This source file includes following definitions.
- tls_device_free_ctx
- tls_device_gc_task
- tls_device_queue_ctx_destruction
- get_netdev_for_sock
- destroy_record
- delete_all_records
- tls_icsk_clean_acked
- tls_device_sk_destruct
- tls_device_free_resources_tx
- tls_device_resync_tx
- tls_append_frag
- tls_push_record
- tls_device_record_close
- tls_create_new_record
- tls_do_allocation
- tls_device_copy_data
- tls_push_data
- tls_device_sendmsg
- tls_device_sendpage
- tls_get_record
- tls_device_push_pending_record
- tls_device_write_space
- tls_device_resync_rx
- tls_device_rx_resync_new_rec
- tls_device_core_ctrl_rx_resync
- tls_device_reencrypt
- tls_device_decrypted
- tls_device_attach
- tls_set_device_offload
- tls_set_device_offload_rx
- tls_device_offload_cleanup_rx
- tls_device_down
- tls_dev_event
- tls_device_init
- tls_device_cleanup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41
42
43
44 static DECLARE_RWSEM(device_offload_lock);
45
46 static void tls_device_gc_task(struct work_struct *work);
47
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55 if (ctx->tx_conf == TLS_HW) {
56 kfree(tls_offload_ctx_tx(ctx));
57 kfree(ctx->tx.rec_seq);
58 kfree(ctx->tx.iv);
59 }
60
61 if (ctx->rx_conf == TLS_HW)
62 kfree(tls_offload_ctx_rx(ctx));
63
64 tls_ctx_free(NULL, ctx);
65 }
66
67 static void tls_device_gc_task(struct work_struct *work)
68 {
69 struct tls_context *ctx, *tmp;
70 unsigned long flags;
71 LIST_HEAD(gc_list);
72
73 spin_lock_irqsave(&tls_device_lock, flags);
74 list_splice_init(&tls_device_gc_list, &gc_list);
75 spin_unlock_irqrestore(&tls_device_lock, flags);
76
77 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78 struct net_device *netdev = ctx->netdev;
79
80 if (netdev && ctx->tx_conf == TLS_HW) {
81 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82 TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 }
86
87 list_del(&ctx->list);
88 tls_device_free_ctx(ctx);
89 }
90 }
91
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94 unsigned long flags;
95
96 spin_lock_irqsave(&tls_device_lock, flags);
97 list_move_tail(&ctx->list, &tls_device_gc_list);
98
99
100
101
102 schedule_work(&tls_device_gc_work);
103
104 spin_unlock_irqrestore(&tls_device_lock, flags);
105 }
106
107
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
109 {
110 struct dst_entry *dst = sk_dst_get(sk);
111 struct net_device *netdev = NULL;
112
113 if (likely(dst)) {
114 netdev = dst->dev;
115 dev_hold(netdev);
116 }
117
118 dst_release(dst);
119
120 return netdev;
121 }
122
123 static void destroy_record(struct tls_record_info *record)
124 {
125 int i;
126
127 for (i = 0; i < record->num_frags; i++)
128 __skb_frag_unref(&record->frags[i]);
129 kfree(record);
130 }
131
132 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
133 {
134 struct tls_record_info *info, *temp;
135
136 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
137 list_del(&info->list);
138 destroy_record(info);
139 }
140
141 offload_ctx->retransmit_hint = NULL;
142 }
143
144 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
145 {
146 struct tls_context *tls_ctx = tls_get_ctx(sk);
147 struct tls_record_info *info, *temp;
148 struct tls_offload_context_tx *ctx;
149 u64 deleted_records = 0;
150 unsigned long flags;
151
152 if (!tls_ctx)
153 return;
154
155 ctx = tls_offload_ctx_tx(tls_ctx);
156
157 spin_lock_irqsave(&ctx->lock, flags);
158 info = ctx->retransmit_hint;
159 if (info && !before(acked_seq, info->end_seq))
160 ctx->retransmit_hint = NULL;
161
162 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
163 if (before(acked_seq, info->end_seq))
164 break;
165 list_del(&info->list);
166
167 destroy_record(info);
168 deleted_records++;
169 }
170
171 ctx->unacked_record_sn += deleted_records;
172 spin_unlock_irqrestore(&ctx->lock, flags);
