root/net/openvswitch/conntrack.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. key_to_nfproto
  2. ovs_ct_get_state
  3. ovs_ct_get_mark
  4. ovs_ct_get_labels
  5. __ovs_ct_update_key_orig_tp
  6. __ovs_ct_update_key
  7. ovs_ct_update_key
  8. ovs_ct_fill_key
  9. ovs_ct_put_key
  10. ovs_ct_set_mark
  11. ovs_ct_get_conn_labels
  12. ovs_ct_init_labels
  13. ovs_ct_set_labels
  14. ovs_ct_helper
  15. handle_fragments
  16. ovs_ct_expect_find
  17. ovs_ct_get_info
  18. ovs_ct_find_existing
  19. ovs_ct_executed
  20. skb_nfct_cached
  21. ovs_ct_nat_execute
  22. ovs_nat_update_key
  23. ovs_ct_nat
  24. ovs_ct_nat
  25. __ovs_ct_lookup
  26. ovs_ct_lookup
  27. labels_nonzero
  28. ct_limit_hash_bucket
  29. ct_limit_set
  30. ct_limit_del
  31. ct_limit_get
  32. ovs_ct_check_limit
  33. ovs_ct_commit
  34. ovs_skb_network_trim
  35. ovs_ct_execute
  36. ovs_ct_clear
  37. ovs_ct_add_helper
  38. parse_nat
  39. parse_ct
  40. ovs_ct_verify
  41. ovs_ct_copy_action
  42. ovs_ct_nat_to_attr
  43. ovs_ct_action_to_attr
  44. ovs_ct_free_action
  45. __ovs_ct_free_action
  46. ovs_ct_limit_init
  47. ovs_ct_limit_exit
  48. ovs_ct_limit_cmd_reply_start
  49. check_zone_id
  50. ovs_ct_limit_set_zone_limit
  51. ovs_ct_limit_del_zone_limit
  52. ovs_ct_limit_get_default_limit
  53. __ovs_ct_limit_get_zone_limit
  54. ovs_ct_limit_get_zone_limit
  55. ovs_ct_limit_get_all_zone_limit
  56. ovs_ct_limit_cmd_set
  57. ovs_ct_limit_cmd_del
  58. ovs_ct_limit_cmd_get
  59. ovs_ct_init
  60. ovs_ct_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2015 Nicira, Inc.
   4  */
   5 
   6 #include <linux/module.h>
   7 #include <linux/openvswitch.h>
   8 #include <linux/tcp.h>
   9 #include <linux/udp.h>
  10 #include <linux/sctp.h>
  11 #include <linux/static_key.h>
  12 #include <net/ip.h>
  13 #include <net/genetlink.h>
  14 #include <net/netfilter/nf_conntrack_core.h>
  15 #include <net/netfilter/nf_conntrack_count.h>
  16 #include <net/netfilter/nf_conntrack_helper.h>
  17 #include <net/netfilter/nf_conntrack_labels.h>
  18 #include <net/netfilter/nf_conntrack_seqadj.h>
  19 #include <net/netfilter/nf_conntrack_timeout.h>
  20 #include <net/netfilter/nf_conntrack_zones.h>
  21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
  22 #include <net/ipv6_frag.h>
  23 
  24 #if IS_ENABLED(CONFIG_NF_NAT)
  25 #include <net/netfilter/nf_nat.h>
  26 #endif
  27 
  28 #include "datapath.h"
  29 #include "conntrack.h"
  30 #include "flow.h"
  31 #include "flow_netlink.h"
  32 
  33 struct ovs_ct_len_tbl {
  34         int maxlen;
  35         int minlen;
  36 };
  37 
  38 /* Metadata mark for masked write to conntrack mark */
  39 struct md_mark {
  40         u32 value;
  41         u32 mask;
  42 };
  43 
  44 /* Metadata label for masked write to conntrack label. */
  45 struct md_labels {
  46         struct ovs_key_ct_labels value;
  47         struct ovs_key_ct_labels mask;
  48 };
  49 
  50 enum ovs_ct_nat {
  51         OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  52         OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  53         OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  54 };
  55 
  56 /* Conntrack action context for execution. */
  57 struct ovs_conntrack_info {
  58         struct nf_conntrack_helper *helper;
  59         struct nf_conntrack_zone zone;
  60         struct nf_conn *ct;
  61         u8 commit : 1;
  62         u8 nat : 3;                 /* enum ovs_ct_nat */
  63         u8 force : 1;
  64         u8 have_eventmask : 1;
  65         u16 family;
  66         u32 eventmask;              /* Mask of 1 << IPCT_*. */
  67         struct md_mark mark;
  68         struct md_labels labels;
  69         char timeout[CTNL_TIMEOUT_NAME_MAX];
  70         struct nf_ct_timeout *nf_ct_timeout;
  71 #if IS_ENABLED(CONFIG_NF_NAT)
  72         struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
  73 #endif
  74 };
  75 
  76 #if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
  77 #define OVS_CT_LIMIT_UNLIMITED  0
  78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
  79 #define CT_LIMIT_HASH_BUCKETS 512
  80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
  81 
  82 struct ovs_ct_limit {
  83         /* Elements in ovs_ct_limit_info->limits hash table */
  84         struct hlist_node hlist_node;
  85         struct rcu_head rcu;
  86         u16 zone;
  87         u32 limit;
  88 };
  89 
  90 struct ovs_ct_limit_info {
  91         u32 default_limit;
  92         struct hlist_head *limits;
  93         struct nf_conncount_data *data;
  94 };
  95 
  96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
  97         [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
  98 };
  99 #endif
 100 
 101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
 102 
 103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
 104 
 105 static u16 key_to_nfproto(const struct sw_flow_key *key)
 106 {
 107         switch (ntohs(key->eth.type)) {
 108         case ETH_P_IP:
 109                 return NFPROTO_IPV4;
 110         case ETH_P_IPV6:
 111                 return NFPROTO_IPV6;
 112         default:
 113                 return NFPROTO_UNSPEC;
 114         }
 115 }
 116 
 117 /* Map SKB connection state into the values used by flow definition. */
 118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
 119 {
 120         u8 ct_state = OVS_CS_F_TRACKED;
 121 
 122         switch (ctinfo) {
 123         case IP_CT_ESTABLISHED_REPLY:
 124         case IP_CT_RELATED_REPLY:
 125                 ct_state |= OVS_CS_F_REPLY_DIR;
 126                 break;
 127         default:
 128                 break;
 129         }
 130 
 131         switch (ctinfo) {
 132         case IP_CT_ESTABLISHED:
 133         case IP_CT_ESTABLISHED_REPLY:
 134                 ct_state |= OVS_CS_F_ESTABLISHED;
 135                 break;
 136         case IP_CT_RELATED:
 137         case IP_CT_RELATED_REPLY:
 138                 ct_state |= OVS_CS_F_RELATED;
 139                 break;
 140         case IP_CT_NEW:
 141                 ct_state |= OVS_CS_F_NEW;
 142                 break;
 143         default:
 144                 break;
 145         }
 146 
 147         return ct_state;
 148 }
 149 
 150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 151 {
 152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 153         return ct ? ct->mark : 0;
 154 #else
 155         return 0;
 156 #endif
 157 }
 158 
 159 /* Guard against conntrack labels max size shrinking below 128 bits. */
 160 #if NF_CT_LABELS_MAX_SIZE < 16
 161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
 162 #endif
 163 
 164 static void ovs_ct_get_labels(const struct nf_conn *ct,
 165                               struct ovs_key_ct_labels *labels)
 166 {
 167         struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 168 
 169         if (cl)
 170                 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
 171         else
 172                 memset(labels, 0, OVS_CT_LABELS_LEN);
 173 }
 174 
 175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
 176                                         const struct nf_conntrack_tuple *orig,
 177                                         u8 icmp_proto)
 178 {
 179         key->ct_orig_proto = orig->dst.protonum;
 180         if (orig->dst.protonum == icmp_proto) {
 181                 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
 182                 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
 183         } else {
 184                 key->ct.orig_tp.src = orig->src.u.all;
 185                 key->ct.orig_tp.dst = orig->dst.u.all;
 186         }
 187 }
 188 
 189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 190                                 const struct nf_conntrack_zone *zone,
 191                                 const struct nf_conn *ct)
 192 {
 193         key->ct_state = state;
 194         key->ct_zone = zone->id;
 195         key->ct.mark = ovs_ct_get_mark(ct);
 196         ovs_ct_get_labels(ct, &key->ct.labels);
 197 
 198         if (ct) {
 199                 const struct nf_conntrack_tuple *orig;
 200 
 201                 /* Use the master if we have one. */
 202                 if (ct->master)
 203                         ct = ct->master;
 204                 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
 205 
 206                 /* IP version must match with the master connection. */
 207                 if (key->eth.type == htons(ETH_P_IP) &&
 208                     nf_ct_l3num(ct) == NFPROTO_IPV4) {
 209                         key->ipv4.ct_orig.src = orig->src.u3.ip;
 210                         key->ipv4.ct_orig.dst = orig->dst.u3.ip;
 211                         __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
 212                         return;
 213                 } else if (key->eth.type == htons(ETH_P_IPV6) &&
 214                            !sw_flow_key_is_nd(key) &&
 215                            nf_ct_l3num(ct) == NFPROTO_IPV6) {
 216                         key->ipv6.ct_orig.src = orig->src.u3.in6;
 217                         key->ipv6.ct_orig.dst = orig->dst.u3.in6;
 218                         __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
 219                         return;
 220                 }
 221         }
 222         /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
 223          * original direction key fields.
