root/net/tls/tls_device.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. tls_device_free_ctx
  2. tls_device_gc_task
  3. tls_device_queue_ctx_destruction
  4. get_netdev_for_sock
  5. destroy_record
  6. delete_all_records
  7. tls_icsk_clean_acked
  8. tls_device_sk_destruct
  9. tls_device_free_resources_tx
  10. tls_device_resync_tx
  11. tls_append_frag
  12. tls_push_record
  13. tls_device_record_close
  14. tls_create_new_record
  15. tls_do_allocation
  16. tls_device_copy_data
  17. tls_push_data
  18. tls_device_sendmsg
  19. tls_device_sendpage
  20. tls_get_record
  21. tls_device_push_pending_record
  22. tls_device_write_space
  23. tls_device_resync_rx
  24. tls_device_rx_resync_new_rec
  25. tls_device_core_ctrl_rx_resync
  26. tls_device_reencrypt
  27. tls_device_decrypted
  28. tls_device_attach
  29. tls_set_device_offload
  30. tls_set_device_offload_rx
  31. tls_device_offload_cleanup_rx
  32. tls_device_down
  33. tls_dev_event
  34. tls_device_init
  35. tls_device_cleanup

   1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
   2  *
   3  * This software is available to you under a choice of one of two
   4  * licenses.  You may choose to be licensed under the terms of the GNU
   5  * General Public License (GPL) Version 2, available from the file
   6  * COPYING in the main directory of this source tree, or the
   7  * OpenIB.org BSD license below:
   8  *
   9  *     Redistribution and use in source and binary forms, with or
  10  *     without modification, are permitted provided that the following
  11  *     conditions are met:
  12  *
  13  *      - Redistributions of source code must retain the above
  14  *        copyright notice, this list of conditions and the following
  15  *        disclaimer.
  16  *
  17  *      - Redistributions in binary form must reproduce the above
  18  *        copyright notice, this list of conditions and the following
  19  *        disclaimer in the documentation and/or other materials
  20  *        provided with the distribution.
  21  *
  22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29  * SOFTWARE.
  30  */
  31 
  32 #include <crypto/aead.h>
  33 #include <linux/highmem.h>
  34 #include <linux/module.h>
  35 #include <linux/netdevice.h>
  36 #include <net/dst.h>
  37 #include <net/inet_connection_sock.h>
  38 #include <net/tcp.h>
  39 #include <net/tls.h>
  40 
  41 /* device_offload_lock is used to synchronize tls_dev_add
  42  * against NETDEV_DOWN notifications.
  43  */
  44 static DECLARE_RWSEM(device_offload_lock);
  45 
  46 static void tls_device_gc_task(struct work_struct *work);
  47 
  48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
  49 static LIST_HEAD(tls_device_gc_list);
  50 static LIST_HEAD(tls_device_list);
  51 static DEFINE_SPINLOCK(tls_device_lock);
  52 
  53 static void tls_device_free_ctx(struct tls_context *ctx)
  54 {
  55         if (ctx->tx_conf == TLS_HW) {
  56                 kfree(tls_offload_ctx_tx(ctx));
  57                 kfree(ctx->tx.rec_seq);
  58                 kfree(ctx->tx.iv);
  59         }
  60 
  61         if (ctx->rx_conf == TLS_HW)
  62                 kfree(tls_offload_ctx_rx(ctx));
  63 
  64         tls_ctx_free(NULL, ctx);
  65 }
  66 
  67 static void tls_device_gc_task(struct work_struct *work)
  68 {
  69         struct tls_context *ctx, *tmp;
  70         unsigned long flags;
  71         LIST_HEAD(gc_list);
  72 
  73         spin_lock_irqsave(&tls_device_lock, flags);
  74         list_splice_init(&tls_device_gc_list, &gc_list);
  75         spin_unlock_irqrestore(&tls_device_lock, flags);
  76 
  77         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
  78                 struct net_device *netdev = ctx->netdev;
  79 
  80                 if (netdev && ctx->tx_conf == TLS_HW) {
  81                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  82                                                         TLS_OFFLOAD_CTX_DIR_TX);
  83                         dev_put(netdev);
  84                         ctx->netdev = NULL;
  85                 }
  86 
  87                 list_del(&ctx->list);
  88                 tls_device_free_ctx(ctx);
  89         }
  90 }
  91 
  92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
  93 {
  94         unsigned long flags;
  95 
  96         spin_lock_irqsave(&tls_device_lock, flags);
  97         list_move_tail(&ctx->list, &tls_device_gc_list);
  98 
  99         /* schedule_work inside the spinlock
 100          * to make sure tls_device_down waits for that work.
