root/arch/powerpc/oprofile/cell/spu_task_sync.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. spu_buff_add
  2. sync_spu_buff
  3. wq_sync_spu_buff
  4. destroy_cached_info
  5. get_cached_info
  6. prepare_cached_spu_info
  7. release_cached_info
  8. fast_get_dcookie
  9. get_exec_dcookie_and_offset
  10. process_context_switch
  11. spu_active_notify
  12. number_of_online_nodes
  13. oprofile_spu_buff_create
  14. spu_sync_start
  15. spu_sync_buffer
  16. spu_sync_stop

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Cell Broadband Engine OProfile Support
   4  *
   5  * (C) Copyright IBM Corporation 2006
   6  *
   7  * Author: Maynard Johnson <maynardj@us.ibm.com>
   8  */
   9 
  10 /* The purpose of this file is to handle SPU event task switching
  11  * and to record SPU context information into the OProfile
  12  * event buffer.
  13  *
  14  * Additionally, the spu_sync_buffer function is provided as a helper
  15  * for recoding actual SPU program counter samples to the event buffer.
  16  */
  17 #include <linux/dcookies.h>
  18 #include <linux/kref.h>
  19 #include <linux/mm.h>
  20 #include <linux/fs.h>
  21 #include <linux/file.h>
  22 #include <linux/module.h>
  23 #include <linux/notifier.h>
  24 #include <linux/numa.h>
  25 #include <linux/oprofile.h>
  26 #include <linux/slab.h>
  27 #include <linux/spinlock.h>
  28 #include "pr_util.h"
  29 
  30 #define RELEASE_ALL 9999
  31 
  32 static DEFINE_SPINLOCK(buffer_lock);
  33 static DEFINE_SPINLOCK(cache_lock);
  34 static int num_spu_nodes;
  35 static int spu_prof_num_nodes;
  36 
  37 struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
  38 struct delayed_work spu_work;
  39 static unsigned max_spu_buff;
  40 
  41 static void spu_buff_add(unsigned long int value, int spu)
  42 {
  43         /* spu buff is a circular buffer.  Add entries to the
  44          * head.  Head is the index to store the next value.
  45          * The buffer is full when there is one available entry
  46          * in the queue, i.e. head and tail can't be equal.
  47          * That way we can tell the difference between the
  48          * buffer being full versus empty.
  49          *
  50          *  ASSUMPTION: the buffer_lock is held when this function
  51          *             is called to lock the buffer, head and tail.
  52          */
  53         int full = 1;
  54 
  55         if (spu_buff[spu].head >= spu_buff[spu].tail) {
  56                 if ((spu_buff[spu].head - spu_buff[spu].tail)
  57                     <  (max_spu_buff - 1))
  58                         full = 0;
  59 
  60         } else if (spu_buff[spu].tail > spu_buff[spu].head) {
  61                 if ((spu_buff[spu].tail - spu_buff[spu].head)
  62                     > 1)
  63                         full = 0;
  64         }
  65 
  66         if (!full) {
  67                 spu_buff[spu].buff[spu_buff[spu].head] = value;
  68                 spu_buff[spu].head++;
  69 
  70                 if (spu_buff[spu].head >= max_spu_buff)
  71                         spu_buff[spu].head = 0;
  72         } else {
  73                 /* From the user's perspective make the SPU buffer
  74                  * size management/overflow look like we are using
  75                  * per cpu buffers.  The user uses the same
  76                  * per cpu parameter to adjust the SPU buffer size.
  77                  * Increment the sample_lost_overflow to inform
  78                  * the user the buffer size needs to be increased.
  79                  */
  80                 oprofile_cpu_buffer_inc_smpl_lost();
  81         }
  82 }
  83 
  84 /* This function copies the per SPU buffers to the
  85  * OProfile kernel buffer.
  86  */
  87 static void sync_spu_buff(void)
  88 {
  89         int spu;
  90         unsigned long flags;
  91         int curr_head;
  92 
  93         for (spu = 0; spu < num_spu_nodes; spu++) {
  94                 /* In case there was an issue and the buffer didn't
  95                  * get created skip it.
  96                  */
  97                 if (spu_buff[spu].buff == NULL)
  98                         continue;
  99 
 100                 /* Hold the lock to make sure the head/tail
 101                  * doesn't change while spu_buff_add() is
 102                  * deciding if the buffer is full or not.
 103                  * Being a little paranoid.
 104                  */
 105                 spin_lock_irqsave(&buffer_lock, flags);
 106                 curr_head = spu_buff[spu].head;
 107                 spin_unlock_irqrestore(&buffer_lock, flags);
 108 
 109                 /* Transfer the current contents to the kernel buffer.
