1118          */
1119         vpending->listener = sk;
1120         sock_hold(sk);
1121         sock_hold(pending);
1122         schedule_delayed_work(&vpending->pending_work, HZ);
1123 
1124 out:
1125         return err;
1126 }
1127 
1128 static int
1129 vmci_transport_recv_connecting_server(struct sock *listener,
1130                                       struct sock *pending,
1131                                       struct vmci_transport_packet *pkt)
1132 {
1133         struct vsock_sock *vpending;
1134         struct vmci_handle handle;
1135         struct vmci_qp *qpair;
1136         bool is_local;
1137         u32 flags;
1138         u32 detach_sub_id;
1139         int err;
1140         int skerr;
1141 
1142         vpending = vsock_sk(pending);
1143         detach_sub_id = VMCI_INVALID_ID;
1144 
1145         switch (pkt->type) {
1146         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1147                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1148                         vmci_transport_send_reset(pending, pkt);
1149                         skerr = EPROTO;
1150                         err = -EINVAL;
1151                         goto destroy;
1152                 }
1153                 break;
1154         default:
1155                 /* Close and cleanup the connection. */
1156                 vmci_transport_send_reset(pending, pkt);
1157                 skerr = EPROTO;
1158                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1159                 goto destroy;
1160         }
1161 
1162         /* In order to complete the connection we need to attach to the offered
1163          * queue pair and send an attach notification.  We also subscribe to the
1164          * detach event so we know when our peer goes away, and we do that
1165          * before attaching so we don't miss an event.  If all this succeeds,
1166          * we update our state and wakeup anything waiting in accept() for a
1167          * connection.
1168          */
1169 
1170         /* We don't care about attach since we ensure the other side has
1171          * attached by specifying the ATTACH_ONLY flag below.
1172          */
1173         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1174                                    vmci_transport_peer_detach_cb,
1175                                    vmci_trans(vpending), &detach_sub_id);
1176         if (err < VMCI_SUCCESS) {
1177                 vmci_transport_send_reset(pending, pkt);
1178                 err = vmci_transport_error_to_vsock_error(err);
1179                 skerr = -err;
1180                 goto destroy;
1181         }
1182 
1183         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1184 
1185         /* Now attach to the queue pair the client created. */
1186         handle = pkt->u.handle;
1187 
1188         /* vpending->local_addr always has a context id so we do not need to
1189          * worry about VMADDR_CID_ANY in this case.
1190          */
1191         is_local =
1192             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1193         flags = VMCI_QPFLAG_ATTACH_ONLY;
1194         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1195 
1196         err = vmci_transport_queue_pair_alloc(
1197                                         &qpair,
1198                                         &handle,
1199                                         vmci_trans(vpending)->produce_size,
1200                                         vmci_trans(vpending)->consume_size,
1201                                         pkt->dg.src.context,
1202                                         flags,
1203                                         vmci_transport_is_trusted(
1204                                                 vpending,
1205                                                 vpending->remote_addr.svm_cid));
1206         if (err < 0) {
1207                 vmci_transport_send_reset(pending, pkt);
1208                 skerr = -err;
1209                 goto destroy;
1210         }
1211 
1212         vmci_trans(vpending)->qp_handle = handle;
1213         vmci_trans(vpending)->qpair = qpair;
1214 
1215         /* When we send the attach message, we must be ready to handle incoming
1216          * control messages on the newly connected socket. So we move the
1217          * pending socket to the connected state before sending the attach
1218          * message. Otherwise, an incoming packet triggered by the attach being
1219          * received by the peer may be processed concurrently with what happens
1220          * below after sending the attach message, and that incoming packet
1221          * will find the listening socket instead of the (currently) pending
1222          * socket. Note that enqueueing the socket increments the reference
1223          * count, so even if a reset comes before the connection is accepted,
1224          * the socket will be valid until it is removed from the queue.
1225          *
1226          * If we fail sending the attach below, we remove the socket from the
1227          * connected list and move the socket to TCP_CLOSE before
1228          * releasing the lock, so a pending slow path processing of an incoming
1229          * packet will not see the socket in the connected state in that case.