173 }
174
175
176
177
178
179 static void tls_device_sk_destruct(struct sock *sk)
180 {
181 struct tls_context *tls_ctx = tls_get_ctx(sk);
182 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
183
184 tls_ctx->sk_destruct(sk);
185
186 if (tls_ctx->tx_conf == TLS_HW) {
187 if (ctx->open_record)
188 destroy_record(ctx->open_record);
189 delete_all_records(ctx);
190 crypto_free_aead(ctx->aead_send);
191 clean_acked_data_disable(inet_csk(sk));
192 }
193
194 if (refcount_dec_and_test(&tls_ctx->refcount))
195 tls_device_queue_ctx_destruction(tls_ctx);
196 }
197
198 void tls_device_free_resources_tx(struct sock *sk)
199 {
200 struct tls_context *tls_ctx = tls_get_ctx(sk);
201
202 tls_free_partial_record(sk, tls_ctx);
203 }
204
205 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
206 u32 seq)
207 {
208 struct net_device *netdev;
209 struct sk_buff *skb;
210 int err = 0;
211 u8 *rcd_sn;
212
213 skb = tcp_write_queue_tail(sk);
214 if (skb)
215 TCP_SKB_CB(skb)->eor = 1;
216
217 rcd_sn = tls_ctx->tx.rec_seq;
218
219 down_read(&device_offload_lock);
220 netdev = tls_ctx->netdev;
221 if (netdev)
222 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
223 rcd_sn,
224 TLS_OFFLOAD_CTX_DIR_TX);
225 up_read(&device_offload_lock);
226 if (err)
227 return;
228
229 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
230 }
231
232 static void tls_append_frag(struct tls_record_info *record,
233 struct page_frag *pfrag,
234 int size)
235 {
236 skb_frag_t *frag;
237
238 frag = &record->frags[record->num_frags - 1];
239 if (skb_frag_page(frag) == pfrag->page &&
240 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
241 skb_frag_size_add(frag, size);
242 } else {
243 ++frag;
244 __skb_frag_set_page(frag, pfrag->page);
245 skb_frag_off_set(frag, pfrag->offset);
246 skb_frag_size_set(frag, size);
247 ++record->num_frags;
248 get_page(pfrag->page);
249 }
250
251 pfrag->offset += size;
252 record->len += size;
253 }
254
255 static int tls_push_record(struct sock *sk,
256 struct tls_context *ctx,
257 struct tls_offload_context_tx *offload_ctx,
258 struct tls_record_info *record,
259 int flags)
260 {
261 struct tls_prot_info *prot = &ctx->prot_info;
262 struct tcp_sock *tp = tcp_sk(sk);
263 skb_frag_t *frag;
264 int i;
265
266 record->end_seq = tp->write_seq + record->len;
267 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
268 offload_ctx->open_record = NULL;
269
270 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
271 tls_device_resync_tx(sk, ctx, tp->write_seq);
272
273 tls_advance_record_sn(sk, prot, &ctx->tx);
274
275 for (i = 0; i < record->num_frags; i++) {
276 frag = &record->frags[i];
277 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
278 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
279 skb_frag_size(frag), skb_frag_off(frag));
280 sk_mem_charge(sk, skb_frag_size(frag));
281 get_page(skb_frag_page(frag));
282 }
283 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
284
285
286 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
287 }
288
289 static int tls_device_record_close(struct sock *sk,
290 struct tls_context *ctx,
291 struct tls_record_info *record,
292 struct page_frag *pfrag,
293 unsigned char record_type)
294 {
295 struct tls_prot_info *prot = &ctx->prot_info;
296 int ret;
297
298
299
300
301
302
303
304 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
305 sk->sk_allocation))) {
306 ret = 0;
307 tls_append_frag(record, pfrag, prot->tag_size);
308 } else {
309 ret = prot->tag_size;
310 if (record->len <= prot->overhead_size)
311 return -ENOMEM;
312 }
313
314
315 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
316 record->len - prot->overhead_size,
317 record_type, prot->version);
318 return ret;
319 }
320
321 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