 101          */
 102         schedule_work(&tls_device_gc_work);
 103 
 104         spin_unlock_irqrestore(&tls_device_lock, flags);
 105 }
 106 
 107 /* We assume that the socket is already connected */
 108 static struct net_device *get_netdev_for_sock(struct sock *sk)
 109 {
 110         struct dst_entry *dst = sk_dst_get(sk);
 111         struct net_device *netdev = NULL;
 112 
 113         if (likely(dst)) {
 114                 netdev = dst->dev;
 115                 dev_hold(netdev);
 116         }
 117 
 118         dst_release(dst);
 119 
 120         return netdev;
 121 }
 122 
 123 static void destroy_record(struct tls_record_info *record)
 124 {
 125         int i;
 126 
 127         for (i = 0; i < record->num_frags; i++)
 128                 __skb_frag_unref(&record->frags[i]);
 129         kfree(record);
 130 }
 131 
 132 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
 133 {
 134         struct tls_record_info *info, *temp;
 135 
 136         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
 137                 list_del(&info->list);
 138                 destroy_record(info);
 139         }
 140 
 141         offload_ctx->retransmit_hint = NULL;
 142 }
 143 
 144 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
 145 {
 146         struct tls_context *tls_ctx = tls_get_ctx(sk);
 147         struct tls_record_info *info, *temp;
 148         struct tls_offload_context_tx *ctx;
 149         u64 deleted_records = 0;
 150         unsigned long flags;
 151 
 152         if (!tls_ctx)
 153                 return;
 154 
 155         ctx = tls_offload_ctx_tx(tls_ctx);
 156 
 157         spin_lock_irqsave(&ctx->lock, flags);
 158         info = ctx->retransmit_hint;
 159         if (info && !before(acked_seq, info->end_seq))
 160                 ctx->retransmit_hint = NULL;
 161 
 162         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
 163                 if (before(acked_seq, info->end_seq))
 164                         break;
 165                 list_del(&info->list);
 166 
 167                 destroy_record(info);
 168                 deleted_records++;
 169         }
 170 
 171         ctx->unacked_record_sn += deleted_records;
 172         spin_unlock_irqrestore(&ctx->lock, flags);
 173 }
 174 
 175 /* At this point, there should be no references on this
 176  * socket and no in-flight SKBs associated with this
 177  * socket, so it is safe to free all the resources.
 178  */
 179 static void tls_device_sk_destruct(struct sock *sk)
 180 {
 181         struct tls_context *tls_ctx = tls_get_ctx(sk);
 182         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 183 
 184         tls_ctx->sk_destruct(sk);
 185 
 186         if (tls_ctx->tx_conf == TLS_HW) {
 187                 if (ctx->open_record)
 188                         destroy_record(ctx->open_record);
 189                 delete_all_records(ctx);
 190                 crypto_free_aead(ctx->aead_send);
 191                 clean_acked_data_disable(inet_csk(sk));
 192         }
 193 
 194         if (refcount_dec_and_test(&tls_ctx->refcount))
 195                 tls_device_queue_ctx_destruction(tls_ctx);
 196 }
 197 
 198 void tls_device_free_resources_tx(struct sock *sk)
 199 {
 200         struct tls_context *tls_ctx = tls_get_ctx(sk);
 201 
 202         tls_free_partial_record(sk, tls_ctx);
 203 }
 204 
 205 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
 206                                  u32 seq)
 207 {
 208         struct net_device *netdev;
 209         struct sk_buff *skb;
 210         int err = 0;
 211         u8 *rcd_sn;
 212 
 213         skb = tcp_write_queue_tail(sk);
 214         if (skb)
 215                 TCP_SKB_CB(skb)->eor = 1;
 216 
 217         rcd_sn = tls_ctx->tx.rec_seq;
 218 
 219         down_read(&device_offload_lock);
 220         netdev = tls_ctx->netdev;
 221         if (netdev)
 222                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
 223                                                          rcd_sn,
 224                                                          TLS_OFFLOAD_CTX_DIR_TX);
 225         up_read(&device_offload_lock);
 226         if (err)
 227                 return;
 228 
 229         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 230 }
 231 
 232 static void tls_append_frag(struct tls_record_info *record,
 233                             struct page_frag *pfrag,
 234                             int size)
 235 {
 236         skb_frag_t *frag;
 237 
 238         frag = &record->frags[record->num_frags - 1];
 239         if (skb_frag_page(frag) == pfrag->page &&
 240             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
 241                 skb_frag_size_add(frag, size);
 242         } else {
 243                 ++frag;
 244                 __skb_frag_set_page(frag, pfrag->page);
 245                 skb_frag_off_set(frag, pfrag->offset);
 246                 skb_frag_size_set(frag, size);
 247                 ++record->num_frags;
 248                 get_page(pfrag->page);
 249         }
 250 
 251         pfrag->offset += size;
 252         record->len += size;
 253 }
 254 
 255 static int tls_push_record(struct sock *sk,
 256                            struct tls_context *ctx,
 257                            struct tls_offload_context_tx *offload_ctx,
 258                            struct tls_record_info *record,
 259                            int flags)
 260 {
 261         struct tls_prot_info *prot = &ctx->prot_info;
 262         struct tcp_sock *tp = tcp_sk(sk);
 263         skb_frag_t *frag;
 264         int i;
 265 
 266         record->end_seq = tp->write_seq + record->len;
 267         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
 268         offload_ctx->open_record = NULL;
 269 
 270         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
 271                 tls_device_resync_tx(sk, ctx, tp->write_seq);
 272 
 273         tls_advance_record_sn(sk, prot, &ctx->tx);
 274 
 275         for (i = 0; i < record->num_frags; i++) {
 276                 frag = &record->frags[i];
 277                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
 278                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