 224          */
 225         key->ct_orig_proto = 0;
 226 }
 227 
 228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
 229  * previously sent the packet to conntrack via the ct action.  If
 230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 231  * initialized from the connection status.
 232  */
 233 static void ovs_ct_update_key(const struct sk_buff *skb,
 234                               const struct ovs_conntrack_info *info,
 235                               struct sw_flow_key *key, bool post_ct,
 236                               bool keep_nat_flags)
 237 {
 238         const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 239         enum ip_conntrack_info ctinfo;
 240         struct nf_conn *ct;
 241         u8 state = 0;
 242 
 243         ct = nf_ct_get(skb, &ctinfo);
 244         if (ct) {
 245                 state = ovs_ct_get_state(ctinfo);
 246                 /* All unconfirmed entries are NEW connections. */
 247                 if (!nf_ct_is_confirmed(ct))
 248                         state |= OVS_CS_F_NEW;
 249                 /* OVS persists the related flag for the duration of the
 250                  * connection.
 251                  */
 252                 if (ct->master)
 253                         state |= OVS_CS_F_RELATED;
 254                 if (keep_nat_flags) {
 255                         state |= key->ct_state & OVS_CS_F_NAT_MASK;
 256                 } else {
 257                         if (ct->status & IPS_SRC_NAT)
 258                                 state |= OVS_CS_F_SRC_NAT;
 259                         if (ct->status & IPS_DST_NAT)
 260                                 state |= OVS_CS_F_DST_NAT;
 261                 }
 262                 zone = nf_ct_zone(ct);
 263         } else if (post_ct) {
 264                 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 265                 if (info)
 266                         zone = &info->zone;
 267         }
 268         __ovs_ct_update_key(key, state, zone, ct);
 269 }
 270 
 271 /* This is called to initialize CT key fields possibly coming in from the local
 272  * stack.
 273  */
 274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
 275 {
 276         ovs_ct_update_key(skb, NULL, key, false, false);
 277 }
 278 
 279 #define IN6_ADDR_INITIALIZER(ADDR) \
 280         { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
 281           (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
 282 
 283 int ovs_ct_put_key(const struct sw_flow_key *swkey,
 284                    const struct sw_flow_key *output, struct sk_buff *skb)
 285 {
 286         if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
 287                 return -EMSGSIZE;
 288 
 289         if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 290             nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
 291                 return -EMSGSIZE;
 292 
 293         if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 294             nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
 295                 return -EMSGSIZE;
 296 
 297         if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 298             nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
 299                     &output->ct.labels))
 300                 return -EMSGSIZE;
 301 
 302         if (swkey->ct_orig_proto) {
 303                 if (swkey->eth.type == htons(ETH_P_IP)) {
 304                         struct ovs_key_ct_tuple_ipv4 orig = {
 305                                 output->ipv4.ct_orig.src,
 306                                 output->ipv4.ct_orig.dst,
 307                                 output->ct.orig_tp.src,
 308                                 output->ct.orig_tp.dst,
 309                                 output->ct_orig_proto,
 310                         };
 311                         if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
 312                                     sizeof(orig), &orig))
 313                                 return -EMSGSIZE;
 314                 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 315                         struct ovs_key_ct_tuple_ipv6 orig = {
 316                                 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
 317                                 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
 318                                 output->ct.orig_tp.src,
 319                                 output->ct.orig_tp.dst,
 320                                 output->ct_orig_proto,
 321                         };
 322                         if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
 323                                     sizeof(orig), &orig))
 324                                 return -EMSGSIZE;
 325                 }
 326         }
 327 
 328         return 0;
 329 }
 330 
 331 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
 332                            u32 ct_mark, u32 mask)
 333 {
 334 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 335         u32 new_mark;
 336 
 337         new_mark = ct_mark | (ct->mark & ~(mask));
 338         if (ct->mark != new_mark) {
 339                 ct->mark = new_mark;
 340                 if (nf_ct_is_confirmed(ct))
 341                         nf_conntrack_event_cache(IPCT_MARK, ct);
 342                 key->ct.mark = new_mark;
 343         }
 344 
 345         return 0;
 346 #else
 347         return -ENOTSUPP;
 348 #endif
 349 }
 350 
 351 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
 352 {
 353         struct nf_conn_labels *cl;
 354 
 355         cl = nf_ct_labels_find(ct);
 356         if (!cl) {
 357                 nf_ct_labels_ext_add(ct);
 358                 cl = nf_ct_labels_find(ct);
 359         }
 360 
 361         return cl;
 362 }
 363 
 364 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
 365  * since the new connection is not yet confirmed, and thus no-one else has
 366  * access to it's labels, we simply write them over.
 367  */
 368 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
 369                               const struct ovs_key_ct_labels *labels,
 370                               const struct ovs_key_ct_labels *mask)
 371 {
 372         struct nf_conn_labels *cl, *master_cl;
 373         bool have_mask = labels_nonzero(mask);
 374 
 375         /* Inherit master's labels to the related connection? */
 376         master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
 377 
 378         if (!master_cl && !have_mask)
 379                 return 0;   /* Nothing to do. */
 380 
 381         cl = ovs_ct_get_conn_labels(ct);
 382         if (!cl)
 383                 return -ENOSPC;
 384 
 385         /* Inherit the master's labels, if any. */
 386         if (master_cl)
 387                 *cl = *master_cl;
 388 
 389         if (have_mask) {
 390                 u32 *dst = (u32 *)cl->bits;
 391                 int i;
 392 
 393                 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
 394                         dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
 395                                 (labels->ct_labels_32[i]
 396                                  & mask->ct_labels_32[i]);
 397         }
 398 
 399         /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
 400          * IPCT_LABEL bit is set in the event cache.
 401          */
 402         nf_conntrack_event_cache(IPCT_LABEL, ct);
 403 
 404         memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 405 
 406         return 0;
 407 }
 408 
 409 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
 410                              const struct ovs_key_ct_labels *labels,
 411                              const struct ovs_key_ct_labels *mask)
 412 {
 413         struct nf_conn_labels *cl;
 414         int err;
 415 
 416         cl = ovs_ct_get_conn_labels(ct);
 417         if (!cl)
 418                 return -ENOSPC;
 419 
 420         err = nf_connlabels_replace(ct, labels->ct_labels_32,
 421                                     mask->ct_labels_32,
 422                                     OVS_CT_LABELS_LEN_32);
 423         if (err)
 424                 return err;
 425 
 426         memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 427 
 428         return 0;
 429 }
 430 
 431 /* 'skb' should already be pulled to nh_ofs. */
 432 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
 433 {
 434         const struct nf_conntrack_helper *helper;
 435         const struct nf_conn_help *help;
 436         enum ip_conntrack_info ctinfo;
 437         unsigned int protoff;
 438         struct nf_conn *ct;
 439         int err;
 440 
 441         ct = nf_ct_get(skb, &ctinfo);
 442         if (!ct || ctinfo == IP_CT_RELATED_REPLY)
 443                 return NF_ACCEPT;
 444 
 445         help = nfct_help(ct);
 446         if (!help)
 447                 return NF_ACCEPT;
 448 
 449         helper = rcu_dereference(help->helper);
 450         if (!helper)
 451                 return NF_ACCEPT;
 452 
 453         switch (proto) {
 454         case NFPROTO_IPV4:
 455                 protoff = ip_hdrlen(skb);
 456                 break;
 457         case NFPROTO_IPV6: {
 458                 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 459                 __be16 frag_off;
 460                 int ofs;
 461 
 462                 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
 463                                        &frag_off);
 464                 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
 465                         pr_debug("proto header not found\n");
 466                         return NF_ACCEPT;
 467                 }
 468                 protoff = ofs;
 469                 break;
 470         }
 471         default:
 472                 WARN_ONCE(1, "helper invoked on non-IP family!");
 473                 return NF_DROP;
 474         }
 475 
 476         err = helper->help(skb, protoff, ct, ctinfo);
 477         if (err != NF_ACCEPT)
 478                 return err;
 479 
 480         /* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
 481          * FTP with NAT) adusting the TCP payload size when mangling IP
 482          * addresses and/or port numbers in the text-based control connection.
 483          */
 484         if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
 485             !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
 486                 return NF_DROP;
 487         return NF_ACCEPT;
 488 }
 489 
 490 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 491  * value if 'skb' is freed.
 492  */
 493 static int handle_fragments(struct net *net, struct sw_flow_key *key,
 494                             u16 zone, struct sk_buff *skb)
 495 {
 496         struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 497         int err;
 498 
 499         if (key->eth.type == htons(ETH_P_IP)) {
 500                 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
 501 
 502                 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 503                 err = ip_defrag(net, skb, user);
 504                 if (err)
 505                         return err;
 506 
 507                 ovs_cb.mru = IPCB(skb)->frag_max_size;
 508 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
 509         } else if (key->eth.type == htons(ETH_P_IPV6)) {
 510                 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
 511 
 512                 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
 513                 err = nf_ct_frag6_gather(net, skb, user);
 514                 if (err) {
 515                         if (err != -EINPROGRESS)
 516                                 kfree_skb(skb);
 517                         return err;
 518                 }
 519 
 520                 key->ip.proto = ipv6_hdr(skb)->nexthdr;
 521                 ovs_cb.mru = IP6CB(skb)->frag_max_size;
 522 #endif
 523         } else {
 524                 kfree_skb(skb);
 525                 return -EPFNOSUPPORT;
 526         }
 527 
 528         /* The key extracted from the fragment that completed this datagram
 529          * likely didn't have an L4 header, so regenerate it.