322 struct page_frag *pfrag,
323 size_t prepend_size)
324 {
325 struct tls_record_info *record;
326 skb_frag_t *frag;
327
328 record = kmalloc(sizeof(*record), GFP_KERNEL);
329 if (!record)
330 return -ENOMEM;
331
332 frag = &record->frags[0];
333 __skb_frag_set_page(frag, pfrag->page);
334 skb_frag_off_set(frag, pfrag->offset);
335 skb_frag_size_set(frag, prepend_size);
336
337 get_page(pfrag->page);
338 pfrag->offset += prepend_size;
339
340 record->num_frags = 1;
341 record->len = prepend_size;
342 offload_ctx->open_record = record;
343 return 0;
344 }
345
346 static int tls_do_allocation(struct sock *sk,
347 struct tls_offload_context_tx *offload_ctx,
348 struct page_frag *pfrag,
349 size_t prepend_size)
350 {
351 int ret;
352
353 if (!offload_ctx->open_record) {
354 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
355 sk->sk_allocation))) {
356 sk->sk_prot->enter_memory_pressure(sk);
357 sk_stream_moderate_sndbuf(sk);
358 return -ENOMEM;
359 }
360
361 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
362 if (ret)
363 return ret;
364
365 if (pfrag->size > pfrag->offset)
366 return 0;
367 }
368
369 if (!sk_page_frag_refill(sk, pfrag))
370 return -ENOMEM;
371
372 return 0;
373 }
374
375 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
376 {
377 size_t pre_copy, nocache;
378
379 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
380 if (pre_copy) {
381 pre_copy = min(pre_copy, bytes);
382 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
383 return -EFAULT;
384 bytes -= pre_copy;
385 addr += pre_copy;
386 }
387
388 nocache = round_down(bytes, SMP_CACHE_BYTES);
389 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
390 return -EFAULT;
391 bytes -= nocache;
392 addr += nocache;
393
394 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
395 return -EFAULT;
396
397 return 0;
398 }
399
400 static int tls_push_data(struct sock *sk,
401 struct iov_iter *msg_iter,
402 size_t size, int flags,
403 unsigned char record_type)
404 {
405 struct tls_context *tls_ctx = tls_get_ctx(sk);
406 struct tls_prot_info *prot = &tls_ctx->prot_info;
407 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
408 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
409 struct tls_record_info *record = ctx->open_record;
410 int tls_push_record_flags;
411 struct page_frag *pfrag;
412 size_t orig_size = size;
413 u32 max_open_record_len;
414 int copy, rc = 0;
415 bool done = false;
416 long timeo;
417
418 if (flags &
419 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
420 return -EOPNOTSUPP;
421
422 if (sk->sk_err)
423 return -sk->sk_err;
424
425 flags |= MSG_SENDPAGE_DECRYPTED;
426 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
427
428 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
429 if (tls_is_partially_sent_record(tls_ctx)) {
430 rc = tls_push_partial_record(sk, tls_ctx, flags);
431 if (rc < 0)
432 return rc;
433 }
434
435 pfrag = sk_page_frag(sk);
436
437
438
439
440 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
441 prot->prepend_size;
442 do {
443 rc = tls_do_allocation(sk, ctx, pfrag,
444 prot->prepend_size);
445 if (rc) {
446 rc = sk_stream_wait_memory(sk, &timeo);
447 if (!rc)
448 continue;
449
450 record = ctx->open_record;
451 if (!record)
452 break;
453 handle_error:
454 if (record_type != TLS_RECORD_TYPE_DATA) {
455
456
457
458
459 size = orig_size;
460 destroy_record(record);
461 ctx->open_record = NULL;
462 } else if (record->len > prot->prepend_size) {
463 goto last_record;
464 }
465
466 break;
467 }
468
469 record = ctx->open_record;
470 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
471 copy = min_t(size_t, copy, (max_open_record_len - record->len));
472
473 rc = tls_device_copy_data(page_address(pfrag->page) +
474 pfrag->offset, copy, msg_iter);
475 if (rc)