 279                             skb_frag_size(frag), skb_frag_off(frag));
 280                 sk_mem_charge(sk, skb_frag_size(frag));
 281                 get_page(skb_frag_page(frag));
 282         }
 283         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
 284 
 285         /* all ready, send */
 286         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
 287 }
 288 
 289 static int tls_device_record_close(struct sock *sk,
 290                                    struct tls_context *ctx,
 291                                    struct tls_record_info *record,
 292                                    struct page_frag *pfrag,
 293                                    unsigned char record_type)
 294 {
 295         struct tls_prot_info *prot = &ctx->prot_info;
 296         int ret;
 297 
 298         /* append tag
 299          * device will fill in the tag, we just need to append a placeholder
 300          * use socket memory to improve coalescing (re-using a single buffer
 301          * increases frag count)
 302          * if we can't allocate memory now, steal some back from data
 303          */
 304         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
 305                                         sk->sk_allocation))) {
 306                 ret = 0;
 307                 tls_append_frag(record, pfrag, prot->tag_size);
 308         } else {
 309                 ret = prot->tag_size;
 310                 if (record->len <= prot->overhead_size)
 311                         return -ENOMEM;
 312         }
 313 
 314         /* fill prepend */
 315         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
 316                          record->len - prot->overhead_size,
 317                          record_type, prot->version);
 318         return ret;
 319 }
 320 
 321 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
 322                                  struct page_frag *pfrag,
 323                                  size_t prepend_size)
 324 {
 325         struct tls_record_info *record;
 326         skb_frag_t *frag;
 327 
 328         record = kmalloc(sizeof(*record), GFP_KERNEL);
 329         if (!record)
 330                 return -ENOMEM;
 331 
 332         frag = &record->frags[0];
 333         __skb_frag_set_page(frag, pfrag->page);
 334         skb_frag_off_set(frag, pfrag->offset);
 335         skb_frag_size_set(frag, prepend_size);
 336 
 337         get_page(pfrag->page);
 338         pfrag->offset += prepend_size;
 339 
 340         record->num_frags = 1;
 341         record->len = prepend_size;
 342         offload_ctx->open_record = record;
 343         return 0;
 344 }
 345 
 346 static int tls_do_allocation(struct sock *sk,
 347                              struct tls_offload_context_tx *offload_ctx,
 348                              struct page_frag *pfrag,
 349                              size_t prepend_size)
 350 {
 351         int ret;
 352 
 353         if (!offload_ctx->open_record) {
 354                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
 355                                                    sk->sk_allocation))) {
 356                         sk->sk_prot->enter_memory_pressure(sk);
 357                         sk_stream_moderate_sndbuf(sk);
 358                         return -ENOMEM;
 359                 }
 360 
 361                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
 362                 if (ret)
 363                         return ret;
 364 
 365                 if (pfrag->size > pfrag->offset)
 366                         return 0;
 367         }
 368 
 369         if (!sk_page_frag_refill(sk, pfrag))
 370                 return -ENOMEM;
 371 
 372         return 0;
 373 }
 374 
 375 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
 376 {
 377         size_t pre_copy, nocache;
 378 
 379         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
 380         if (pre_copy) {
 381                 pre_copy = min(pre_copy, bytes);
 382                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
 383                         return -EFAULT;
 384                 bytes -= pre_copy;
 385                 addr += pre_copy;
 386         }
 387 
 388         nocache = round_down(bytes, SMP_CACHE_BYTES);
 389         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
 390                 return -EFAULT;
 391         bytes -= nocache;
 392         addr += nocache;
 393 
 394         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
 395                 return -EFAULT;
 396 
 397         return 0;
 398 }
 399 
 400 static int tls_push_data(struct sock *sk,
 401                          struct iov_iter *msg_iter,
 402                          size_t size, int flags,
 403                          unsigned char record_type)
 404 {
 405         struct tls_context *tls_ctx = tls_get_ctx(sk);
 406         struct tls_prot_info *prot = &tls_ctx->prot_info;
 407         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 408         int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
 409         struct tls_record_info *record = ctx->open_record;
 410         int tls_push_record_flags;
 411         struct page_frag *pfrag;
 412         size_t orig_size = size;
 413         u32 max_open_record_len;
 414         int copy, rc = 0;
 415         bool done = false;
 416         long timeo;
 417 
 418         if (flags &
 419             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
 420                 return -EOPNOTSUPP;
 421 
 422         if (sk->sk_err)
 423                 return -sk->sk_err;
 424 
 425         flags |= MSG_SENDPAGE_DECRYPTED;
 426         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
 427 
 428         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 429         if (tls_is_partially_sent_record(tls_ctx)) {
 430                 rc = tls_push_partial_record(sk, tls_ctx, flags);
 431                 if (rc < 0)
 432                         return rc;
 433         }
 434 
 435         pfrag = sk_page_frag(sk);
 436 
 437         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
 438          * we need to leave room for an authentication tag.