1230          */
1231         pending->sk_state = TCP_ESTABLISHED;
1232 
1233         vsock_insert_connected(vpending);
1234 
1235         /* Notify our peer of our attach. */
1236         err = vmci_transport_send_attach(pending, handle);
1237         if (err < 0) {
1238                 vsock_remove_connected(vpending);
1239                 pr_err("Could not send attach\n");
1240                 vmci_transport_send_reset(pending, pkt);
1241                 err = vmci_transport_error_to_vsock_error(err);
1242                 skerr = -err;
1243                 goto destroy;
1244         }
1245 
1246         /* We have a connection. Move the now connected socket from the
1247          * listener's pending list to the accept queue so callers of accept()
1248          * can find it.
1249          */
1250         vsock_remove_pending(listener, pending);
1251         vsock_enqueue_accept(listener, pending);
1252 
1253         /* Callers of accept() will be be waiting on the listening socket, not
1254          * the pending socket.
1255          */
1256         listener->sk_data_ready(listener);
1257 
1258         return 0;
1259 
1260 destroy:
1261         pending->sk_err = skerr;
1262         pending->sk_state = TCP_CLOSE;
1263         /* As long as we drop our reference, all necessary cleanup will handle
1264          * when the cleanup function drops its reference and our destruct
1265          * implementation is called.  Note that since the listen handler will
1266          * remove pending from the pending list upon our failure, the cleanup
1267          * function won't drop the additional reference, which is why we do it
1268          * here.
1269          */
1270         sock_put(pending);
1271 
1272         return err;
1273 }
1274 
1275 static int
1276 vmci_transport_recv_connecting_client(struct sock *sk,
1277                                       struct vmci_transport_packet *pkt)
1278 {
1279         struct vsock_sock *vsk;
1280         int err;
1281         int skerr;
1282 
1283         vsk = vsock_sk(sk);
1284 
1285         switch (pkt->type) {
1286         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1287                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1288                     !vmci_handle_is_equal(pkt->u.handle,
1289                                           vmci_trans(vsk)->qp_handle)) {
1290                         skerr = EPROTO;
1291                         err = -EINVAL;
1292                         goto destroy;
1293                 }
1294 
1295                 /* Signify the socket is connected and wakeup the waiter in
1296                  * connect(). Also place the socket in the connected table for
1297                  * accounting (it can already be found since it's in the bound
1298                  * table).
1299                  */
1300                 sk->sk_state = TCP_ESTABLISHED;
1301                 sk->sk_socket->state = SS_CONNECTED;
1302                 vsock_insert_connected(vsk);
1303                 sk->sk_state_change(sk);
1304 
1305                 break;
1306         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1307         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1308                 if (pkt->u.size == 0
1309                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1310                     || pkt->src_port != vsk->remote_addr.svm_port
1311                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1312                     || vmci_trans(vsk)->qpair
1313                     || vmci_trans(vsk)->produce_size != 0
1314                     || vmci_trans(vsk)->consume_size != 0
1315                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1316                         skerr = EPROTO;
1317                         err = -EINVAL;
1318 
1319                         goto destroy;
1320                 }
1321 
1322                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1323                 if (err) {
1324                         skerr = -err;
1325                         goto destroy;
1326                 }
1327 
1328                 break;
1329         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1330                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1331                 if (err) {
1332                         skerr = -err;
1333                         goto destroy;
1334                 }
1335 
1336                 break;
1337         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1338                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1339                  * continue processing here after they sent an INVALID packet.
1340                  * This meant that we got a RST after the INVALID. We ignore a
1341                  * RST after an INVALID. The common code doesn't send the RST
1342                  * ... so we can hang if an old version of the common code
1343                  * fails between getting a REQUEST and sending an OFFER back.
1344                  * Not much we can do about it... except hope that it doesn't
1345                  * happen.