476 goto handle_error;
477 tls_append_frag(record, pfrag, copy);
478
479 size -= copy;
480 if (!size) {
481 last_record:
482 tls_push_record_flags = flags;
483 if (more) {
484 tls_ctx->pending_open_record_frags =
485 !!record->num_frags;
486 break;
487 }
488
489 done = true;
490 }
491
492 if (done || record->len >= max_open_record_len ||
493 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
494 rc = tls_device_record_close(sk, tls_ctx, record,
495 pfrag, record_type);
496 if (rc) {
497 if (rc > 0) {
498 size += rc;
499 } else {
500 size = orig_size;
501 destroy_record(record);
502 ctx->open_record = NULL;
503 break;
504 }
505 }
506
507 rc = tls_push_record(sk,
508 tls_ctx,
509 ctx,
510 record,
511 tls_push_record_flags);
512 if (rc < 0)
513 break;
514 }
515 } while (!done);
516
517 if (orig_size - size > 0)
518 rc = orig_size - size;
519
520 return rc;
521 }
522
523 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
524 {
525 unsigned char record_type = TLS_RECORD_TYPE_DATA;
526 struct tls_context *tls_ctx = tls_get_ctx(sk);
527 int rc;
528
529 mutex_lock(&tls_ctx->tx_lock);
530 lock_sock(sk);
531
532 if (unlikely(msg->msg_controllen)) {
533 rc = tls_proccess_cmsg(sk, msg, &record_type);
534 if (rc)
535 goto out;
536 }
537
538 rc = tls_push_data(sk, &msg->msg_iter, size,
539 msg->msg_flags, record_type);
540
541 out:
542 release_sock(sk);
543 mutex_unlock(&tls_ctx->tx_lock);
544 return rc;
545 }
546
547 int tls_device_sendpage(struct sock *sk, struct page *page,
548 int offset, size_t size, int flags)
549 {
550 struct tls_context *tls_ctx = tls_get_ctx(sk);
551 struct iov_iter msg_iter;
552 char *kaddr = kmap(page);
553 struct kvec iov;
554 int rc;
555
556 if (flags & MSG_SENDPAGE_NOTLAST)
557 flags |= MSG_MORE;
558
559 mutex_lock(&tls_ctx->tx_lock);
560 lock_sock(sk);
561
562 if (flags & MSG_OOB) {
563 rc = -EOPNOTSUPP;
564 goto out;
565 }
566
567 iov.iov_base = kaddr + offset;
568 iov.iov_len = size;
569 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
570 rc = tls_push_data(sk, &msg_iter, size,
571 flags, TLS_RECORD_TYPE_DATA);
572 kunmap(page);
573
574 out:
575 release_sock(sk);
576 mutex_unlock(&tls_ctx->tx_lock);
577 return rc;
578 }
579
580 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
581 u32 seq, u64 *p_record_sn)
582 {
583 u64 record_sn = context->hint_record_sn;
584 struct tls_record_info *info, *last;
585
586 info = context->retransmit_hint;
587 if (!info ||
588 before(seq, info->end_seq - info->len)) {
589
590
591
592 info = list_first_entry_or_null(&context->records_list,
593 struct tls_record_info, list);
594 if (!info)
595 return NULL;
596
597
598
599
600
601
602
603 if (likely(!tls_record_is_start_marker(info))) {
604
605
606
607 last = list_last_entry(&context->records_list,
608 struct tls_record_info, list);
609
610 if (!between(seq, tls_record_start_seq(info),
611 last->end_seq))
612 return NULL;
613 }
614 record_sn = context->unacked_record_sn;
615 }
616
617
618 rcu_read_lock();
619 list_for_each_entry_from_rcu(info, &context->records_list, list) {
620 if (before(seq, info->end_seq)) {
621 if (!context->retransmit_hint ||
622 after(info->end_seq,
623 context->retransmit_hint->end_seq)) {
624 context->hint_record_sn = record_sn;
625 context->retransmit_hint = info;
626 }
627 *p_record_sn = record_sn;
628 goto exit_rcu_unlock;
629 }
630 record_sn++;
631 }
632 info = NULL;
633
634 exit_rcu_unlock:
635 rcu_read_unlock();
636 return info;
637 }
638 EXPORT_SYMBOL(tls_get_record);
639
640 static int tls_device_push_pending_record(struct sock *sk, int flags)
641 {
642 struct iov_iter msg_iter;
643
644 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
645 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
646 }
647
648 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
649 {