 110                  * data can still be added to the head of the buffer.
 111                  */
 112                 oprofile_put_buff(spu_buff[spu].buff,
 113                                   spu_buff[spu].tail,
 114                                   curr_head, max_spu_buff);
 115 
 116                 spin_lock_irqsave(&buffer_lock, flags);
 117                 spu_buff[spu].tail = curr_head;
 118                 spin_unlock_irqrestore(&buffer_lock, flags);
 119         }
 120 
 121 }
 122 
 123 static void wq_sync_spu_buff(struct work_struct *work)
 124 {
 125         /* move data from spu buffers to kernel buffer */
 126         sync_spu_buff();
 127 
 128         /* only reschedule if profiling is not done */
 129         if (spu_prof_running)
 130                 schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
 131 }
 132 
 133 /* Container for caching information about an active SPU task. */
 134 struct cached_info {
 135         struct vma_to_fileoffset_map *map;
 136         struct spu *the_spu;    /* needed to access pointer to local_store */
 137         struct kref cache_ref;
 138 };
 139 
 140 static struct cached_info *spu_info[MAX_NUMNODES * 8];
 141 
 142 static void destroy_cached_info(struct kref *kref)
 143 {
 144         struct cached_info *info;
 145 
 146         info = container_of(kref, struct cached_info, cache_ref);
 147         vma_map_free(info->map);
 148         kfree(info);
 149         module_put(THIS_MODULE);
 150 }
 151 
 152 /* Return the cached_info for the passed SPU number.
 153  * ATTENTION:  Callers are responsible for obtaining the
 154  *             cache_lock if needed prior to invoking this function.
 155  */
 156 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
 157 {
 158         struct kref *ref;
 159         struct cached_info *ret_info;
 160 
 161         if (spu_num >= num_spu_nodes) {
 162                 printk(KERN_ERR "SPU_PROF: "
 163                        "%s, line %d: Invalid index %d into spu info cache\n",
 164                        __func__, __LINE__, spu_num);
 165                 ret_info = NULL;
 166                 goto out;
 167         }
 168         if (!spu_info[spu_num] && the_spu) {
 169                 ref = spu_get_profile_private_kref(the_spu->ctx);
 170                 if (ref) {
 171                         spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
 172                         kref_get(&spu_info[spu_num]->cache_ref);
 173                 }
 174         }
 175 
 176         ret_info = spu_info[spu_num];
 177  out:
 178         return ret_info;
 179 }
 180 
 181 
 182 /* Looks for cached info for the passed spu.  If not found, the
 183  * cached info is created for the passed spu.
 184  * Returns 0 for success; otherwise, -1 for error.
 185  */
 186 static int
 187 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
 188 {
 189         unsigned long flags;
 190         struct vma_to_fileoffset_map *new_map;
 191         int retval = 0;
 192         struct cached_info *info;
 193 
 194         /* We won't bother getting cache_lock here since
 195          * don't do anything with the cached_info that's returned.
 196          */
 197         info = get_cached_info(spu, spu->number);
 198 
 199         if (info) {
 200                 pr_debug("Found cached SPU info.\n");
 201                 goto out;
 202         }
 203 
 204         /* Create cached_info and set spu_info[spu->number] to point to it.
 205          * spu->number is a system-wide value, not a per-node value.
 206          */
 207         info = kzalloc(sizeof(*info), GFP_KERNEL);
 208         if (!info) {
 209                 printk(KERN_ERR "SPU_PROF: "
 210                        "%s, line %d: create vma_map failed\n",
 211                        __func__, __LINE__);
 212                 retval = -ENOMEM;
 213                 goto err_alloc;
 214         }
 215         new_map = create_vma_map(spu, objectId);
 216         if (!new_map) {
 217                 printk(KERN_ERR "SPU_PROF: "
 218                        "%s, line %d: create vma_map failed\n",
 219                        __func__, __LINE__);
 220                 retval = -ENOMEM;
 221                 goto err_alloc;
 222         }
 223 
 224         pr_debug("Created vma_map\n");
 225         info->map = new_map;
 226         info->the_spu = spu;
 227         kref_init(&info->cache_ref);
 228         spin_lock_irqsave(&cache_lock, flags);
 229         spu_info[spu->number] = info;
 230         /* Increment count before passing off ref to SPUFS. */
 231         kref_get(&info->cache_ref);
 232 
 233         /* We increment the module refcount here since SPUFS is
 234          * responsible for the final destruction of the cached_info,
 235          * and it must be able to access the destroy_cached_info()
 236          * function defined in the OProfile module.  We decrement
 237          * the module refcount in destroy_cached_info.