 530          */
 531         ovs_flow_key_update_l3l4(skb, key);
 532 
 533         key->ip.frag = OVS_FRAG_TYPE_NONE;
 534         skb_clear_hash(skb);
 535         skb->ignore_df = 1;
 536         *OVS_CB(skb) = ovs_cb;
 537 
 538         return 0;
 539 }
 540 
 541 static struct nf_conntrack_expect *
 542 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
 543                    u16 proto, const struct sk_buff *skb)
 544 {
 545         struct nf_conntrack_tuple tuple;
 546         struct nf_conntrack_expect *exp;
 547 
 548         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
 549                 return NULL;
 550 
 551         exp = __nf_ct_expect_find(net, zone, &tuple);
 552         if (exp) {
 553                 struct nf_conntrack_tuple_hash *h;
 554 
 555                 /* Delete existing conntrack entry, if it clashes with the
 556                  * expectation.  This can happen since conntrack ALGs do not
 557                  * check for clashes between (new) expectations and existing
 558                  * conntrack entries.  nf_conntrack_in() will check the
 559                  * expectations only if a conntrack entry can not be found,
 560                  * which can lead to OVS finding the expectation (here) in the
 561                  * init direction, but which will not be removed by the
 562                  * nf_conntrack_in() call, if a matching conntrack entry is
 563                  * found instead.  In this case all init direction packets
 564                  * would be reported as new related packets, while reply
 565                  * direction packets would be reported as un-related
 566                  * established packets.
 567                  */
 568                 h = nf_conntrack_find_get(net, zone, &tuple);
 569                 if (h) {
 570                         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 571 
 572                         nf_ct_delete(ct, 0, 0);
 573                         nf_conntrack_put(&ct->ct_general);
 574                 }
 575         }
 576 
 577         return exp;
 578 }
 579 
 580 /* This replicates logic from nf_conntrack_core.c that is not exported. */
 581 static enum ip_conntrack_info
 582 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 583 {
 584         const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 585 
 586         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 587                 return IP_CT_ESTABLISHED_REPLY;
 588         /* Once we've had two way comms, always ESTABLISHED. */
 589         if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 590                 return IP_CT_ESTABLISHED;
 591         if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 592                 return IP_CT_RELATED;
 593         return IP_CT_NEW;
 594 }
 595 
 596 /* Find an existing connection which this packet belongs to without
 597  * re-attributing statistics or modifying the connection state.  This allows an
 598  * skb->_nfct lost due to an upcall to be recovered during actions execution.
 599  *
 600  * Must be called with rcu_read_lock.
 601  *
 602  * On success, populates skb->_nfct and returns the connection.  Returns NULL
 603  * if there is no existing entry.
 604  */
 605 static struct nf_conn *
 606 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 607                      u8 l3num, struct sk_buff *skb, bool natted)
 608 {
 609         struct nf_conntrack_tuple tuple;
 610         struct nf_conntrack_tuple_hash *h;
 611         struct nf_conn *ct;
 612 
 613         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
 614                                net, &tuple)) {
 615                 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 616                 return NULL;
 617         }
 618 
 619         /* Must invert the tuple if skb has been transformed by NAT. */
 620         if (natted) {
 621                 struct nf_conntrack_tuple inverse;
 622 
 623                 if (!nf_ct_invert_tuple(&inverse, &tuple)) {
 624                         pr_debug("ovs_ct_find_existing: Inversion failed!\n");
 625                         return NULL;
 626                 }
 627                 tuple = inverse;
 628         }
 629 
 630         /* look for tuple match */
 631         h = nf_conntrack_find_get(net, zone, &tuple);
 632         if (!h)
 633                 return NULL;   /* Not found. */
 634 
 635         ct = nf_ct_tuplehash_to_ctrack(h);
 636 
 637         /* Inverted packet tuple matches the reverse direction conntrack tuple,
 638          * select the other tuplehash to get the right 'ctinfo' bits for this
 639          * packet.
 640          */
 641         if (natted)
 642                 h = &ct->tuplehash[!h->tuple.dst.dir];
 643 
 644         nf_ct_set(skb, ct, ovs_ct_get_info(h));
 645         return ct;
 646 }
 647 
 648 static
 649 struct nf_conn *ovs_ct_executed(struct net *net,
 650                                 const struct sw_flow_key *key,
 651                                 const struct ovs_conntrack_info *info,
 652                                 struct sk_buff *skb,
 653                                 bool *ct_executed)
 654 {
 655         struct nf_conn *ct = NULL;
 656 
 657         /* If no ct, check if we have evidence that an existing conntrack entry
 658          * might be found for this skb.  This happens when we lose a skb->_nfct
 659          * due to an upcall, or if the direction is being forced.  If the
 660          * connection was not confirmed, it is not cached and needs to be run
 661          * through conntrack again.
 662          */
 663         *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
 664                        !(key->ct_state & OVS_CS_F_INVALID) &&
 665                        (key->ct_zone == info->zone.id);
 666 
 667         if (*ct_executed || (!key->ct_state && info->force)) {
 668                 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
 669                                           !!(key->ct_state &
 670                                           OVS_CS_F_NAT_MASK));
 671         }
 672 
 673         return ct;
 674 }
 675 
 676 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
 677 static bool skb_nfct_cached(struct net *net,
 678                             const struct sw_flow_key *key,
 679                             const struct ovs_conntrack_info *info,
 680                             struct sk_buff *skb)
 681 {
 682         enum ip_conntrack_info ctinfo;
 683         struct nf_conn *ct;
 684         bool ct_executed = true;
 685 
 686         ct = nf_ct_get(skb, &ctinfo);
 687         if (!ct)
 688                 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
 689 
 690         if (ct)
 691                 nf_ct_get(skb, &ctinfo);
 692         else
 693                 return false;
 694 
 695         if (!net_eq(net, read_pnet(&ct->ct_net)))
 696                 return false;
 697         if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 698                 return false;
 699         if (info->helper) {
 700                 struct nf_conn_help *help;
 701 
 702                 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 703                 if (help && rcu_access_pointer(help->helper) != info->helper)
 704                         return false;
 705         }
 706         if (info->nf_ct_timeout) {
 707                 struct nf_conn_timeout *timeout_ext;
 708 
 709                 timeout_ext = nf_ct_timeout_find(ct);
 710                 if (!timeout_ext || info->nf_ct_timeout !=
 711                     rcu_dereference(timeout_ext->timeout))
 712                         return false;
 713         }
 714         /* Force conntrack entry direction to the current packet? */
 715         if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
 716                 /* Delete the conntrack entry if confirmed, else just release
 717                  * the reference.
 718                  */
 719                 if (nf_ct_is_confirmed(ct))
 720                         nf_ct_delete(ct, 0, 0);
 721 
 722                 nf_conntrack_put(&ct->ct_general);
 723                 nf_ct_set(skb, NULL, 0);
 724                 return false;
 725         }
 726 
 727         return ct_executed;
 728 }
 729 
 730 #if IS_ENABLED(CONFIG_NF_NAT)
 731 /* Modelled after nf_nat_ipv[46]_fn().
 732  * range is only used for new, uninitialized NAT state.
 733  * Returns either NF_ACCEPT or NF_DROP.
 734  */
 735 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
 736                               enum ip_conntrack_info ctinfo,
 737                               const struct nf_nat_range2 *range,
 738                               enum nf_nat_manip_type maniptype)
 739 {
 740         int hooknum, nh_off, err = NF_ACCEPT;
 741 
 742         nh_off = skb_network_offset(skb);
 743         skb_pull_rcsum(skb, nh_off);
 744 
 745         /* See HOOK2MANIP(). */
 746         if (maniptype == NF_NAT_MANIP_SRC)
 747                 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
 748         else
 749                 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
 750 
 751         switch (ctinfo) {
 752         case IP_CT_RELATED:
 753         case IP_CT_RELATED_REPLY:
 754                 if (IS_ENABLED(CONFIG_NF_NAT) &&
 755                     skb->protocol == htons(ETH_P_IP) &&
 756                     ip_hdr(skb)->protocol == IPPROTO_ICMP) {
 757                         if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
 758                                                            hooknum))
 759                                 err = NF_DROP;
 760                         goto push;
 761                 } else if (IS_ENABLED(CONFIG_IPV6) &&
 762                            skb->protocol == htons(ETH_P_IPV6)) {
 763                         __be16 frag_off;
 764                         u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 765                         int hdrlen = ipv6_skip_exthdr(skb,
 766                                                       sizeof(struct ipv6hdr),
 767                                                       &nexthdr, &frag_off);
 768 
 769                         if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
 770                                 if (!nf_nat_icmpv6_reply_translation(skb, ct,
 771                                                                      ctinfo,
 772                                                                      hooknum,
 773                                                                      hdrlen))
 774                                         err = NF_DROP;
 775                                 goto push;
 776                         }
 777                 }
 778                 /* Non-ICMP, fall thru to initialize if needed. */
 779                 /* fall through */
 780         case IP_CT_NEW:
 781                 /* Seen it before?  This can happen for loopback, retrans,
 782                  * or local packets.
 783                  */
 784                 if (!nf_nat_initialized(ct, maniptype)) {
 785                         /* Initialize according to the NAT action. */
 786                         err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
 787                                 /* Action is set up to establish a new
 788                                  * mapping.