650 if (tls_is_partially_sent_record(ctx)) {
651 gfp_t sk_allocation = sk->sk_allocation;
652
653 WARN_ON_ONCE(sk->sk_write_pending);
654
655 sk->sk_allocation = GFP_ATOMIC;
656 tls_push_partial_record(sk, ctx,
657 MSG_DONTWAIT | MSG_NOSIGNAL |
658 MSG_SENDPAGE_DECRYPTED);
659 sk->sk_allocation = sk_allocation;
660 }
661 }
662
663 static void tls_device_resync_rx(struct tls_context *tls_ctx,
664 struct sock *sk, u32 seq, u8 *rcd_sn)
665 {
666 struct net_device *netdev;
667
668 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
669 return;
670 netdev = READ_ONCE(tls_ctx->netdev);
671 if (netdev)
672 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
673 TLS_OFFLOAD_CTX_DIR_RX);
674 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
675 }
676
677 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
678 {
679 struct tls_context *tls_ctx = tls_get_ctx(sk);
680 struct tls_offload_context_rx *rx_ctx;
681 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
682 struct tls_prot_info *prot;
683 u32 is_req_pending;
684 s64 resync_req;
685 u32 req_seq;
686
687 if (tls_ctx->rx_conf != TLS_HW)
688 return;
689
690 prot = &tls_ctx->prot_info;
691 rx_ctx = tls_offload_ctx_rx(tls_ctx);
692 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
693
694 switch (rx_ctx->resync_type) {
695 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
696 resync_req = atomic64_read(&rx_ctx->resync_req);
697 req_seq = resync_req >> 32;
698 seq += TLS_HEADER_SIZE - 1;
699 is_req_pending = resync_req;
700
701 if (likely(!is_req_pending) || req_seq != seq ||
702 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
703 return;
704 break;
705 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
706 if (likely(!rx_ctx->resync_nh_do_now))
707 return;
708
709
710
711
712 if (tcp_inq(sk) > rcd_len)
713 return;
714
715 rx_ctx->resync_nh_do_now = 0;
716 seq += rcd_len;
717 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
718 break;
719 }
720
721 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
722 }
723
724 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
725 struct tls_offload_context_rx *ctx,
726 struct sock *sk, struct sk_buff *skb)
727 {
728 struct strp_msg *rxm;
729
730
731 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
732 return;
733
734 if (ctx->resync_nh_do_now)
735 return;
736
737 if (ctx->resync_nh_reset) {
738 ctx->resync_nh_reset = 0;
739 ctx->resync_nh.decrypted_failed = 1;
740 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
741 return;
742 }
743
744 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
745 return;
746
747
748 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
749 ctx->resync_nh.decrypted_tgt *= 2;
750 else
751 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
752
753 rxm = strp_msg(skb);
754
755
756 if (tcp_inq(sk) > rxm->full_len) {
757 ctx->resync_nh_do_now = 1;
758 } else {
759 struct tls_prot_info *prot = &tls_ctx->prot_info;
760 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
761
762 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
763 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
764
765 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
766 rcd_sn);
767 }
768 }
769
770 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
771 {
772 struct strp_msg *rxm = strp_msg(skb);
773 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
774 struct sk_buff *skb_iter, *unused;
775 struct scatterlist sg[1];
776 char *orig_buf, *buf;
777
778 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
779 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
780 if (!orig_buf)
781 return -ENOMEM;
782 buf = orig_buf;
783
784 nsg = skb_cow_data(skb, 0, &unused);
785 if (unlikely(nsg < 0)) {
786 err = nsg;
787 goto free_buf;
788 }
789
790 sg_init_table(sg, 1);
791 sg_set_buf(&sg[0], buf,