1346                  */
1347                 if (vsk->ignore_connecting_rst) {
1348                         vsk->ignore_connecting_rst = false;
1349                 } else {
1350                         skerr = ECONNRESET;
1351                         err = 0;
1352                         goto destroy;
1353                 }
1354 
1355                 break;
1356         default:
1357                 /* Close and cleanup the connection. */
1358                 skerr = EPROTO;
1359                 err = -EINVAL;
1360                 goto destroy;
1361         }
1362 
1363         return 0;
1364 
1365 destroy:
1366         vmci_transport_send_reset(sk, pkt);
1367 
1368         sk->sk_state = TCP_CLOSE;
1369         sk->sk_err = skerr;
1370         sk->sk_error_report(sk);
1371         return err;
1372 }
1373 
1374 static int vmci_transport_recv_connecting_client_negotiate(
1375                                         struct sock *sk,
1376                                         struct vmci_transport_packet *pkt)
1377 {
1378         int err;
1379         struct vsock_sock *vsk;
1380         struct vmci_handle handle;
1381         struct vmci_qp *qpair;
1382         u32 detach_sub_id;
1383         bool is_local;
1384         u32 flags;
1385         bool old_proto = true;
1386         bool old_pkt_proto;
1387         u16 version;
1388 
1389         vsk = vsock_sk(sk);
1390         handle = VMCI_INVALID_HANDLE;
1391         detach_sub_id = VMCI_INVALID_ID;
1392 
1393         /* If we have gotten here then we should be past the point where old
1394          * linux vsock could have sent the bogus rst.
1395          */
1396         vsk->sent_request = false;
1397         vsk->ignore_connecting_rst = false;
1398 
1399         /* Verify that we're OK with the proposed queue pair size */
1400         if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1401             pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1402                 err = -EINVAL;
1403                 goto destroy;
1404         }
1405 
1406         /* At this point we know the CID the peer is using to talk to us. */
1407 
1408         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1409                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1410 
1411         /* Setup the notify ops to be the highest supported version that both
1412          * the server and the client support.
1413          */
1414 
1415         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1416                 old_proto = old_pkt_proto;
1417         } else {
1418                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1419                         old_proto = true;
1420                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1421                         old_proto = false;
1422 
1423         }
1424 
1425         if (old_proto)
1426                 version = VSOCK_PROTO_INVALID;
1427         else
1428                 version = pkt->proto;
1429 
1430         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1431                 err = -EINVAL;
1432                 goto destroy;
1433         }
1434 
1435         /* Subscribe to detach events first.
1436          *
1437          * XXX We attach once for each queue pair created for now so it is easy
1438          * to find the socket (it's provided), but later we should only
1439          * subscribe once and add a way to lookup sockets by queue pair handle.
1440          */
1441         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1442                                    vmci_transport_peer_detach_cb,
1443                                    vmci_trans(vsk), &detach_sub_id);
1444         if (err < VMCI_SUCCESS) {
1445                 err = vmci_transport_error_to_vsock_error(err);
1446                 goto destroy;
1447         }
1448 
1449         /* Make VMCI select the handle for us. */
1450         handle = VMCI_INVALID_HANDLE;
1451         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1452         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1453 
1454         err = vmci_transport_queue_pair_alloc(&qpair,
1455                                               &handle,
1456                                               pkt->u.size,
1457                                               pkt->u.size,
1458                                               vsk->remote_addr.svm_cid,
1459                                               flags,
1460                                               vmci_transport_is_trusted(
1461                                                   vsk,
1462                                                   vsk->
1463                                                   remote_addr.svm_cid));
1464         if (err < 0)
1465                 goto destroy;
1466 
1467         err = vmci_transport_send_qp_offer(sk, handle);
1468         if (err < 0) {
1469                 err = vmci_transport_error_to_vsock_error(err);
1470                 goto destroy;
1471         }
1472 
1473         vmci_trans(vsk)->qp_handle = handle;
1474         vmci_trans(vsk)->qpair = qpair;
1475 
1476         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1477                 pkt->u.size;
1478 
1479         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1480 
1481         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1482 
1483         return 0;
1484 
1485 destroy:
1486         if (detach_sub_id != VMCI_INVALID_ID)
1487                 vmci_event_unsubscribe(detach_sub_id);
1488 
1489         if (!vmci_handle_is_invalid(handle))
1490                 vmci_qpair_detach(&qpair);
1491 
1492         return err;
1493 }
1494 
1495 static int
1496 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1497                                               struct vmci_transport_packet *pkt)
1498 {
1499         int err = 0;
1500         struct vsock_sock *vsk = vsock_sk(sk);
1501 
1502         if (vsk->sent_request) {
1503                 vsk->sent_request = false;
1504                 vsk->ignore_connecting_rst = true;
1505 
1506                 err = vmci_transport_send_conn_request(
1507                         sk, vmci_trans(vsk)->queue_pair_size);
1508                 if (err < 0)
1509                         err = vmci_transport_error_to_vsock_error(err);
1510                 else
1511                         err = 0;
1512 
1513         }
1514 
1515         return err;
1516 }
1517 
1518 static int vmci_transport_recv_connected(struct sock *sk,
1519                                          struct vmci_transport_packet *pkt)
1520 {
1521         struct vsock_sock *vsk;
1522         bool pkt_processed = false;
1523 
1524         /* In cases where we are closing the connection, it's sufficient to
1525          * mark the state change (and maybe error) and wake up any waiting
1526          * threads. Since this is a connected socket, it's owned by a user
1527          * process and will be cleaned up when the failure is passed back on
1528          * the current or next system call.  Our system call implementations
1529          * must therefore check for error and state changes on entry and when
1530          * being awoken.