 439          */
 440         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
 441                               prot->prepend_size;
 442         do {
 443                 rc = tls_do_allocation(sk, ctx, pfrag,
 444                                        prot->prepend_size);
 445                 if (rc) {
 446                         rc = sk_stream_wait_memory(sk, &timeo);
 447                         if (!rc)
 448                                 continue;
 449 
 450                         record = ctx->open_record;
 451                         if (!record)
 452                                 break;
 453 handle_error:
 454                         if (record_type != TLS_RECORD_TYPE_DATA) {
 455                                 /* avoid sending partial
 456                                  * record with type !=
 457                                  * application_data
 458                                  */
 459                                 size = orig_size;
 460                                 destroy_record(record);
 461                                 ctx->open_record = NULL;
 462                         } else if (record->len > prot->prepend_size) {
 463                                 goto last_record;
 464                         }
 465 
 466                         break;
 467                 }
 468 
 469                 record = ctx->open_record;
 470                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
 471                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
 472 
 473                 rc = tls_device_copy_data(page_address(pfrag->page) +
 474                                           pfrag->offset, copy, msg_iter);
 475                 if (rc)
 476                         goto handle_error;
 477                 tls_append_frag(record, pfrag, copy);
 478 
 479                 size -= copy;
 480                 if (!size) {
 481 last_record:
 482                         tls_push_record_flags = flags;
 483                         if (more) {
 484                                 tls_ctx->pending_open_record_frags =
 485                                                 !!record->num_frags;
 486                                 break;
 487                         }
 488 
 489                         done = true;
 490                 }
 491 
 492                 if (done || record->len >= max_open_record_len ||
 493                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
 494                         rc = tls_device_record_close(sk, tls_ctx, record,
 495                                                      pfrag, record_type);
 496                         if (rc) {
 497                                 if (rc > 0) {
 498                                         size += rc;
 499                                 } else {
 500                                         size = orig_size;
 501                                         destroy_record(record);
 502                                         ctx->open_record = NULL;
 503                                         break;
 504                                 }
 505                         }
 506 
 507                         rc = tls_push_record(sk,
 508                                              tls_ctx,
 509                                              ctx,
 510                                              record,
 511                                              tls_push_record_flags);
 512                         if (rc < 0)
 513                                 break;
 514                 }
 515         } while (!done);
 516 
 517         if (orig_size - size > 0)
 518                 rc = orig_size - size;
 519 
 520         return rc;
 521 }
 522 
 523 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 524 {
 525         unsigned char record_type = TLS_RECORD_TYPE_DATA;
 526         struct tls_context *tls_ctx = tls_get_ctx(sk);
 527         int rc;
 528 
 529         mutex_lock(&tls_ctx->tx_lock);
 530         lock_sock(sk);
 531 
 532         if (unlikely(msg->msg_controllen)) {
 533                 rc = tls_proccess_cmsg(sk, msg, &record_type);
 534                 if (rc)
 535                         goto out;
 536         }
 537 
 538         rc = tls_push_data(sk, &msg->msg_iter, size,
 539                            msg->msg_flags, record_type);
 540 
 541 out:
 542         release_sock(sk);
 543         mutex_unlock(&tls_ctx->tx_lock);
 544         return rc;
 545 }
 546 
 547 int tls_device_sendpage(struct sock *sk, struct page *page,
 548                         int offset, size_t size, int flags)
 549 {
 550         struct tls_context *tls_ctx = tls_get_ctx(sk);
 551         struct iov_iter msg_iter;
 552         char *kaddr = kmap(page);
 553         struct kvec iov;
 554         int rc;
 555 
 556         if (flags & MSG_SENDPAGE_NOTLAST)
 557                 flags |= MSG_MORE;
 558 
 559         mutex_lock(&tls_ctx->tx_lock);
 560         lock_sock(sk);
 561 
 562         if (flags & MSG_OOB) {
 563                 rc = -EOPNOTSUPP;
 564                 goto out;
 565         }
 566 
 567         iov.iov_base = kaddr + offset;
 568         iov.iov_len = size;
 569         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
 570         rc = tls_push_data(sk, &msg_iter, size,
 571                            flags, TLS_RECORD_TYPE_DATA);
 572         kunmap(page);
 573 
 574 out:
 575         release_sock(sk);
 576         mutex_unlock(&tls_ctx->tx_lock);
 577         return rc;
 578 }
 579 
 580 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 581                                        u32 seq, u64 *p_record_sn)
 582 {
 583         u64 record_sn = context->hint_record_sn;
 584         struct tls_record_info *info, *last;
 585 
 586         info = context->retransmit_hint;
 587         if (!info ||
 588             before(seq, info->end_seq - info->len)) {
 589                 /* if retransmit_hint is irrelevant start
 590                  * from the beggining of the list
 591                  */
 592                 info = list_first_entry_or_null(&context->records_list,
 593                                                 struct tls_record_info, list);
 594                 if (!info)
 595                         return NULL;
 596                 /* send the start_marker record if seq number is before the
 597                  * tls offload start marker sequence number. This record is
 598                  * required to handle TCP packets which are before TLS offload
 599                  * started.
 600                  *  And if it's not start marker, look if this seq number
 601                  * belongs to the list.
 602                  */
 603                 if (likely(!tls_record_is_start_marker(info))) {
 604                         /* we have the first record, get the last record to see
 605                          * if this seq number belongs to the list.