 789                                  */
 790                                 ? nf_nat_setup_info(ct, range, maniptype)
 791                                 : nf_nat_alloc_null_binding(ct, hooknum);
 792                         if (err != NF_ACCEPT)
 793                                 goto push;
 794                 }
 795                 break;
 796 
 797         case IP_CT_ESTABLISHED:
 798         case IP_CT_ESTABLISHED_REPLY:
 799                 break;
 800 
 801         default:
 802                 err = NF_DROP;
 803                 goto push;
 804         }
 805 
 806         err = nf_nat_packet(ct, ctinfo, hooknum, skb);
 807 push:
 808         skb_push(skb, nh_off);
 809         skb_postpush_rcsum(skb, skb->data, nh_off);
 810 
 811         return err;
 812 }
 813 
 814 static void ovs_nat_update_key(struct sw_flow_key *key,
 815                                const struct sk_buff *skb,
 816                                enum nf_nat_manip_type maniptype)
 817 {
 818         if (maniptype == NF_NAT_MANIP_SRC) {
 819                 __be16 src;
 820 
 821                 key->ct_state |= OVS_CS_F_SRC_NAT;
 822                 if (key->eth.type == htons(ETH_P_IP))
 823                         key->ipv4.addr.src = ip_hdr(skb)->saddr;
 824                 else if (key->eth.type == htons(ETH_P_IPV6))
 825                         memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 826                                sizeof(key->ipv6.addr.src));
 827                 else
 828                         return;
 829 
 830                 if (key->ip.proto == IPPROTO_UDP)
 831                         src = udp_hdr(skb)->source;
 832                 else if (key->ip.proto == IPPROTO_TCP)
 833                         src = tcp_hdr(skb)->source;
 834                 else if (key->ip.proto == IPPROTO_SCTP)
 835                         src = sctp_hdr(skb)->source;
 836                 else
 837                         return;
 838 
 839                 key->tp.src = src;
 840         } else {
 841                 __be16 dst;
 842 
 843                 key->ct_state |= OVS_CS_F_DST_NAT;
 844                 if (key->eth.type == htons(ETH_P_IP))
 845                         key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 846                 else if (key->eth.type == htons(ETH_P_IPV6))
 847                         memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 848                                sizeof(key->ipv6.addr.dst));
 849                 else
 850                         return;
 851 
 852                 if (key->ip.proto == IPPROTO_UDP)
 853                         dst = udp_hdr(skb)->dest;
 854                 else if (key->ip.proto == IPPROTO_TCP)
 855                         dst = tcp_hdr(skb)->dest;
 856                 else if (key->ip.proto == IPPROTO_SCTP)
 857                         dst = sctp_hdr(skb)->dest;
 858                 else
 859                         return;
 860 
 861                 key->tp.dst = dst;
 862         }
 863 }
 864 
 865 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 866 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 867                       const struct ovs_conntrack_info *info,
 868                       struct sk_buff *skb, struct nf_conn *ct,
 869                       enum ip_conntrack_info ctinfo)
 870 {
 871         enum nf_nat_manip_type maniptype;
 872         int err;
 873 
 874         /* Add NAT extension if not confirmed yet. */
 875         if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
 876                 return NF_ACCEPT;   /* Can't NAT. */
 877 
 878         /* Determine NAT type.
 879          * Check if the NAT type can be deduced from the tracked connection.
 880          * Make sure new expected connections (IP_CT_RELATED) are NATted only
 881          * when committing.
 882          */
 883         if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
 884             ct->status & IPS_NAT_MASK &&
 885             (ctinfo != IP_CT_RELATED || info->commit)) {
 886                 /* NAT an established or related connection like before. */
 887                 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
 888                         /* This is the REPLY direction for a connection
 889                          * for which NAT was applied in the forward
 890                          * direction.  Do the reverse NAT.
 891                          */
 892                         maniptype = ct->status & IPS_SRC_NAT
 893                                 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
 894                 else
 895                         maniptype = ct->status & IPS_SRC_NAT
 896                                 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
 897         } else if (info->nat & OVS_CT_SRC_NAT) {
 898                 maniptype = NF_NAT_MANIP_SRC;
 899         } else if (info->nat & OVS_CT_DST_NAT) {
 900                 maniptype = NF_NAT_MANIP_DST;
 901         } else {
 902                 return NF_ACCEPT; /* Connection is not NATed. */
 903         }
 904         err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
 905 
 906         if (err == NF_ACCEPT &&
 907             ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) {
 908                 if (maniptype == NF_NAT_MANIP_SRC)
 909                         maniptype = NF_NAT_MANIP_DST;
 910                 else
 911                         maniptype = NF_NAT_MANIP_SRC;
 912 
 913                 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
 914                                          maniptype);
 915         }
 916 
 917         /* Mark NAT done if successful and update the flow key. */
 918         if (err == NF_ACCEPT)
 919                 ovs_nat_update_key(key, skb, maniptype);
 920 
 921         return err;
 922 }
 923 #else /* !CONFIG_NF_NAT */
 924 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 925                       const struct ovs_conntrack_info *info,
 926                       struct sk_buff *skb, struct nf_conn *ct,
 927                       enum ip_conntrack_info ctinfo)
 928 {
 929         return NF_ACCEPT;
 930 }
 931 #endif
 932 
 933 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 934  * not done already.  Update key with new CT state after passing the packet
 935  * through conntrack.
 936  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
 937  * set to NULL and 0 will be returned.
 938  */
 939 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 940                            const struct ovs_conntrack_info *info,
 941                            struct sk_buff *skb)
 942 {
 943         /* If we are recirculating packets to match on conntrack fields and
 944          * committing with a separate conntrack action,  then we don't need to
 945          * actually run the packet through conntrack twice unless it's for a
 946          * different zone.
 947          */
 948         bool cached = skb_nfct_cached(net, key, info, skb);
 949         enum ip_conntrack_info ctinfo;
 950         struct nf_conn *ct;
 951 
 952         if (!cached) {
 953                 struct nf_hook_state state = {
 954                         .hook = NF_INET_PRE_ROUTING,
 955                         .pf = info->family,
 956                         .net = net,
 957                 };
 958                 struct nf_conn *tmpl = info->ct;
 959                 int err;
 960 
 961                 /* Associate skb with specified zone. */
 962                 if (tmpl) {
 963                         if (skb_nfct(skb))
 964                                 nf_conntrack_put(skb_nfct(skb));
 965                         nf_conntrack_get(&tmpl->ct_general);
 966                         nf_ct_set(skb, tmpl, IP_CT_NEW);
 967                 }
 968 
 969                 err = nf_conntrack_in(skb, &state);
 970                 if (err != NF_ACCEPT)
 971                         return -ENOENT;
 972 
 973                 /* Clear CT state NAT flags to mark that we have not yet done
 974                  * NAT after the nf_conntrack_in() call.  We can actually clear
 975                  * the whole state, as it will be re-initialized below.
 976                  */
 977                 key->ct_state = 0;
 978 
 979                 /* Update the key, but keep the NAT flags. */
 980                 ovs_ct_update_key(skb, info, key, true, true);
 981         }
 982 
 983         ct = nf_ct_get(skb, &ctinfo);
 984         if (ct) {
 985                 /* Packets starting a new connection must be NATted before the
 986                  * helper, so that the helper knows about the NAT.  We enforce
 987                  * this by delaying both NAT and helper calls for unconfirmed
 988                  * connections until the committing CT action.  For later
 989                  * packets NAT and Helper may be called in either order.
 990                  *
 991                  * NAT will be done only if the CT action has NAT, and only
 992                  * once per packet (per zone), as guarded by the NAT bits in
 993                  * the key->ct_state.
 994                  */
 995                 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
 996                     (nf_ct_is_confirmed(ct) || info->commit) &&
 997                     ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
 998                         return -EINVAL;
 999                 }
1000 
1001                 /* Userspace may decide to perform a ct lookup without a helper
1002                  * specified followed by a (recirculate and) commit with one.
1003                  * Therefore, for unconfirmed connections which we will commit,
1004                  * we need to attach the helper here.
1005                  */
1006                 if (!nf_ct_is_confirmed(ct) && info->commit &&
1007                     info->helper && !nfct_help(ct)) {
1008                         int err = __nf_ct_try_assign_helper(ct, info->ct,
1009                                                             GFP_ATOMIC);
1010                         if (err)
1011                                 return err;
1012 
1013                         /* helper installed, add seqadj if NAT is required */
1014                         if (info->nat && !nfct_seqadj(ct)) {
1015                                 if (!nfct_seqadj_ext_add(ct))
1016                                         return -EINVAL;
1017                         }
1018                 }
1019 
1020                 /* Call the helper only if:
1021                  * - nf_conntrack_in() was executed above ("!cached") for a
1022                  *   confirmed connection, or
1023                  * - When committing an unconfirmed connection.
1024                  */
1025                 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1026                     ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1027                         return -EINVAL;
1028                 }
1029         }
1030 
1031         return 0;
1032 }
1033 
1034 /* Lookup connection and read fields into key. */
1035 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1036                          const struct ovs_conntrack_info *info,
1037                          struct sk_buff *skb)
1038 {
1039         struct nf_conntrack_expect *exp;
1040 
1041         /* If we pass an expected packet through nf_conntrack_in() the
1042          * expectation is typically removed, but the packet could still be
1043          * lost in upcall processing.  To prevent this from happening we
1044          * perform an explicit expectation lookup.  Expected connections are
1045          * always new, and will be passed through conntrack only when they are
1046          * committed, as it is OK to remove the expectation at that time.
1047          */
1048         exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1049         if (exp) {
1050                 u8 state;
1051 
1052                 /* NOTE: New connections are NATted and Helped only when
1053                  * committed, so we are not calling into NAT here.