1531          */
1532         switch (pkt->type) {
1533         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534                 if (pkt->u.mode) {
1535                         vsk = vsock_sk(sk);
1536 
1537                         vsk->peer_shutdown |= pkt->u.mode;
1538                         sk->sk_state_change(sk);
1539                 }
1540                 break;
1541 
1542         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543                 vsk = vsock_sk(sk);
1544                 /* It is possible that we sent our peer a message (e.g a
1545                  * WAITING_READ) right before we got notified that the peer had
1546                  * detached. If that happens then we can get a RST pkt back
1547                  * from our peer even though there is data available for us to
1548                  * read. In that case, don't shutdown the socket completely but
1549                  * instead allow the local client to finish reading data off
1550                  * the queuepair. Always treat a RST pkt in connected mode like
1551                  * a clean shutdown.
1552                  */
1553                 sock_set_flag(sk, SOCK_DONE);
1554                 vsk->peer_shutdown = SHUTDOWN_MASK;
1555                 if (vsock_stream_has_data(vsk) <= 0)
1556                         sk->sk_state = TCP_CLOSING;
1557 
1558                 sk->sk_state_change(sk);
1559                 break;
1560 
1561         default:
1562                 vsk = vsock_sk(sk);
1563                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564                                 sk, pkt, false, NULL, NULL,
1565                                 &pkt_processed);
1566                 if (!pkt_processed)
1567                         return -EINVAL;
1568 
1569                 break;
1570         }
1571 
1572         return 0;
1573 }
1574 
1575 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576                                       struct vsock_sock *psk)
1577 {
1578         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579         if (!vsk->trans)
1580                 return -ENOMEM;
1581 
1582         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584         vmci_trans(vsk)->qpair = NULL;
1585         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587         vmci_trans(vsk)->notify_ops = NULL;
1588         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589         vmci_trans(vsk)->sk = &vsk->sk;
1590         spin_lock_init(&vmci_trans(vsk)->lock);
1591         if (psk) {
1592                 vmci_trans(vsk)->queue_pair_size =
1593                         vmci_trans(psk)->queue_pair_size;
1594                 vmci_trans(vsk)->queue_pair_min_size =
1595                         vmci_trans(psk)->queue_pair_min_size;
1596                 vmci_trans(vsk)->queue_pair_max_size =
1597                         vmci_trans(psk)->queue_pair_max_size;
1598         } else {
1599                 vmci_trans(vsk)->queue_pair_size =
1600                         VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1601                 vmci_trans(vsk)->queue_pair_min_size =
1602                          VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1603                 vmci_trans(vsk)->queue_pair_max_size =
1604                         VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1605         }
1606 
1607         return 0;
1608 }
1609 
1610 static void vmci_transport_free_resources(struct list_head *transport_list)
1611 {
1612         while (!list_empty(transport_list)) {
1613                 struct vmci_transport *transport =
1614                     list_first_entry(transport_list, struct vmci_transport,
1615                                      elem);
1616                 list_del(&transport->elem);
1617 
1618                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1619                         vmci_event_unsubscribe(transport->detach_sub_id);
1620                         transport->detach_sub_id = VMCI_INVALID_ID;
1621                 }
1622 
1623                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1624                         vmci_qpair_detach(&transport->qpair);
1625                         transport->qp_handle = VMCI_INVALID_HANDLE;
1626                         transport->produce_size = 0;
1627                         transport->consume_size = 0;
1628                 }
1629 
1630                 kfree(transport);
1631         }
1632 }
1633 
1634 static void vmci_transport_cleanup(struct work_struct *work)
1635 {
1636         LIST_HEAD(pending);
1637 
1638         spin_lock_bh(&vmci_transport_cleanup_lock);
1639         list_replace_init(&vmci_transport_cleanup_list, &pending);
1640         spin_unlock_bh(&vmci_transport_cleanup_lock);
1641         vmci_transport_free_resources(&pending);
1642 }
1643 
1644 static void vmci_transport_destruct(struct vsock_sock *vsk)
1645 {
1646         /* transport can be NULL if we hit a failure at init() time */
1647         if (!vmci_trans(vsk))
1648                 return;
1649 
1650         /* Ensure that the detach callback doesn't use the sk/vsk
1651          * we are about to destruct.