 606                          */
 607                         last = list_last_entry(&context->records_list,
 608                                                struct tls_record_info, list);
 609 
 610                         if (!between(seq, tls_record_start_seq(info),
 611                                      last->end_seq))
 612                                 return NULL;
 613                 }
 614                 record_sn = context->unacked_record_sn;
 615         }
 616 
 617         /* We just need the _rcu for the READ_ONCE() */
 618         rcu_read_lock();
 619         list_for_each_entry_from_rcu(info, &context->records_list, list) {
 620                 if (before(seq, info->end_seq)) {
 621                         if (!context->retransmit_hint ||
 622                             after(info->end_seq,
 623                                   context->retransmit_hint->end_seq)) {
 624                                 context->hint_record_sn = record_sn;
 625                                 context->retransmit_hint = info;
 626                         }
 627                         *p_record_sn = record_sn;
 628                         goto exit_rcu_unlock;
 629                 }
 630                 record_sn++;
 631         }
 632         info = NULL;
 633 
 634 exit_rcu_unlock:
 635         rcu_read_unlock();
 636         return info;
 637 }
 638 EXPORT_SYMBOL(tls_get_record);
 639 
 640 static int tls_device_push_pending_record(struct sock *sk, int flags)
 641 {
 642         struct iov_iter msg_iter;
 643 
 644         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
 645         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
 646 }
 647 
 648 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
 649 {
 650         if (tls_is_partially_sent_record(ctx)) {
 651                 gfp_t sk_allocation = sk->sk_allocation;
 652 
 653                 WARN_ON_ONCE(sk->sk_write_pending);
 654 
 655                 sk->sk_allocation = GFP_ATOMIC;
 656                 tls_push_partial_record(sk, ctx,
 657                                         MSG_DONTWAIT | MSG_NOSIGNAL |
 658                                         MSG_SENDPAGE_DECRYPTED);
 659                 sk->sk_allocation = sk_allocation;
 660         }
 661 }
 662 
 663 static void tls_device_resync_rx(struct tls_context *tls_ctx,
 664                                  struct sock *sk, u32 seq, u8 *rcd_sn)
 665 {
 666         struct net_device *netdev;
 667 
 668         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
 669                 return;
 670         netdev = READ_ONCE(tls_ctx->netdev);
 671         if (netdev)
 672                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
 673                                                    TLS_OFFLOAD_CTX_DIR_RX);
 674         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
 675 }
 676 
 677 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
 678 {
 679         struct tls_context *tls_ctx = tls_get_ctx(sk);
 680         struct tls_offload_context_rx *rx_ctx;
 681         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 682         struct tls_prot_info *prot;
 683         u32 is_req_pending;
 684         s64 resync_req;
 685         u32 req_seq;
 686 
 687         if (tls_ctx->rx_conf != TLS_HW)
 688                 return;
 689 
 690         prot = &tls_ctx->prot_info;
 691         rx_ctx = tls_offload_ctx_rx(tls_ctx);
 692         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 693 
 694         switch (rx_ctx->resync_type) {
 695         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
 696                 resync_req = atomic64_read(&rx_ctx->resync_req);
 697                 req_seq = resync_req >> 32;
 698                 seq += TLS_HEADER_SIZE - 1;
 699                 is_req_pending = resync_req;
 700 
 701                 if (likely(!is_req_pending) || req_seq != seq ||
 702                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
 703                         return;
 704                 break;
 705         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
 706                 if (likely(!rx_ctx->resync_nh_do_now))
 707                         return;
 708 
 709                 /* head of next rec is already in, note that the sock_inq will
 710                  * include the currently parsed message when called from parser
 711                  */
 712                 if (tcp_inq(sk) > rcd_len)
 713                         return;
 714 
 715                 rx_ctx->resync_nh_do_now = 0;
 716                 seq += rcd_len;
 717                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 718                 break;
 719         }
 720 
 721         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
 722 }
 723 
 724 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
 725                                            struct tls_offload_context_rx *ctx,
 726                                            struct sock *sk, struct sk_buff *skb)
 727 {
 728         struct strp_msg *rxm;
 729 
 730         /* device will request resyncs by itself based on stream scan */
 731         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
 732                 return;
 733         /* already scheduled */
 734         if (ctx->resync_nh_do_now)
 735                 return;
 736         /* seen decrypted fragments since last fully-failed record */
 737         if (ctx->resync_nh_reset) {
 738                 ctx->resync_nh_reset = 0;
 739                 ctx->resync_nh.decrypted_failed = 1;
 740                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
 741                 return;
 742         }
 743 
 744         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
 745                 return;
 746 
 747         /* doing resync, bump the next target in case it fails */
 748         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
 749                 ctx->resync_nh.decrypted_tgt *= 2;
 750         else
 751                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
 752 
 753         rxm = strp_msg(skb);
 754 
 755         /* head of next rec is already in, parser will sync for us */
 756         if (tcp_inq(sk) > rxm->full_len) {
 757                 ctx->resync_nh_do_now = 1;
 758         } else {
 759                 struct tls_prot_info *prot = &tls_ctx->prot_info;
 760                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 761 