792 rxm->full_len + TLS_HEADER_SIZE +
793 TLS_CIPHER_AES_GCM_128_IV_SIZE);
794 err = skb_copy_bits(skb, offset, buf,
795 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
796 if (err)
797 goto free_buf;
798
799
800 err = decrypt_skb(sk, skb, sg);
801 if (err != -EBADMSG)
802 goto free_buf;
803 else
804 err = 0;
805
806 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
807
808 if (skb_pagelen(skb) > offset) {
809 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
810
811 if (skb->decrypted) {
812 err = skb_store_bits(skb, offset, buf, copy);
813 if (err)
814 goto free_buf;
815 }
816
817 offset += copy;
818 buf += copy;
819 }
820
821 pos = skb_pagelen(skb);
822 skb_walk_frags(skb, skb_iter) {
823 int frag_pos;
824
825
826
827
828
829 if (pos + skb_iter->len <= offset)
830 goto done_with_frag;
831 if (pos >= data_len + rxm->offset)
832 break;
833
834 frag_pos = offset - pos;
835 copy = min_t(int, skb_iter->len - frag_pos,
836 data_len + rxm->offset - offset);
837
838 if (skb_iter->decrypted) {
839 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
840 if (err)
841 goto free_buf;
842 }
843
844 offset += copy;
845 buf += copy;
846 done_with_frag:
847 pos += skb_iter->len;
848 }
849
850 free_buf:
851 kfree(orig_buf);
852 return err;
853 }
854
855 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
856 {
857 struct tls_context *tls_ctx = tls_get_ctx(sk);
858 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
859 int is_decrypted = skb->decrypted;
860 int is_encrypted = !is_decrypted;
861 struct sk_buff *skb_iter;
862
863
864 skb_walk_frags(skb, skb_iter) {
865 is_decrypted &= skb_iter->decrypted;
866 is_encrypted &= !skb_iter->decrypted;
867 }
868
869 ctx->sw.decrypted |= is_decrypted;
870
871
872
873
874
875 if (is_decrypted) {
876 ctx->resync_nh_reset = 1;
877 return 0;
878 }
879 if (is_encrypted) {
880 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
881 return 0;
882 }
883
884 ctx->resync_nh_reset = 1;
885 return tls_device_reencrypt(sk, skb);
886 }
887
888 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
889 struct net_device *netdev)
890 {
891 if (sk->sk_destruct != tls_device_sk_destruct) {
892 refcount_set(&ctx->refcount, 1);
893 dev_hold(netdev);
894 ctx->netdev = netdev;
895 spin_lock_irq(&tls_device_lock);
896 list_add_tail(&ctx->list, &tls_device_list);
897 spin_unlock_irq(&tls_device_lock);
898
899 ctx->sk_destruct = sk->sk_destruct;
900 sk->sk_destruct = tls_device_sk_destruct;
901 }
902 }
903
904 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
905 {
906 u16 nonce_size, tag_size, iv_size, rec_seq_size;
907 struct tls_context *tls_ctx = tls_get_ctx(sk);
908 struct tls_prot_info *prot = &tls_ctx->prot_info;
909 struct tls_record_info *start_marker_record;
910 struct tls_offload_context_tx *offload_ctx;
911 struct tls_crypto_info *crypto_info;
912 struct net_device *netdev;
913 char *iv, *rec_seq;
914 struct sk_buff *skb;
915 __be64 rcd_sn;
916 int rc;
917
918 if (!ctx)
919 return -EINVAL;
920
921 if (ctx->priv_ctx_tx)
922 return -EEXIST;
923
924 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
925 if (!start_marker_record)
926 return -ENOMEM;
927
928 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
929 if (!offload_ctx) {
930 rc = -ENOMEM;
931 goto free_marker_record;
932 }
933
934 crypto_info = &ctx->crypto_send.info;
935 if (crypto_info->version != TLS_1_2_VERSION) {
936 rc = -EOPNOTSUPP;
937 goto free_offload_ctx;
938 }
939
940 switch (crypto_info->cipher_type) {
941 case TLS_CIPHER_AES_GCM_128:
942 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
943 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
944 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
945 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
946 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