1652          */
1653         spin_lock_bh(&vmci_trans(vsk)->lock);
1654         vmci_trans(vsk)->sk = NULL;
1655         spin_unlock_bh(&vmci_trans(vsk)->lock);
1656 
1657         if (vmci_trans(vsk)->notify_ops)
1658                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1659 
1660         spin_lock_bh(&vmci_transport_cleanup_lock);
1661         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1662         spin_unlock_bh(&vmci_transport_cleanup_lock);
1663         schedule_work(&vmci_transport_cleanup_work);
1664 
1665         vsk->trans = NULL;
1666 }
1667 
1668 static void vmci_transport_release(struct vsock_sock *vsk)
1669 {
1670         vsock_remove_sock(vsk);
1671 
1672         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1673                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1674                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1675         }
1676 }
1677 
1678 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1679                                      struct sockaddr_vm *addr)
1680 {
1681         u32 port;
1682         u32 flags;
1683         int err;
1684 
1685         /* VMCI will select a resource ID for us if we provide
1686          * VMCI_INVALID_ID.
1687          */
1688         port = addr->svm_port == VMADDR_PORT_ANY ?
1689                         VMCI_INVALID_ID : addr->svm_port;
1690 
1691         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1692                 return -EACCES;
1693 
1694         flags = addr->svm_cid == VMADDR_CID_ANY ?
1695                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1696 
1697         err = vmci_transport_datagram_create_hnd(port, flags,
1698                                                  vmci_transport_recv_dgram_cb,
1699                                                  &vsk->sk,
1700                                                  &vmci_trans(vsk)->dg_handle);
1701         if (err < VMCI_SUCCESS)
1702                 return vmci_transport_error_to_vsock_error(err);
1703         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1704                         vmci_trans(vsk)->dg_handle.resource);
1705 
1706         return 0;
1707 }
1708 
1709 static int vmci_transport_dgram_enqueue(
1710         struct vsock_sock *vsk,
1711         struct sockaddr_vm *remote_addr,
1712         struct msghdr *msg,
1713         size_t len)
1714 {
1715         int err;
1716         struct vmci_datagram *dg;
1717 
1718         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1719                 return -EMSGSIZE;
1720 
1721         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1722                 return -EPERM;
1723 
1724         /* Allocate a buffer for the user's message and our packet header. */
1725         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1726         if (!dg)
1727                 return -ENOMEM;
1728 
1729         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1730 
1731         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1732                                    remote_addr->svm_port);
1733         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1734                                    vsk->local_addr.svm_port);
1735         dg->payload_size = len;
1736 
1737         err = vmci_datagram_send(dg);
1738         kfree(dg);
1739         if (err < 0)
1740                 return vmci_transport_error_to_vsock_error(err);
1741 
1742         return err - sizeof(*dg);
1743 }
1744 
1745 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1746                                         struct msghdr *msg, size_t len,
1747                                         int flags)
1748 {
1749         int err;
1750         int noblock;
1751         struct vmci_datagram *dg;
1752         size_t payload_len;
1753         struct sk_buff *skb;
1754 
1755         noblock = flags & MSG_DONTWAIT;
1756 
1757         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1758                 return -EOPNOTSUPP;
1759 
1760         /* Retrieve the head sk_buff from the socket's receive queue. */
1761         err = 0;
1762         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1763         if (!skb)
1764                 return err;
1765 
1766         dg = (struct vmci_datagram *)skb->data;
1767         if (!dg)
1768                 /* err is 0, meaning we read zero bytes. */
1769                 goto out;
1770 
1771         payload_len = dg->payload_size;
1772         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1773         if (payload_len != skb->len - sizeof(*dg)) {
1774                 err = -EINVAL;
1775                 goto out;
1776         }
1777 
1778         if (payload_len > len) {
1779                 payload_len = len;
1780                 msg->msg_flags |= MSG_TRUNC;
1781         }
1782 
1783         /* Place the datagram payload in the user's iovec. */
1784         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1785         if (err)
1786                 goto out;
1787 
1788         if (msg->msg_name) {
1789                 /* Provide the address of the sender. */
1790                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1791                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1792                 msg->msg_namelen = sizeof(*vm_addr);
1793         }
1794         err = payload_len;
1795 
1796 out:
1797         skb_free_datagram(&vsk->sk, skb);
1798         return err;
1799 }
1800 
1801 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1802 {
1803         if (cid == VMADDR_CID_HYPERVISOR) {
1804                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1805                  * state and are allowed.