 762                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 763                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 764 
 765                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
 766                                      rcd_sn);
 767         }
 768 }
 769 
 770 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
 771 {
 772         struct strp_msg *rxm = strp_msg(skb);
 773         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
 774         struct sk_buff *skb_iter, *unused;
 775         struct scatterlist sg[1];
 776         char *orig_buf, *buf;
 777 
 778         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
 779                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
 780         if (!orig_buf)
 781                 return -ENOMEM;
 782         buf = orig_buf;
 783 
 784         nsg = skb_cow_data(skb, 0, &unused);
 785         if (unlikely(nsg < 0)) {
 786                 err = nsg;
 787                 goto free_buf;
 788         }
 789 
 790         sg_init_table(sg, 1);
 791         sg_set_buf(&sg[0], buf,
 792                    rxm->full_len + TLS_HEADER_SIZE +
 793                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
 794         err = skb_copy_bits(skb, offset, buf,
 795                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
 796         if (err)
 797                 goto free_buf;
 798 
 799         /* We are interested only in the decrypted data not the auth */
 800         err = decrypt_skb(sk, skb, sg);
 801         if (err != -EBADMSG)
 802                 goto free_buf;
 803         else
 804                 err = 0;
 805 
 806         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 807 
 808         if (skb_pagelen(skb) > offset) {
 809                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
 810 
 811                 if (skb->decrypted) {
 812                         err = skb_store_bits(skb, offset, buf, copy);
 813                         if (err)
 814                                 goto free_buf;
 815                 }
 816 
 817                 offset += copy;
 818                 buf += copy;
 819         }
 820 
 821         pos = skb_pagelen(skb);
 822         skb_walk_frags(skb, skb_iter) {
 823                 int frag_pos;
 824 
 825                 /* Practically all frags must belong to msg if reencrypt
 826                  * is needed with current strparser and coalescing logic,
 827                  * but strparser may "get optimized", so let's be safe.
 828                  */
 829                 if (pos + skb_iter->len <= offset)
 830                         goto done_with_frag;
 831                 if (pos >= data_len + rxm->offset)
 832                         break;
 833 
 834                 frag_pos = offset - pos;
 835                 copy = min_t(int, skb_iter->len - frag_pos,
 836                              data_len + rxm->offset - offset);
 837 
 838                 if (skb_iter->decrypted) {
 839                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
 840                         if (err)
 841                                 goto free_buf;
 842                 }
 843 
 844                 offset += copy;
 845                 buf += copy;
 846 done_with_frag:
 847                 pos += skb_iter->len;
 848         }
 849 
 850 free_buf:
 851         kfree(orig_buf);
 852         return err;
 853 }
 854 
 855 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
 856 {
 857         struct tls_context *tls_ctx = tls_get_ctx(sk);
 858         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
 859         int is_decrypted = skb->decrypted;
 860         int is_encrypted = !is_decrypted;
 861         struct sk_buff *skb_iter;
 862 
 863         /* Check if all the data is decrypted already */
 864         skb_walk_frags(skb, skb_iter) {
 865                 is_decrypted &= skb_iter->decrypted;
 866                 is_encrypted &= !skb_iter->decrypted;
 867         }
 868 
 869         ctx->sw.decrypted |= is_decrypted;
 870 
 871         /* Return immediately if the record is either entirely plaintext or
 872          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
 873          * record.
 874          */
 875         if (is_decrypted) {
 876                 ctx->resync_nh_reset = 1;
 877                 return 0;
 878         }
 879         if (is_encrypted) {
 880                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
 881                 return 0;
 882         }
 883 
 884         ctx->resync_nh_reset = 1;
 885         return tls_device_reencrypt(sk, skb);
 886 }
 887 
 888 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
 889                               struct net_device *netdev)
 890 {
 891         if (sk->sk_destruct != tls_device_sk_destruct) {
 892                 refcount_set(&ctx->refcount, 1);
 893                 dev_hold(netdev);
 894                 ctx->netdev = netdev;
 895                 spin_lock_irq(&tls_device_lock);
 896                 list_add_tail(&ctx->list, &tls_device_list);
 897                 spin_unlock_irq(&tls_device_lock);
 898 
 899                 ctx->sk_destruct = sk->sk_destruct;
 900                 sk->sk_destruct = tls_device_sk_destruct;
 901         }
 902 }
 903 
 904 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
 905 {
 906         u16 nonce_size, tag_size, iv_size, rec_seq_size;
 907         struct tls_context *tls_ctx = tls_get_ctx(sk);
 908         struct tls_prot_info *prot = &tls_ctx->prot_info;
 909         struct tls_record_info *start_marker_record;
 910         struct tls_offload_context_tx *offload_ctx;
 911         struct tls_crypto_info *crypto_info;
 912         struct net_device *netdev;
 913         char *iv, *rec_seq;
 914         struct sk_buff *skb;
 915         __be64 rcd_sn;
 916         int rc;
 917 
 918         if (!ctx)
 919                 return -EINVAL;
 920 
 921         if (ctx->priv_ctx_tx)
 922                 return -EEXIST;
 923 
 924         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
 925         if (!start_marker_record)
 926                 return -ENOMEM;
 927 
 928         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
 929         if (!offload_ctx) {
 930                 rc = -ENOMEM;
 931                 goto free_marker_record;
 932         }
 933 
 934         crypto_info = &ctx->crypto_send.info;
 935         if (crypto_info->version != TLS_1_2_VERSION) {
 936                 rc = -EOPNOTSUPP;