1054                  */
1055                 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1056                 __ovs_ct_update_key(key, state, &info->zone, exp->master);
1057         } else {
1058                 struct nf_conn *ct;
1059                 int err;
1060 
1061                 err = __ovs_ct_lookup(net, key, info, skb);
1062                 if (err)
1063                         return err;
1064 
1065                 ct = (struct nf_conn *)skb_nfct(skb);
1066                 if (ct)
1067                         nf_ct_deliver_cached_events(ct);
1068         }
1069 
1070         return 0;
1071 }
1072 
1073 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1074 {
1075         size_t i;
1076 
1077         for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1078                 if (labels->ct_labels_32[i])
1079                         return true;
1080 
1081         return false;
1082 }
1083 
1084 #if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1085 static struct hlist_head *ct_limit_hash_bucket(
1086         const struct ovs_ct_limit_info *info, u16 zone)
1087 {
1088         return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1089 }
1090 
1091 /* Call with ovs_mutex */
1092 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1093                          struct ovs_ct_limit *new_ct_limit)
1094 {
1095         struct ovs_ct_limit *ct_limit;
1096         struct hlist_head *head;
1097 
1098         head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1099         hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1100                 if (ct_limit->zone == new_ct_limit->zone) {
1101                         hlist_replace_rcu(&ct_limit->hlist_node,
1102                                           &new_ct_limit->hlist_node);
1103                         kfree_rcu(ct_limit, rcu);
1104                         return;
1105                 }
1106         }
1107 
1108         hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1109 }
1110 
1111 /* Call with ovs_mutex */
1112 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1113 {
1114         struct ovs_ct_limit *ct_limit;
1115         struct hlist_head *head;
1116         struct hlist_node *n;
1117 
1118         head = ct_limit_hash_bucket(info, zone);
1119         hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1120                 if (ct_limit->zone == zone) {
1121                         hlist_del_rcu(&ct_limit->hlist_node);
1122                         kfree_rcu(ct_limit, rcu);
1123                         return;
1124                 }
1125         }
1126 }
1127 
1128 /* Call with RCU read lock */
1129 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1130 {
1131         struct ovs_ct_limit *ct_limit;
1132         struct hlist_head *head;
1133 
1134         head = ct_limit_hash_bucket(info, zone);
1135         hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1136                 if (ct_limit->zone == zone)
1137                         return ct_limit->limit;
1138         }
1139 
1140         return info->default_limit;
1141 }
1142 
1143 static int ovs_ct_check_limit(struct net *net,
1144                               const struct ovs_conntrack_info *info,
1145                               const struct nf_conntrack_tuple *tuple)
1146 {
1147         struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1148         const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1149         u32 per_zone_limit, connections;
1150         u32 conncount_key;
1151 
1152         conncount_key = info->zone.id;
1153 
1154         per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1155         if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1156                 return 0;
1157 
1158         connections = nf_conncount_count(net, ct_limit_info->data,
1159                                          &conncount_key, tuple, &info->zone);
1160         if (connections > per_zone_limit)
1161                 return -ENOMEM;
1162 
1163         return 0;
1164 }
1165 #endif
1166 
1167 /* Lookup connection and confirm if unconfirmed. */
1168 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1169                          const struct ovs_conntrack_info *info,
1170                          struct sk_buff *skb)
1171 {
1172         enum ip_conntrack_info ctinfo;
1173         struct nf_conn *ct;
1174         int err;
1175 
1176         err = __ovs_ct_lookup(net, key, info, skb);
1177         if (err)
1178                 return err;
1179 
1180         /* The connection could be invalid, in which case this is a no-op.*/
1181         ct = nf_ct_get(skb, &ctinfo);
1182         if (!ct)
1183                 return 0;
1184 
1185 #if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1186         if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1187                 if (!nf_ct_is_confirmed(ct)) {
1188                         err = ovs_ct_check_limit(net, info,
1189                                 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1190                         if (err) {
1191                                 net_warn_ratelimited("openvswitch: zone: %u "
1192                                         "exceeds conntrack limit\n",
1193                                         info->zone.id);
1194                                 return err;
1195                         }
1196                 }
1197         }
1198 #endif
1199 
1200         /* Set the conntrack event mask if given.  NEW and DELETE events have
1201          * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1202          * typically would receive many kinds of updates.  Setting the event
1203          * mask allows those events to be filtered.  The set event mask will
1204          * remain in effect for the lifetime of the connection unless changed
1205          * by a further CT action with both the commit flag and the eventmask
1206          * option. */
1207         if (info->have_eventmask) {
1208                 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1209 
1210                 if (cache)
1211                         cache->ctmask = info->eventmask;
1212         }
1213 
1214         /* Apply changes before confirming the connection so that the initial
1215          * conntrack NEW netlink event carries the values given in the CT
1216          * action.
1217          */
1218         if (info->mark.mask) {
1219                 err = ovs_ct_set_mark(ct, key, info->mark.value,
1220                                       info->mark.mask);
1221                 if (err)
1222                         return err;
1223         }
1224         if (!nf_ct_is_confirmed(ct)) {
1225                 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1226                                          &info->labels.mask);
1227                 if (err)
1228                         return err;
1229         } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1230                    labels_nonzero(&info->labels.mask)) {
1231                 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1232                                         &info->labels.mask);
1233                 if (err)
1234                         return err;
1235         }
1236         /* This will take care of sending queued events even if the connection
1237          * is already confirmed.
1238          */
1239         if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1240                 return -EINVAL;
1241 
1242         return 0;
1243 }
1244 
1245 /* Trim the skb to the length specified by the IP/IPv6 header,
1246  * removing any trailing lower-layer padding. This prepares the skb
1247  * for higher-layer processing that assumes skb->len excludes padding
1248  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1249  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1250  */
1251 static int ovs_skb_network_trim(struct sk_buff *skb)
1252 {
1253         unsigned int len;
1254         int err;
1255 
1256         switch (skb->protocol) {
1257         case htons(ETH_P_IP):
1258                 len = ntohs(ip_hdr(skb)->tot_len);
1259                 break;
1260         case htons(ETH_P_IPV6):
1261                 len = sizeof(struct ipv6hdr)
1262                         + ntohs(ipv6_hdr(skb)->payload_len);
1263                 break;
1264         default:
1265                 len = skb->len;
1266         }
1267 
1268         err = pskb_trim_rcsum(skb, len);
1269         if (err)
1270                 kfree_skb(skb);
1271 
1272         return err;
1273 }
1274 
1275 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1276  * value if 'skb' is freed.
1277  */
1278 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1279                    struct sw_flow_key *key,
1280                    const struct ovs_conntrack_info *info)
1281 {
1282         int nh_ofs;
1283         int err;
1284 
1285         /* The conntrack module expects to be working at L3. */
1286         nh_ofs = skb_network_offset(skb);
1287         skb_pull_rcsum(skb, nh_ofs);
1288 
1289         err = ovs_skb_network_trim(skb);
1290         if (err)
1291                 return err;
1292 
1293         if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1294                 err = handle_fragments(net, key, info->zone.id, skb);
1295                 if (err)
1296                         return err;
1297         }
1298 
1299         if (info->commit)
1300                 err = ovs_ct_commit(net, key, info, skb);
1301         else
1302                 err = ovs_ct_lookup(net, key, info, skb);
1303 
1304         skb_push(skb, nh_ofs);
1305         skb_postpush_rcsum(skb, skb->data, nh_ofs);
1306         if (err)
1307                 kfree_skb(skb);
1308         return err;
1309 }
1310 
1311 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1312 {
1313         if (skb_nfct(skb)) {
1314                 nf_conntrack_put(skb_nfct(skb));
1315                 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1316                 ovs_ct_fill_key(skb, key);
1317         }
1318 
1319         return 0;
1320 }
1321 
1322 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1323                              const struct sw_flow_key *key, bool log)
1324 {
1325         struct nf_conntrack_helper *helper;
1326         struct nf_conn_help *help;
1327         int ret = 0;
1328 
1329         helper = nf_conntrack_helper_try_module_get(name, info->family,
1330                                                     key->ip.proto);
1331         if (!helper) {
1332                 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1333                 return -EINVAL;
1334         }
1335 
1336         help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1337         if (!help) {
1338                 nf_conntrack_helper_put(helper);
1339                 return -ENOMEM;
1340         }
1341 
1342 #if IS_ENABLED(CONFIG_NF_NAT)
1343         if (info->nat) {
1344                 ret = nf_nat_helper_try_module_get(name, info->family,
1345                                                    key->ip.proto);
1346                 if (ret) {
1347                         nf_conntrack_helper_put(helper);
1348                         OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1349                                   name, ret);
1350                         return ret;
1351                 }
1352         }
1353 #endif
1354         rcu_assign_pointer(help->helper, helper);
1355         info->helper = helper;
1356         return ret;
1357 }
1358 
1359 #if IS_ENABLED(CONFIG_NF_NAT)
1360 static int parse_nat(const struct nlattr *attr,
1361                      struct ovs_conntrack_info *info, bool log)
1362 {
1363         struct nlattr *a;
1364         int rem;
1365         bool have_ip_max = false;
1366         bool have_proto_max = false;
1367         bool ip_vers = (info->family == NFPROTO_IPV6);
1368 
1369         nla_for_each_nested(a, attr, rem) {
1370                 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1371                         [OVS_NAT_ATTR_SRC] = {0, 0},
1372                         [OVS_NAT_ATTR_DST] = {0, 0},
1373                         [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1374                                                  sizeof(struct in6_addr)},
1375                         [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1376                                                  sizeof(struct in6_addr)},
1377                         [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1378                         [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1379                         [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1380                         [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1381                         [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1382                 };