1806                  */
1807                 return port == VMCI_UNITY_PBRPC_REGISTER;
1808         }
1809 
1810         return true;
1811 }
1812 
1813 static int vmci_transport_connect(struct vsock_sock *vsk)
1814 {
1815         int err;
1816         bool old_pkt_proto = false;
1817         struct sock *sk = &vsk->sk;
1818 
1819         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1820                 old_pkt_proto) {
1821                 err = vmci_transport_send_conn_request(
1822                         sk, vmci_trans(vsk)->queue_pair_size);
1823                 if (err < 0) {
1824                         sk->sk_state = TCP_CLOSE;
1825                         return err;
1826                 }
1827         } else {
1828                 int supported_proto_versions =
1829                         vmci_transport_new_proto_supported_versions();
1830                 err = vmci_transport_send_conn_request2(
1831                                 sk, vmci_trans(vsk)->queue_pair_size,
1832                                 supported_proto_versions);
1833                 if (err < 0) {
1834                         sk->sk_state = TCP_CLOSE;
1835                         return err;
1836                 }
1837 
1838                 vsk->sent_request = true;
1839         }
1840 
1841         return err;
1842 }
1843 
1844 static ssize_t vmci_transport_stream_dequeue(
1845         struct vsock_sock *vsk,
1846         struct msghdr *msg,
1847         size_t len,
1848         int flags)
1849 {
1850         if (flags & MSG_PEEK)
1851                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1852         else
1853                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1854 }
1855 
1856 static ssize_t vmci_transport_stream_enqueue(
1857         struct vsock_sock *vsk,
1858         struct msghdr *msg,
1859         size_t len)
1860 {
1861         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1862 }
1863 
1864 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1865 {
1866         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1867 }
1868 
1869 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1870 {
1871         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1872 }
1873 
1874 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1875 {
1876         return vmci_trans(vsk)->consume_size;
1877 }
1878 
1879 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1880 {
1881         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1882 }
1883 
1884 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1885 {
1886         return vmci_trans(vsk)->queue_pair_size;
1887 }
1888 
1889 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1890 {
1891         return vmci_trans(vsk)->queue_pair_min_size;
1892 }
1893 
1894 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1895 {
1896         return vmci_trans(vsk)->queue_pair_max_size;
1897 }
1898 
1899 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1900 {
1901         if (val < vmci_trans(vsk)->queue_pair_min_size)
1902                 vmci_trans(vsk)->queue_pair_min_size = val;
1903         if (val > vmci_trans(vsk)->queue_pair_max_size)
1904                 vmci_trans(vsk)->queue_pair_max_size = val;
1905         vmci_trans(vsk)->queue_pair_size = val;
1906 }
1907 
1908 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1909                                                u64 val)
1910 {
1911         if (val > vmci_trans(vsk)->queue_pair_size)
1912                 vmci_trans(vsk)->queue_pair_size = val;
1913         vmci_trans(vsk)->queue_pair_min_size = val;
1914 }
1915 
1916 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1917                                                u64 val)
1918 {
1919         if (val < vmci_trans(vsk)->queue_pair_size)
1920                 vmci_trans(vsk)->queue_pair_size = val;
1921         vmci_trans(vsk)->queue_pair_max_size = val;
1922 }
1923 
1924 static int vmci_transport_notify_poll_in(
1925         struct vsock_sock *vsk,
1926         size_t target,
1927         bool *data_ready_now)
1928 {
1929         return vmci_trans(vsk)->notify_ops->poll_in(
1930                         &vsk->sk, target, data_ready_now);
1931 }
1932 
1933 static int vmci_transport_notify_poll_out(
1934         struct vsock_sock *vsk,
1935         size_t target,
1936         bool *space_available_now)
1937 {
1938         return vmci_trans(vsk)->notify_ops->poll_out(
1939                         &vsk->sk, target, space_available_now);
1940 }
1941 
1942 static int vmci_transport_notify_recv_init(
1943         struct vsock_sock *vsk,
1944         size_t target,
1945         struct vsock_transport_recv_notify_data *data)
1946 {
1947         return vmci_trans(vsk)->notify_ops->recv_init(
1948                         &vsk->sk, target,