 937                 goto free_offload_ctx;
 938         }
 939 
 940         switch (crypto_info->cipher_type) {
 941         case TLS_CIPHER_AES_GCM_128:
 942                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
 943                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 944                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
 945                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
 946                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
 947                 rec_seq =
 948                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
 949                 break;
 950         default:
 951                 rc = -EINVAL;
 952                 goto free_offload_ctx;
 953         }
 954 
 955         /* Sanity-check the rec_seq_size for stack allocations */
 956         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
 957                 rc = -EINVAL;
 958                 goto free_offload_ctx;
 959         }
 960 
 961         prot->version = crypto_info->version;
 962         prot->cipher_type = crypto_info->cipher_type;
 963         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
 964         prot->tag_size = tag_size;
 965         prot->overhead_size = prot->prepend_size + prot->tag_size;
 966         prot->iv_size = iv_size;
 967         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
 968                              GFP_KERNEL);
 969         if (!ctx->tx.iv) {
 970                 rc = -ENOMEM;
 971                 goto free_offload_ctx;
 972         }
 973 
 974         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
 975 
 976         prot->rec_seq_size = rec_seq_size;
 977         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
 978         if (!ctx->tx.rec_seq) {
 979                 rc = -ENOMEM;
 980                 goto free_iv;
 981         }
 982 
 983         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
 984         if (rc)
 985                 goto free_rec_seq;
 986 
 987         /* start at rec_seq - 1 to account for the start marker record */
 988         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
 989         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
 990 
 991         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
 992         start_marker_record->len = 0;
 993         start_marker_record->num_frags = 0;
 994 
 995         INIT_LIST_HEAD(&offload_ctx->records_list);
 996         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
 997         spin_lock_init(&offload_ctx->lock);
 998         sg_init_table(offload_ctx->sg_tx_data,
 999                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1000 
1001         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1002         ctx->push_pending_record = tls_device_push_pending_record;
1003 
1004         /* TLS offload is greatly simplified if we don't send
1005          * SKBs where only part of the payload needs to be encrypted.
1006          * So mark the last skb in the write queue as end of record.
1007          */
1008         skb = tcp_write_queue_tail(sk);
1009         if (skb)
1010                 TCP_SKB_CB(skb)->eor = 1;
1011 
1012         netdev = get_netdev_for_sock(sk);
1013         if (!netdev) {
1014                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1015                 rc = -EINVAL;
1016                 goto disable_cad;
1017         }
1018 
1019         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1020                 rc = -EOPNOTSUPP;
1021                 goto release_netdev;
1022         }
1023 
1024         /* Avoid offloading if the device is down
1025          * We don't want to offload new flows after
1026          * the NETDEV_DOWN event
1027          *
1028          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1029          * handler thus protecting from the device going down before
1030          * ctx was added to tls_device_list.
1031          */
1032         down_read(&device_offload_lock);
1033         if (!(netdev->flags & IFF_UP)) {
1034                 rc = -EINVAL;
1035                 goto release_lock;
1036         }
1037 
1038         ctx->priv_ctx_tx = offload_ctx;
1039         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1040                                              &ctx->crypto_send.info,
1041                                              tcp_sk(sk)->write_seq);
1042         if (rc)
1043                 goto release_lock;
1044 
1045         tls_device_attach(ctx, sk, netdev);
1046         up_read(&device_offload_lock);
1047 
1048         /* following this assignment tls_is_sk_tx_device_offloaded
1049          * will return true and the context might be accessed
1050          * by the netdev's xmit function.
1051          */
1052         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1053         dev_put(netdev);
1054 
1055         return 0;
1056 
1057 release_lock:
1058         up_read(&device_offload_lock);
1059 release_netdev:
1060         dev_put(netdev);
1061 disable_cad:
1062         clean_acked_data_disable(inet_csk(sk));
1063         crypto_free_aead(offload_ctx->aead_send);
1064 free_rec_seq:
1065         kfree(ctx->tx.rec_seq);
1066 free_iv:
1067         kfree(ctx->tx.iv);
1068 free_offload_ctx:
1069         kfree(offload_ctx);
1070         ctx->priv_ctx_tx = NULL;
1071 free_marker_record:
1072         kfree(start_marker_record);
1073         return rc;
1074 }
1075 
1076 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1077 {
1078         struct tls_offload_context_rx *context;
1079         struct net_device *netdev;
1080         int rc = 0;
1081 
1082         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1083                 return -EOPNOTSUPP;
1084 
1085         netdev = get_netdev_for_sock(sk);
1086         if (!netdev) {
1087                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1088                 return -EINVAL;
1089         }
1090 
1091         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1092                 rc = -EOPNOTSUPP;
1093                 goto release_netdev;
1094         }
1095 
1096         /* Avoid offloading if the device is down
1097          * We don't want to offload new flows after
1098          * the NETDEV_DOWN event
1099          *
1100          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1101          * handler thus protecting from the device going down before
1102          * ctx was added to tls_device_list.