1383                 int type = nla_type(a);
1384 
1385                 if (type > OVS_NAT_ATTR_MAX) {
1386                         OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1387                                   type, OVS_NAT_ATTR_MAX);
1388                         return -EINVAL;
1389                 }
1390 
1391                 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1392                         OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1393                                   type, nla_len(a),
1394                                   ovs_nat_attr_lens[type][ip_vers]);
1395                         return -EINVAL;
1396                 }
1397 
1398                 switch (type) {
1399                 case OVS_NAT_ATTR_SRC:
1400                 case OVS_NAT_ATTR_DST:
1401                         if (info->nat) {
1402                                 OVS_NLERR(log, "Only one type of NAT may be specified");
1403                                 return -ERANGE;
1404                         }
1405                         info->nat |= OVS_CT_NAT;
1406                         info->nat |= ((type == OVS_NAT_ATTR_SRC)
1407                                         ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1408                         break;
1409 
1410                 case OVS_NAT_ATTR_IP_MIN:
1411                         nla_memcpy(&info->range.min_addr, a,
1412                                    sizeof(info->range.min_addr));
1413                         info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1414                         break;
1415 
1416                 case OVS_NAT_ATTR_IP_MAX:
1417                         have_ip_max = true;
1418                         nla_memcpy(&info->range.max_addr, a,
1419                                    sizeof(info->range.max_addr));
1420                         info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1421                         break;
1422 
1423                 case OVS_NAT_ATTR_PROTO_MIN:
1424                         info->range.min_proto.all = htons(nla_get_u16(a));
1425                         info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1426                         break;
1427 
1428                 case OVS_NAT_ATTR_PROTO_MAX:
1429                         have_proto_max = true;
1430                         info->range.max_proto.all = htons(nla_get_u16(a));
1431                         info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1432                         break;
1433 
1434                 case OVS_NAT_ATTR_PERSISTENT:
1435                         info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1436                         break;
1437 
1438                 case OVS_NAT_ATTR_PROTO_HASH:
1439                         info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1440                         break;
1441 
1442                 case OVS_NAT_ATTR_PROTO_RANDOM:
1443                         info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1444                         break;
1445 
1446                 default:
1447                         OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1448                         return -EINVAL;
1449                 }
1450         }
1451 
1452         if (rem > 0) {
1453                 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1454                 return -EINVAL;
1455         }
1456         if (!info->nat) {
1457                 /* Do not allow flags if no type is given. */
1458                 if (info->range.flags) {
1459                         OVS_NLERR(log,
1460                                   "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1461                                   );
1462                         return -EINVAL;
1463                 }
1464                 info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1465         } else if (!info->commit) {
1466                 OVS_NLERR(log,
1467                           "NAT attributes may be specified only when CT COMMIT flag is also specified."
1468                           );
1469                 return -EINVAL;
1470         }
1471         /* Allow missing IP_MAX. */
1472         if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1473                 memcpy(&info->range.max_addr, &info->range.min_addr,
1474                        sizeof(info->range.max_addr));
1475         }
1476         /* Allow missing PROTO_MAX. */
1477         if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1478             !have_proto_max) {
1479                 info->range.max_proto.all = info->range.min_proto.all;
1480         }
1481         return 0;
1482 }
1483 #endif
1484 
1485 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1486         [OVS_CT_ATTR_COMMIT]    = { .minlen = 0, .maxlen = 0 },
1487         [OVS_CT_ATTR_FORCE_COMMIT]      = { .minlen = 0, .maxlen = 0 },
1488         [OVS_CT_ATTR_ZONE]      = { .minlen = sizeof(u16),
1489                                     .maxlen = sizeof(u16) },
1490         [OVS_CT_ATTR_MARK]      = { .minlen = sizeof(struct md_mark),
1491                                     .maxlen = sizeof(struct md_mark) },
1492         [OVS_CT_ATTR_LABELS]    = { .minlen = sizeof(struct md_labels),
1493                                     .maxlen = sizeof(struct md_labels) },
1494         [OVS_CT_ATTR_HELPER]    = { .minlen = 1,
1495                                     .maxlen = NF_CT_HELPER_NAME_LEN },
1496 #if IS_ENABLED(CONFIG_NF_NAT)
1497         /* NAT length is checked when parsing the nested attributes. */
1498         [OVS_CT_ATTR_NAT]       = { .minlen = 0, .maxlen = INT_MAX },
1499 #endif
1500         [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1501                                     .maxlen = sizeof(u32) },
1502         [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1503                                   .maxlen = CTNL_TIMEOUT_NAME_MAX },
1504 };
1505 
1506 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1507                     const char **helper, bool log)
1508 {
1509         struct nlattr *a;
1510         int rem;
1511 
1512         nla_for_each_nested(a, attr, rem) {
1513                 int type = nla_type(a);
1514                 int maxlen;
1515                 int minlen;
1516 
1517                 if (type > OVS_CT_ATTR_MAX) {
1518                         OVS_NLERR(log,
1519                                   "Unknown conntrack attr (type=%d, max=%d)",
1520                                   type, OVS_CT_ATTR_MAX);
1521                         return -EINVAL;
1522                 }
1523 
1524                 maxlen = ovs_ct_attr_lens[type].maxlen;
1525                 minlen = ovs_ct_attr_lens[type].minlen;
1526                 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1527                         OVS_NLERR(log,
1528                                   "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1529                                   type, nla_len(a), maxlen);
1530                         return -EINVAL;
1531                 }
1532 
1533                 switch (type) {
1534                 case OVS_CT_ATTR_FORCE_COMMIT:
1535                         info->force = true;
1536                         /* fall through. */
1537                 case OVS_CT_ATTR_COMMIT:
1538                         info->commit = true;
1539                         break;
1540 #ifdef CONFIG_NF_CONNTRACK_ZONES
1541                 case OVS_CT_ATTR_ZONE:
1542                         info->zone.id = nla_get_u16(a);
1543                         break;
1544 #endif
1545 #ifdef CONFIG_NF_CONNTRACK_MARK
1546                 case OVS_CT_ATTR_MARK: {
1547                         struct md_mark *mark = nla_data(a);
1548 
1549                         if (!mark->mask) {
1550                                 OVS_NLERR(log, "ct_mark mask cannot be 0");
1551                                 return -EINVAL;
1552                         }
1553                         info->mark = *mark;
1554                         break;
1555                 }
1556 #endif
1557 #ifdef CONFIG_NF_CONNTRACK_LABELS
1558                 case OVS_CT_ATTR_LABELS: {
1559                         struct md_labels *labels = nla_data(a);
1560 
1561                         if (!labels_nonzero(&labels->mask)) {
1562                                 OVS_NLERR(log, "ct_labels mask cannot be 0");
1563                                 return -EINVAL;
1564                         }
1565                         info->labels = *labels;
1566                         break;
1567                 }
1568 #endif
1569                 case OVS_CT_ATTR_HELPER:
1570                         *helper = nla_data(a);
1571                         if (!memchr(*helper, '\0', nla_len(a))) {
1572                                 OVS_NLERR(log, "Invalid conntrack helper");
1573                                 return -EINVAL;
1574                         }
1575                         break;
1576 #if IS_ENABLED(CONFIG_NF_NAT)
1577                 case OVS_CT_ATTR_NAT: {
1578                         int err = parse_nat(a, info, log);
1579 
1580                         if (err)
1581                                 return err;
1582                         break;
1583                 }
1584 #endif
1585                 case OVS_CT_ATTR_EVENTMASK:
1586                         info->have_eventmask = true;
1587                         info->eventmask = nla_get_u32(a);
1588                         break;
1589 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1590                 case OVS_CT_ATTR_TIMEOUT:
1591                         memcpy(info->timeout, nla_data(a), nla_len(a));
1592                         if (!memchr(info->timeout, '\0', nla_len(a))) {
1593                                 OVS_NLERR(log, "Invalid conntrack timeout");
1594                                 return -EINVAL;
1595                         }
1596                         break;
1597 #endif
1598 
1599                 default:
1600                         OVS_NLERR(log, "Unknown conntrack attr (%d)",
1601                                   type);
1602                         return -EINVAL;
1603                 }
1604         }
1605 
1606 #ifdef CONFIG_NF_CONNTRACK_MARK
1607         if (!info->commit && info->mark.mask) {
1608                 OVS_NLERR(log,
1609                           "Setting conntrack mark requires 'commit' flag.");
1610                 return -EINVAL;
1611         }
1612 #endif
1613 #ifdef CONFIG_NF_CONNTRACK_LABELS
1614         if (!info->commit && labels_nonzero(&info->labels.mask)) {
1615                 OVS_NLERR(log,
1616                           "Setting conntrack labels requires 'commit' flag.");
1617                 return -EINVAL;
1618         }
1619 #endif
1620         if (rem > 0) {
1621                 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1622                 return -EINVAL;
1623         }
1624 
1625         return 0;
1626 }
1627 
1628 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1629 {
1630         if (attr == OVS_KEY_ATTR_CT_STATE)
1631                 return true;
1632         if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1633             attr == OVS_KEY_ATTR_CT_ZONE)
1634                 return true;
1635         if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1636             attr == OVS_KEY_ATTR_CT_MARK)
1637                 return true;
1638         if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1639             attr == OVS_KEY_ATTR_CT_LABELS) {
1640                 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1641 
1642                 return ovs_net->xt_label;
1643         }
1644 
1645         return false;
1646 }
1647 
1648 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1649                        const struct sw_flow_key *key,
1650                        struct sw_flow_actions **sfa,  bool log)
1651 {
1652         struct ovs_conntrack_info ct_info;
1653         const char *helper = NULL;
1654         u16 family;
1655         int err;
1656 
1657         family = key_to_nfproto(key);
1658         if (family == NFPROTO_UNSPEC) {
1659                 OVS_NLERR(log, "ct family unspecified");
1660                 return -EINVAL;
1661         }
1662 
1663         memset(&ct_info, 0, sizeof(ct_info));
1664         ct_info.family = family;
1665 
1666         nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1667                         NF_CT_DEFAULT_ZONE_DIR, 0);