1949                         (struct vmci_transport_recv_notify_data *)data);
1950 }
1951 
1952 static int vmci_transport_notify_recv_pre_block(
1953         struct vsock_sock *vsk,
1954         size_t target,
1955         struct vsock_transport_recv_notify_data *data)
1956 {
1957         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1958                         &vsk->sk, target,
1959                         (struct vmci_transport_recv_notify_data *)data);
1960 }
1961 
1962 static int vmci_transport_notify_recv_pre_dequeue(
1963         struct vsock_sock *vsk,
1964         size_t target,
1965         struct vsock_transport_recv_notify_data *data)
1966 {
1967         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1968                         &vsk->sk, target,
1969                         (struct vmci_transport_recv_notify_data *)data);
1970 }
1971 
1972 static int vmci_transport_notify_recv_post_dequeue(
1973         struct vsock_sock *vsk,
1974         size_t target,
1975         ssize_t copied,
1976         bool data_read,
1977         struct vsock_transport_recv_notify_data *data)
1978 {
1979         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1980                         &vsk->sk, target, copied, data_read,
1981                         (struct vmci_transport_recv_notify_data *)data);
1982 }
1983 
1984 static int vmci_transport_notify_send_init(
1985         struct vsock_sock *vsk,
1986         struct vsock_transport_send_notify_data *data)
1987 {
1988         return vmci_trans(vsk)->notify_ops->send_init(
1989                         &vsk->sk,
1990                         (struct vmci_transport_send_notify_data *)data);
1991 }
1992 
1993 static int vmci_transport_notify_send_pre_block(
1994         struct vsock_sock *vsk,
1995         struct vsock_transport_send_notify_data *data)
1996 {
1997         return vmci_trans(vsk)->notify_ops->send_pre_block(
1998                         &vsk->sk,
1999                         (struct vmci_transport_send_notify_data *)data);
2000 }
2001 
2002 static int vmci_transport_notify_send_pre_enqueue(
2003         struct vsock_sock *vsk,
2004         struct vsock_transport_send_notify_data *data)
2005 {
2006         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2007                         &vsk->sk,
2008                         (struct vmci_transport_send_notify_data *)data);
2009 }
2010 
2011 static int vmci_transport_notify_send_post_enqueue(
2012         struct vsock_sock *vsk,
2013         ssize_t written,
2014         struct vsock_transport_send_notify_data *data)
2015 {
2016         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2017                         &vsk->sk, written,
2018                         (struct vmci_transport_send_notify_data *)data);
2019 }
2020 
2021 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2022 {
2023         if (PROTOCOL_OVERRIDE != -1) {
2024                 if (PROTOCOL_OVERRIDE == 0)
2025                         *old_pkt_proto = true;
2026                 else
2027                         *old_pkt_proto = false;
2028 
2029                 pr_info("Proto override in use\n");
2030                 return true;
2031         }
2032 
2033         return false;
2034 }
2035 
2036 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2037                                                   u16 *proto,
2038                                                   bool old_pkt_proto)
2039 {
2040         struct vsock_sock *vsk = vsock_sk(sk);
2041 
2042         if (old_pkt_proto) {
2043                 if (*proto != VSOCK_PROTO_INVALID) {
2044                         pr_err("Can't set both an old and new protocol\n");
2045                         return false;
2046                 }
2047                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2048                 goto exit;
2049         }
2050 
2051         switch (*proto) {
2052         case VSOCK_PROTO_PKT_ON_NOTIFY:
2053                 vmci_trans(vsk)->notify_ops =
2054                         &vmci_transport_notify_pkt_q_state_ops;
2055                 break;
2056         default:
2057                 pr_err("Unknown notify protocol version\n");
2058                 return false;
2059         }
2060 
2061 exit:
2062         vmci_trans(vsk)->notify_ops->socket_init(sk);
2063         return true;
2064 }
2065 
2066 static u16 vmci_transport_new_proto_supported_versions(void)
2067 {
2068         if (PROTOCOL_OVERRIDE != -1)
2069                 return PROTOCOL_OVERRIDE;
2070 
2071         return VSOCK_PROTO_ALL_SUPPORTED;
2072 }
2073 
2074 static u32 vmci_transport_get_local_cid(void)
2075 {
2076         return vmci_get_context_id();
2077 }
2078 
2079 static const struct vsock_transport vmci_transport = {
2080         .init = vmci_transport_socket_init,
2081         .destruct = vmci_transport_destruct,
2082         .release = vmci_transport_release,