947 rec_seq =
948 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
949 break;
950 default:
951 rc = -EINVAL;
952 goto free_offload_ctx;
953 }
954
955
956 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
957 rc = -EINVAL;
958 goto free_offload_ctx;
959 }
960
961 prot->version = crypto_info->version;
962 prot->cipher_type = crypto_info->cipher_type;
963 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
964 prot->tag_size = tag_size;
965 prot->overhead_size = prot->prepend_size + prot->tag_size;
966 prot->iv_size = iv_size;
967 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
968 GFP_KERNEL);
969 if (!ctx->tx.iv) {
970 rc = -ENOMEM;
971 goto free_offload_ctx;
972 }
973
974 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
975
976 prot->rec_seq_size = rec_seq_size;
977 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
978 if (!ctx->tx.rec_seq) {
979 rc = -ENOMEM;
980 goto free_iv;
981 }
982
983 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
984 if (rc)
985 goto free_rec_seq;
986
987
988 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
989 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
990
991 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
992 start_marker_record->len = 0;
993 start_marker_record->num_frags = 0;
994
995 INIT_LIST_HEAD(&offload_ctx->records_list);
996 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
997 spin_lock_init(&offload_ctx->lock);
998 sg_init_table(offload_ctx->sg_tx_data,
999 ARRAY_SIZE(offload_ctx->sg_tx_data));
1000
1001 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1002 ctx->push_pending_record = tls_device_push_pending_record;
1003
1004
1005
1006
1007
1008 skb = tcp_write_queue_tail(sk);
1009 if (skb)
1010 TCP_SKB_CB(skb)->eor = 1;
1011
1012 netdev = get_netdev_for_sock(sk);
1013 if (!netdev) {
1014 pr_err_ratelimited("%s: netdev not found\n", __func__);
1015 rc = -EINVAL;
1016 goto disable_cad;
1017 }
1018
1019 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1020 rc = -EOPNOTSUPP;
1021 goto release_netdev;
1022 }
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032 down_read(&device_offload_lock);
1033 if (!(netdev->flags & IFF_UP)) {
1034 rc = -EINVAL;
1035 goto release_lock;
1036 }
1037
1038 ctx->priv_ctx_tx = offload_ctx;
1039 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1040 &ctx->crypto_send.info,
1041 tcp_sk(sk)->write_seq);
1042 if (rc)
1043 goto release_lock;
1044
1045 tls_device_attach(ctx, sk, netdev);
1046 up_read(&device_offload_lock);
1047
1048
1049
1050
1051
1052 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1053 dev_put(netdev);
1054
1055 return 0;
1056
1057 release_lock:
1058 up_read(&device_offload_lock);
1059 release_netdev:
1060 dev_put(netdev);
1061 disable_cad:
1062 clean_acked_data_disable(inet_csk(sk));
1063 crypto_free_aead(offload_ctx->aead_send);
1064 free_rec_seq:
1065 kfree(ctx->tx.rec_seq);
1066 free_iv:
1067 kfree(ctx->tx.iv);
1068 free_offload_ctx:
1069 kfree(offload_ctx);
1070 ctx->priv_ctx_tx = NULL;
1071 free_marker_record:
1072 kfree(start_marker_record);
1073 return rc;
1074 }
1075
1076 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1077 {
1078 struct tls_offload_context_rx *context;
1079 struct net_device *netdev;
1080 int rc = 0;
1081
1082 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1083 return -EOPNOTSUPP;
1084
1085 netdev = get_netdev_for_sock(sk);
1086 if (!netdev) {
1087 pr_err_ratelimited("%s: netdev not found\n", __func__);
1088 return -EINVAL;
1089 }
1090
1091 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1092 rc = -EOPNOTSUPP;
1093 goto release_netdev;
1094 }
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104 down_read(&device_offload_lock);
1105 if (!(netdev->flags & IFF_UP)) {
1106 rc = -EINVAL;
1107 goto release_lock;
1108 }