1668 
1669         err = parse_ct(attr, &ct_info, &helper, log);
1670         if (err)
1671                 return err;
1672 
1673         /* Set up template for tracking connections in specific zones. */
1674         ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1675         if (!ct_info.ct) {
1676                 OVS_NLERR(log, "Failed to allocate conntrack template");
1677                 return -ENOMEM;
1678         }
1679 
1680         if (ct_info.timeout[0]) {
1681                 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1682                                       ct_info.timeout))
1683                         pr_info_ratelimited("Failed to associated timeout "
1684                                             "policy `%s'\n", ct_info.timeout);
1685                 else
1686                         ct_info.nf_ct_timeout = rcu_dereference(
1687                                 nf_ct_timeout_find(ct_info.ct)->timeout);
1688 
1689         }
1690 
1691         if (helper) {
1692                 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1693                 if (err)
1694                         goto err_free_ct;
1695         }
1696 
1697         err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1698                                  sizeof(ct_info), log);
1699         if (err)
1700                 goto err_free_ct;
1701 
1702         __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1703         nf_conntrack_get(&ct_info.ct->ct_general);
1704         return 0;
1705 err_free_ct:
1706         __ovs_ct_free_action(&ct_info);
1707         return err;
1708 }
1709 
1710 #if IS_ENABLED(CONFIG_NF_NAT)
1711 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1712                                struct sk_buff *skb)
1713 {
1714         struct nlattr *start;
1715 
1716         start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1717         if (!start)
1718                 return false;
1719 
1720         if (info->nat & OVS_CT_SRC_NAT) {
1721                 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1722                         return false;
1723         } else if (info->nat & OVS_CT_DST_NAT) {
1724                 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1725                         return false;
1726         } else {
1727                 goto out;
1728         }
1729 
1730         if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1731                 if (IS_ENABLED(CONFIG_NF_NAT) &&
1732                     info->family == NFPROTO_IPV4) {
1733                         if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1734                                             info->range.min_addr.ip) ||
1735                             (info->range.max_addr.ip
1736                              != info->range.min_addr.ip &&
1737                              (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1738                                               info->range.max_addr.ip))))
1739                                 return false;
1740                 } else if (IS_ENABLED(CONFIG_IPV6) &&
1741                            info->family == NFPROTO_IPV6) {
1742                         if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1743                                              &info->range.min_addr.in6) ||
1744                             (memcmp(&info->range.max_addr.in6,
1745                                     &info->range.min_addr.in6,
1746                                     sizeof(info->range.max_addr.in6)) &&
1747                              (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1748                                                &info->range.max_addr.in6))))
1749                                 return false;
1750                 } else {
1751                         return false;
1752                 }
1753         }
1754         if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1755             (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1756                          ntohs(info->range.min_proto.all)) ||
1757              (info->range.max_proto.all != info->range.min_proto.all &&
1758               nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1759                           ntohs(info->range.max_proto.all)))))
1760                 return false;
1761 
1762         if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1763             nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1764                 return false;
1765         if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1766             nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1767                 return false;
1768         if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1769             nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1770                 return false;
1771 out:
1772         nla_nest_end(skb, start);
1773 
1774         return true;
1775 }
1776 #endif
1777 
1778 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1779                           struct sk_buff *skb)
1780 {
1781         struct nlattr *start;
1782 
1783         start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1784         if (!start)
1785                 return -EMSGSIZE;
1786 
1787         if (ct_info->commit && nla_put_flag(skb, ct_info->force
1788                                             ? OVS_CT_ATTR_FORCE_COMMIT
1789                                             : OVS_CT_ATTR_COMMIT))
1790                 return -EMSGSIZE;
1791         if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1792             nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1793                 return -EMSGSIZE;
1794         if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1795             nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1796                     &ct_info->mark))
1797                 return -EMSGSIZE;
1798         if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1799             labels_nonzero(&ct_info->labels.mask) &&
1800             nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1801                     &ct_info->labels))
1802                 return -EMSGSIZE;
1803         if (ct_info->helper) {
1804                 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1805                                    ct_info->helper->name))
1806                         return -EMSGSIZE;
1807         }
1808         if (ct_info->have_eventmask &&
1809             nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1810                 return -EMSGSIZE;
1811         if (ct_info->timeout[0]) {
1812                 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1813                         return -EMSGSIZE;
1814         }
1815 
1816 #if IS_ENABLED(CONFIG_NF_NAT)
1817         if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1818                 return -EMSGSIZE;
1819 #endif
1820         nla_nest_end(skb, start);
1821 
1822         return 0;
1823 }
1824 
1825 void ovs_ct_free_action(const struct nlattr *a)
1826 {
1827         struct ovs_conntrack_info *ct_info = nla_data(a);
1828 
1829         __ovs_ct_free_action(ct_info);
1830 }
1831 
1832 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1833 {
1834         if (ct_info->helper) {
1835 #if IS_ENABLED(CONFIG_NF_NAT)
1836                 if (ct_info->nat)
1837                         nf_nat_helper_put(ct_info->helper);
1838 #endif
1839                 nf_conntrack_helper_put(ct_info->helper);
1840         }
1841         if (ct_info->ct) {
1842                 if (ct_info->timeout[0])
1843                         nf_ct_destroy_timeout(ct_info->ct);
1844                 nf_ct_tmpl_free(ct_info->ct);
1845         }
1846 }
1847 
1848 #if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1849 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1850 {
1851         int i, err;
1852 
1853         ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1854                                          GFP_KERNEL);
1855         if (!ovs_net->ct_limit_info)
1856                 return -ENOMEM;
1857 
1858         ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1859         ovs_net->ct_limit_info->limits =
1860                 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1861                               GFP_KERNEL);
1862         if (!ovs_net->ct_limit_info->limits) {
1863                 kfree(ovs_net->ct_limit_info);
1864                 return -ENOMEM;
1865         }
1866 
1867         for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1868                 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1869 
1870         ovs_net->ct_limit_info->data =
1871                 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1872 
1873         if (IS_ERR(ovs_net->ct_limit_info->data)) {
1874                 err = PTR_ERR(ovs_net->ct_limit_info->data);
1875                 kfree(ovs_net->ct_limit_info->limits);
1876                 kfree(ovs_net->ct_limit_info);
1877                 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1878                 return err;
1879         }
1880         return 0;
1881 }
1882 
1883 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1884 {
1885         const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1886         int i;
1887 
1888         nf_conncount_destroy(net, NFPROTO_INET, info->data);
1889         for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1890                 struct hlist_head *head = &info->limits[i];
1891                 struct ovs_ct_limit *ct_limit;
1892 
1893                 hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1894                                          lockdep_ovsl_is_held())
1895                         kfree_rcu(ct_limit, rcu);
1896         }
1897         kfree(ovs_net->ct_limit_info->limits);
1898         kfree(ovs_net->ct_limit_info);
1899 }
1900 
1901 static struct sk_buff *
1902 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1903                              struct ovs_header **ovs_reply_header)
1904 {
1905         struct ovs_header *ovs_header = info->userhdr;
1906         struct sk_buff *skb;
1907 
1908         skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1909         if (!skb)
1910                 return ERR_PTR(-ENOMEM);
1911 
1912         *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1913                                         info->snd_seq,
1914                                         &dp_ct_limit_genl_family, 0, cmd);
1915 
1916         if (!*ovs_reply_header) {
1917                 nlmsg_free(skb);
1918                 return ERR_PTR(-EMSGSIZE);
1919         }
1920         (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1921 
1922         return skb;
1923 }
1924 
1925 static bool check_zone_id(int zone_id, u16 *pzone)
1926 {
1927         if (zone_id >= 0 && zone_id <= 65535) {
1928                 *pzone = (u16)zone_id;
1929                 return true;
1930         }
1931         return false;
1932 }
1933 
1934 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1935                                        struct ovs_ct_limit_info *info)
1936 {
1937         struct ovs_zone_limit *zone_limit;
1938         int rem;
1939         u16 zone;
1940 
1941         rem = NLA_ALIGN(nla_len(nla_zone_limit));
1942         zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1943 
1944         while (rem >= sizeof(*zone_limit)) {
1945                 if (unlikely(zone_limit->zone_id ==
1946                                 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1947                         ovs_lock();
1948                         info->default_limit = zone_limit->limit;
1949                         ovs_unlock();
1950                 } else if (unlikely(!check_zone_id(
1951                                 zone_limit->zone_id, &zone))) {
1952                         OVS_NLERR(true, "zone id is out of range");
1953                 } else {
1954                         struct ovs_ct_limit *ct_limit;
1955 
1956                         ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1957                         if (!ct_limit)
1958                                 return -ENOMEM;
1959 
1960                         ct_limit->zone = zone;
1961                         ct_limit->limit = zone_limit->limit;
1962 
1963                         ovs_lock();
1964                         ct_limit_set(info, ct_limit);
1965                         ovs_unlock();
1966                 }
1967                 rem -= NLA_ALIGN(sizeof(*zone_limit));
1968                 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1969                                 NLA_ALIGN(sizeof(*zone_limit)));