1103          */
1104         down_read(&device_offload_lock);
1105         if (!(netdev->flags & IFF_UP)) {
1106                 rc = -EINVAL;
1107                 goto release_lock;
1108         }
1109 
1110         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1111         if (!context) {
1112                 rc = -ENOMEM;
1113                 goto release_lock;
1114         }
1115         context->resync_nh_reset = 1;
1116 
1117         ctx->priv_ctx_rx = context;
1118         rc = tls_set_sw_offload(sk, ctx, 0);
1119         if (rc)
1120                 goto release_ctx;
1121 
1122         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1123                                              &ctx->crypto_recv.info,
1124                                              tcp_sk(sk)->copied_seq);
1125         if (rc)
1126                 goto free_sw_resources;
1127 
1128         tls_device_attach(ctx, sk, netdev);
1129         up_read(&device_offload_lock);
1130 
1131         dev_put(netdev);
1132 
1133         return 0;
1134 
1135 free_sw_resources:
1136         up_read(&device_offload_lock);
1137         tls_sw_free_resources_rx(sk);
1138         down_read(&device_offload_lock);
1139 release_ctx:
1140         ctx->priv_ctx_rx = NULL;
1141 release_lock:
1142         up_read(&device_offload_lock);
1143 release_netdev:
1144         dev_put(netdev);
1145         return rc;
1146 }
1147 
1148 void tls_device_offload_cleanup_rx(struct sock *sk)
1149 {
1150         struct tls_context *tls_ctx = tls_get_ctx(sk);
1151         struct net_device *netdev;
1152 
1153         down_read(&device_offload_lock);
1154         netdev = tls_ctx->netdev;
1155         if (!netdev)
1156                 goto out;
1157 
1158         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1159                                         TLS_OFFLOAD_CTX_DIR_RX);
1160 
1161         if (tls_ctx->tx_conf != TLS_HW) {
1162                 dev_put(netdev);
1163                 tls_ctx->netdev = NULL;
1164         }
1165 out:
1166         up_read(&device_offload_lock);
1167         tls_sw_release_resources_rx(sk);
1168 }
1169 
1170 static int tls_device_down(struct net_device *netdev)
1171 {
1172         struct tls_context *ctx, *tmp;
1173         unsigned long flags;
1174         LIST_HEAD(list);
1175 
1176         /* Request a write lock to block new offload attempts */
1177         down_write(&device_offload_lock);
1178 
1179         spin_lock_irqsave(&tls_device_lock, flags);
1180         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1181                 if (ctx->netdev != netdev ||
1182                     !refcount_inc_not_zero(&ctx->refcount))
1183                         continue;
1184 
1185                 list_move(&ctx->list, &list);
1186         }
1187         spin_unlock_irqrestore(&tls_device_lock, flags);
1188 
1189         list_for_each_entry_safe(ctx, tmp, &list, list) {
1190                 if (ctx->tx_conf == TLS_HW)
1191                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1192                                                         TLS_OFFLOAD_CTX_DIR_TX);
1193                 if (ctx->rx_conf == TLS_HW)
1194                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1195                                                         TLS_OFFLOAD_CTX_DIR_RX);
1196                 WRITE_ONCE(ctx->netdev, NULL);
1197                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1198                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1199                         usleep_range(10, 200);
1200                 dev_put(netdev);
1201                 list_del_init(&ctx->list);
1202 
1203                 if (refcount_dec_and_test(&ctx->refcount))
1204                         tls_device_free_ctx(ctx);
1205         }
1206 
1207         up_write(&device_offload_lock);
1208 
1209         flush_work(&tls_device_gc_work);
1210 
1211         return NOTIFY_DONE;
1212 }
1213 
1214 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1215                          void *ptr)
1216 {
1217         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1218 
1219         if (!dev->tlsdev_ops &&
1220             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1221                 return NOTIFY_DONE;
1222 
1223         switch (event) {
1224         case NETDEV_REGISTER:
1225         case NETDEV_FEAT_CHANGE:
1226                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1227                     !dev->tlsdev_ops->tls_dev_resync)
1228                         return NOTIFY_BAD;
1229 
1230                 if  (dev->tlsdev_ops &&
1231                      dev->tlsdev_ops->tls_dev_add &&
1232                      dev->tlsdev_ops->tls_dev_del)
1233                         return NOTIFY_DONE;
1234                 else
1235                         return NOTIFY_BAD;
1236         case NETDEV_DOWN:
1237                 return tls_device_down(dev);
1238         }
1239         return NOTIFY_DONE;
1240 }
1241 
1242 static struct notifier_block tls_dev_notifier = {
1243         .notifier_call  = tls_dev_event,
1244 };
1245 
1246 void __init tls_device_init(void)
1247 {
1248         register_netdevice_notifier(&tls_dev_notifier);
1249 }
1250 
1251 void __exit tls_device_cleanup(void)
1252 {
1253         unregister_netdevice_notifier(&tls_dev_notifier);
1254         flush_work(&tls_device_gc_work);
1255         clean_acked_data_flush();
1256 }

/* [<][>][^][v][top][bottom][index][help] */