1109
1110 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1111 if (!context) {
1112 rc = -ENOMEM;
1113 goto release_lock;
1114 }
1115 context->resync_nh_reset = 1;
1116
1117 ctx->priv_ctx_rx = context;
1118 rc = tls_set_sw_offload(sk, ctx, 0);
1119 if (rc)
1120 goto release_ctx;
1121
1122 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1123 &ctx->crypto_recv.info,
1124 tcp_sk(sk)->copied_seq);
1125 if (rc)
1126 goto free_sw_resources;
1127
1128 tls_device_attach(ctx, sk, netdev);
1129 up_read(&device_offload_lock);
1130
1131 dev_put(netdev);
1132
1133 return 0;
1134
1135 free_sw_resources:
1136 up_read(&device_offload_lock);
1137 tls_sw_free_resources_rx(sk);
1138 down_read(&device_offload_lock);
1139 release_ctx:
1140 ctx->priv_ctx_rx = NULL;
1141 release_lock:
1142 up_read(&device_offload_lock);
1143 release_netdev:
1144 dev_put(netdev);
1145 return rc;
1146 }
1147
1148 void tls_device_offload_cleanup_rx(struct sock *sk)
1149 {
1150 struct tls_context *tls_ctx = tls_get_ctx(sk);
1151 struct net_device *netdev;
1152
1153 down_read(&device_offload_lock);
1154 netdev = tls_ctx->netdev;
1155 if (!netdev)
1156 goto out;
1157
1158 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1159 TLS_OFFLOAD_CTX_DIR_RX);
1160
1161 if (tls_ctx->tx_conf != TLS_HW) {
1162 dev_put(netdev);
1163 tls_ctx->netdev = NULL;
1164 }
1165 out:
1166 up_read(&device_offload_lock);
1167 tls_sw_release_resources_rx(sk);
1168 }
1169
1170 static int tls_device_down(struct net_device *netdev)
1171 {
1172 struct tls_context *ctx, *tmp;
1173 unsigned long flags;
1174 LIST_HEAD(list);
1175
1176
1177 down_write(&device_offload_lock);
1178
1179 spin_lock_irqsave(&tls_device_lock, flags);
1180 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1181 if (ctx->netdev != netdev ||
1182 !refcount_inc_not_zero(&ctx->refcount))
1183 continue;
1184
1185 list_move(&ctx->list, &list);
1186 }
1187 spin_unlock_irqrestore(&tls_device_lock, flags);
1188
1189 list_for_each_entry_safe(ctx, tmp, &list, list) {
1190 if (ctx->tx_conf == TLS_HW)
1191 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1192 TLS_OFFLOAD_CTX_DIR_TX);
1193 if (ctx->rx_conf == TLS_HW)
1194 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1195 TLS_OFFLOAD_CTX_DIR_RX);
1196 WRITE_ONCE(ctx->netdev, NULL);
1197 smp_mb__before_atomic();
1198 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1199 usleep_range(10, 200);
1200 dev_put(netdev);
1201 list_del_init(&ctx->list);
1202
1203 if (refcount_dec_and_test(&ctx->refcount))
1204 tls_device_free_ctx(ctx);
1205 }
1206
1207 up_write(&device_offload_lock);
1208
1209 flush_work(&tls_device_gc_work);
1210
1211 return NOTIFY_DONE;
1212 }
1213
1214 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1215 void *ptr)
1216 {
1217 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1218
1219 if (!dev->tlsdev_ops &&
1220 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1221 return NOTIFY_DONE;
1222
1223 switch (event) {
1224 case NETDEV_REGISTER:
1225 case NETDEV_FEAT_CHANGE:
1226 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1227 !dev->tlsdev_ops->tls_dev_resync)
1228 return NOTIFY_BAD;
1229
1230 if (dev->tlsdev_ops &&
1231 dev->tlsdev_ops->tls_dev_add &&
1232 dev->tlsdev_ops->tls_dev_del)
1233 return NOTIFY_DONE;
1234 else
1235 return NOTIFY_BAD;
1236 case NETDEV_DOWN:
1237 return tls_device_down(dev);
1238 }
1239 return NOTIFY_DONE;
1240 }
1241
1242 static struct notifier_block tls_dev_notifier = {
1243 .notifier_call = tls_dev_event,
1244 };
1245
1246 void __init tls_device_init(void)
1247 {
1248 register_netdevice_notifier(&tls_dev_notifier);
1249 }
1250
1251 void __exit tls_device_cleanup(void)
1252 {
1253 unregister_netdevice_notifier(&tls_dev_notifier);
1254 flush_work(&tls_device_gc_work);
1255 clean_acked_data_flush();
1256 }