1970         }
1971 
1972         if (rem)
1973                 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1974 
1975         return 0;
1976 }
1977 
1978 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1979                                        struct ovs_ct_limit_info *info)
1980 {
1981         struct ovs_zone_limit *zone_limit;
1982         int rem;
1983         u16 zone;
1984 
1985         rem = NLA_ALIGN(nla_len(nla_zone_limit));
1986         zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1987 
1988         while (rem >= sizeof(*zone_limit)) {
1989                 if (unlikely(zone_limit->zone_id ==
1990                                 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1991                         ovs_lock();
1992                         info->default_limit = OVS_CT_LIMIT_DEFAULT;
1993                         ovs_unlock();
1994                 } else if (unlikely(!check_zone_id(
1995                                 zone_limit->zone_id, &zone))) {
1996                         OVS_NLERR(true, "zone id is out of range");
1997                 } else {
1998                         ovs_lock();
1999                         ct_limit_del(info, zone);
2000                         ovs_unlock();
2001                 }
2002                 rem -= NLA_ALIGN(sizeof(*zone_limit));
2003                 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2004                                 NLA_ALIGN(sizeof(*zone_limit)));
2005         }
2006 
2007         if (rem)
2008                 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2009 
2010         return 0;
2011 }
2012 
2013 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2014                                           struct sk_buff *reply)
2015 {
2016         struct ovs_zone_limit zone_limit;
2017         int err;
2018 
2019         zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2020         zone_limit.limit = info->default_limit;
2021         err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2022         if (err)
2023                 return err;
2024 
2025         return 0;
2026 }
2027 
2028 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2029                                          struct nf_conncount_data *data,
2030                                          u16 zone_id, u32 limit,
2031                                          struct sk_buff *reply)
2032 {
2033         struct nf_conntrack_zone ct_zone;
2034         struct ovs_zone_limit zone_limit;
2035         u32 conncount_key = zone_id;
2036 
2037         zone_limit.zone_id = zone_id;
2038         zone_limit.limit = limit;
2039         nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2040 
2041         zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2042                                               &ct_zone);
2043         return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2044 }
2045 
2046 static int ovs_ct_limit_get_zone_limit(struct net *net,
2047                                        struct nlattr *nla_zone_limit,
2048                                        struct ovs_ct_limit_info *info,
2049                                        struct sk_buff *reply)
2050 {
2051         struct ovs_zone_limit *zone_limit;
2052         int rem, err;
2053         u32 limit;
2054         u16 zone;
2055 
2056         rem = NLA_ALIGN(nla_len(nla_zone_limit));
2057         zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2058 
2059         while (rem >= sizeof(*zone_limit)) {
2060                 if (unlikely(zone_limit->zone_id ==
2061                                 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2062                         err = ovs_ct_limit_get_default_limit(info, reply);
2063                         if (err)
2064                                 return err;
2065                 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
2066                                                         &zone))) {
2067                         OVS_NLERR(true, "zone id is out of range");
2068                 } else {
2069                         rcu_read_lock();
2070                         limit = ct_limit_get(info, zone);
2071                         rcu_read_unlock();
2072 
2073                         err = __ovs_ct_limit_get_zone_limit(
2074                                 net, info->data, zone, limit, reply);
2075                         if (err)
2076                                 return err;
2077                 }
2078                 rem -= NLA_ALIGN(sizeof(*zone_limit));
2079                 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2080                                 NLA_ALIGN(sizeof(*zone_limit)));
2081         }
2082 
2083         if (rem)
2084                 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2085 
2086         return 0;
2087 }
2088 
2089 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2090                                            struct ovs_ct_limit_info *info,
2091                                            struct sk_buff *reply)
2092 {
2093         struct ovs_ct_limit *ct_limit;
2094         struct hlist_head *head;
2095         int i, err = 0;
2096 
2097         err = ovs_ct_limit_get_default_limit(info, reply);
2098         if (err)
2099                 return err;
2100 
2101         rcu_read_lock();
2102         for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2103                 head = &info->limits[i];
2104                 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2105                         err = __ovs_ct_limit_get_zone_limit(net, info->data,
2106                                 ct_limit->zone, ct_limit->limit, reply);
2107                         if (err)
2108                                 goto exit_err;
2109                 }
2110         }
2111 
2112 exit_err:
2113         rcu_read_unlock();
2114         return err;
2115 }
2116 
2117 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2118 {
2119         struct nlattr **a = info->attrs;
2120         struct sk_buff *reply;
2121         struct ovs_header *ovs_reply_header;
2122         struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2123         struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2124         int err;
2125 
2126         reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2127                                              &ovs_reply_header);
2128         if (IS_ERR(reply))
2129                 return PTR_ERR(reply);
2130 
2131         if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2132                 err = -EINVAL;
2133                 goto exit_err;
2134         }
2135 
2136         err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2137                                           ct_limit_info);
2138         if (err)
2139                 goto exit_err;
2140 
2141         static_branch_enable(&ovs_ct_limit_enabled);
2142 
2143         genlmsg_end(reply, ovs_reply_header);
2144         return genlmsg_reply(reply, info);
2145 
2146 exit_err:
2147         nlmsg_free(reply);
2148         return err;
2149 }
2150 
2151 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2152 {
2153         struct nlattr **a = info->attrs;
2154         struct sk_buff *reply;
2155         struct ovs_header *ovs_reply_header;
2156         struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2157         struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2158         int err;
2159 
2160         reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2161                                              &ovs_reply_header);
2162         if (IS_ERR(reply))
2163                 return PTR_ERR(reply);
2164 
2165         if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2166                 err = -EINVAL;
2167                 goto exit_err;
2168         }
2169 
2170         err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2171                                           ct_limit_info);
2172         if (err)
2173                 goto exit_err;
2174 
2175         genlmsg_end(reply, ovs_reply_header);
2176         return genlmsg_reply(reply, info);
2177 
2178 exit_err:
2179         nlmsg_free(reply);
2180         return err;
2181 }
2182 
2183 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2184 {
2185         struct nlattr **a = info->attrs;
2186         struct nlattr *nla_reply;
2187         struct sk_buff *reply;
2188         struct ovs_header *ovs_reply_header;
2189         struct net *net = sock_net(skb->sk);
2190         struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2191         struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2192         int err;
2193 
2194         reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2195                                              &ovs_reply_header);
2196         if (IS_ERR(reply))
2197                 return PTR_ERR(reply);
2198 
2199         nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2200         if (!nla_reply) {
2201                 err = -EMSGSIZE;
2202                 goto exit_err;
2203         }
2204 
2205         if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2206                 err = ovs_ct_limit_get_zone_limit(
2207                         net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2208                         reply);
2209                 if (err)
2210                         goto exit_err;
2211         } else {
2212                 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2213                                                       reply);
2214                 if (err)
2215                         goto exit_err;
2216         }
2217 
2218         nla_nest_end(reply, nla_reply);
2219         genlmsg_end(reply, ovs_reply_header);
2220         return genlmsg_reply(reply, info);
2221 
2222 exit_err:
2223         nlmsg_free(reply);
2224         return err;
2225 }
2226 
2227 static struct genl_ops ct_limit_genl_ops[] = {
2228         { .cmd = OVS_CT_LIMIT_CMD_SET,
2229                 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2230                 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2231                                            * privilege. */
2232                 .doit = ovs_ct_limit_cmd_set,
2233         },
2234         { .cmd = OVS_CT_LIMIT_CMD_DEL,
2235                 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2236                 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2237                                            * privilege. */
2238                 .doit = ovs_ct_limit_cmd_del,
2239         },
2240         { .cmd = OVS_CT_LIMIT_CMD_GET,
2241                 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2242                 .flags = 0,               /* OK for unprivileged users. */
2243                 .doit = ovs_ct_limit_cmd_get,
2244         },
2245 };
2246 
2247 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2248         .name = OVS_CT_LIMIT_MCGROUP,
2249 };
2250 
2251 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2252         .hdrsize = sizeof(struct ovs_header),
2253         .name = OVS_CT_LIMIT_FAMILY,
2254         .version = OVS_CT_LIMIT_VERSION,
2255         .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2256         .policy = ct_limit_policy,
2257         .netnsok = true,
2258         .parallel_ops = true,
2259         .ops = ct_limit_genl_ops,
2260         .n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2261         .mcgrps = &ovs_ct_limit_multicast_group,
2262         .n_mcgrps = 1,
2263         .module = THIS_MODULE,
2264 };
2265 #endif
2266 
2267 int ovs_ct_init(struct net *net)
2268 {
2269         unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2270         struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2271 
2272         if (nf_connlabels_get(net, n_bits - 1)) {
2273                 ovs_net->xt_label = false;
2274                 OVS_NLERR(true, "Failed to set connlabel length");
2275         } else {
2276                 ovs_net->xt_label = true;
2277         }
2278 
2279 #if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2280         return ovs_ct_limit_init(net, ovs_net);
2281 #else
2282         return 0;
2283 #endif
2284 }
2285 
2286 void ovs_ct_exit(struct net *net)
2287 {
2288         struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2289 
2290 #if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2291         ovs_ct_limit_exit(net, ovs_net);
2292 #endif
2293 
2294         if (ovs_net->xt_label)
2295                 nf_connlabels_put(net);
2296 }

/* [<][>][^][v][top][bottom][index][help] */