2083         .connect = vmci_transport_connect,
2084         .dgram_bind = vmci_transport_dgram_bind,
2085         .dgram_dequeue = vmci_transport_dgram_dequeue,
2086         .dgram_enqueue = vmci_transport_dgram_enqueue,
2087         .dgram_allow = vmci_transport_dgram_allow,
2088         .stream_dequeue = vmci_transport_stream_dequeue,
2089         .stream_enqueue = vmci_transport_stream_enqueue,
2090         .stream_has_data = vmci_transport_stream_has_data,
2091         .stream_has_space = vmci_transport_stream_has_space,
2092         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2093         .stream_is_active = vmci_transport_stream_is_active,
2094         .stream_allow = vmci_transport_stream_allow,
2095         .notify_poll_in = vmci_transport_notify_poll_in,
2096         .notify_poll_out = vmci_transport_notify_poll_out,
2097         .notify_recv_init = vmci_transport_notify_recv_init,
2098         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2099         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2100         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2101         .notify_send_init = vmci_transport_notify_send_init,
2102         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2103         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2104         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2105         .shutdown = vmci_transport_shutdown,
2106         .set_buffer_size = vmci_transport_set_buffer_size,
2107         .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2108         .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2109         .get_buffer_size = vmci_transport_get_buffer_size,
2110         .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2111         .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2112         .get_local_cid = vmci_transport_get_local_cid,
2113 };
2114 
2115 static int __init vmci_transport_init(void)
2116 {
2117         int err;
2118 
2119         /* Create the datagram handle that we will use to send and receive all
2120          * VSocket control messages for this context.
2121          */
2122         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2123                                                  VMCI_FLAG_ANYCID_DG_HND,
2124                                                  vmci_transport_recv_stream_cb,
2125                                                  NULL,
2126                                                  &vmci_transport_stream_handle);
2127         if (err < VMCI_SUCCESS) {
2128                 pr_err("Unable to create datagram handle. (%d)\n", err);
2129                 return vmci_transport_error_to_vsock_error(err);
2130         }
2131 
2132         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2133                                    vmci_transport_qp_resumed_cb,
2134                                    NULL, &vmci_transport_qp_resumed_sub_id);
2135         if (err < VMCI_SUCCESS) {
2136                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2137                 err = vmci_transport_error_to_vsock_error(err);
2138                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2139                 goto err_destroy_stream_handle;
2140         }
2141 
2142         err = vsock_core_init(&vmci_transport);
2143         if (err < 0)
2144                 goto err_unsubscribe;
2145 
2146         return 0;
2147 
2148 err_unsubscribe:
2149         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2150 err_destroy_stream_handle:
2151         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2152         return err;
2153 }
2154 module_init(vmci_transport_init);
2155 
2156 static void __exit vmci_transport_exit(void)
2157 {
2158         cancel_work_sync(&vmci_transport_cleanup_work);
2159         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2160 
2161         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2162                 if (vmci_datagram_destroy_handle(
2163                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2164                         pr_err("Couldn't destroy datagram handle\n");
2165                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2166         }
2167 
2168         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2169                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2170                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2171         }
2172 
2173         vsock_core_exit();
2174 }
2175 module_exit(vmci_transport_exit);
2176 
2177 MODULE_AUTHOR("VMware, Inc.");
2178 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2179 MODULE_VERSION("1.0.5.0-k");
2180 MODULE_LICENSE("GPL v2");
2181 MODULE_ALIAS("vmware_vsock");
2182 MODULE_ALIAS_NETPROTO(PF_VSOCK);

/* [<][>][^][v][top][bottom][index][help] */