 238          */
 239         try_module_get(THIS_MODULE);
 240         spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
 241                                 destroy_cached_info);
 242         spin_unlock_irqrestore(&cache_lock, flags);
 243         goto out;
 244 
 245 err_alloc:
 246         kfree(info);
 247 out:
 248         return retval;
 249 }
 250 
 251 /*
 252  * NOTE:  The caller is responsible for locking the
 253  *        cache_lock prior to calling this function.
 254  */
 255 static int release_cached_info(int spu_index)
 256 {
 257         int index, end;
 258 
 259         if (spu_index == RELEASE_ALL) {
 260                 end = num_spu_nodes;
 261                 index = 0;
 262         } else {
 263                 if (spu_index >= num_spu_nodes) {
 264                         printk(KERN_ERR "SPU_PROF: "
 265                                 "%s, line %d: "
 266                                 "Invalid index %d into spu info cache\n",
 267                                 __func__, __LINE__, spu_index);
 268                         goto out;
 269                 }
 270                 end = spu_index + 1;
 271                 index = spu_index;
 272         }
 273         for (; index < end; index++) {
 274                 if (spu_info[index]) {
 275                         kref_put(&spu_info[index]->cache_ref,
 276                                  destroy_cached_info);
 277                         spu_info[index] = NULL;
 278                 }
 279         }
 280 
 281 out:
 282         return 0;
 283 }
 284 
 285 /* The source code for fast_get_dcookie was "borrowed"
 286  * from drivers/oprofile/buffer_sync.c.
 287  */
 288 
 289 /* Optimisation. We can manage without taking the dcookie sem
 290  * because we cannot reach this code without at least one
 291  * dcookie user still being registered (namely, the reader
 292  * of the event buffer).
 293  */
 294 static inline unsigned long fast_get_dcookie(const struct path *path)
 295 {
 296         unsigned long cookie;
 297 
 298         if (path->dentry->d_flags & DCACHE_COOKIE)
 299                 return (unsigned long)path->dentry;
 300         get_dcookie(path, &cookie);
 301         return cookie;
 302 }
 303 
 304 /* Look up the dcookie for the task's mm->exe_file,
 305  * which corresponds loosely to "application name". Also, determine
 306  * the offset for the SPU ELF object.  If computed offset is
 307  * non-zero, it implies an embedded SPU object; otherwise, it's a
 308  * separate SPU binary, in which case we retrieve it's dcookie.
 309  * For the embedded case, we must determine if SPU ELF is embedded
 310  * in the executable application or another file (i.e., shared lib).
 311  * If embedded in a shared lib, we must get the dcookie and return
 312  * that to the caller.
 313  */
 314 static unsigned long
 315 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
 316                             unsigned long *spu_bin_dcookie,
 317                             unsigned long spu_ref)
 318 {
 319         unsigned long app_cookie = 0;
 320         unsigned int my_offset = 0;
 321         struct vm_area_struct *vma;
 322         struct file *exe_file;
 323         struct mm_struct *mm = spu->mm;
 324 
 325         if (!mm)
 326                 goto out;
 327 
 328         exe_file = get_mm_exe_file(mm);
 329         if (exe_file) {
 330                 app_cookie = fast_get_dcookie(&exe_file->f_path);
 331                 pr_debug("got dcookie for %pD\n", exe_file);
 332                 fput(exe_file);
 333         }
 334 
 335         down_read(&mm->mmap_sem);
 336         for (vma = mm->mmap; vma; vma = vma->vm_next) {
 337                 if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
 338                         continue;
 339                 my_offset = spu_ref - vma->vm_start;
 340                 if (!vma->vm_file)
 341                         goto fail_no_image_cookie;
 342 
 343                 pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
 344                          my_offset, spu_ref, vma->vm_file);
 345                 *offsetp = my_offset;
 346                 break;
 347         }
 348 
 349         *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
 350         pr_debug("got dcookie for %pD\n", vma->vm_file);
 351 
 352         up_read(&mm->mmap_sem);
 353 
 354 out:
 355         return app_cookie;
 356 
 357 fail_no_image_cookie:
 358         up_read(&mm->mmap_sem);
 359 
 360         printk(KERN_ERR "SPU_PROF: "
 361                 "%s, line %d: Cannot find dcookie for SPU binary\n",
 362                 __func__, __LINE__);
 363         goto out;
 364 }
 365 
 366 
 367 
 368 /* This function finds or creates cached context information for the
 369  * passed SPU and records SPU context information into the OProfile
 370  * event buffer.
 371  */
 372 static int process_context_switch(struct spu *spu, unsigned long objectId)
 373 {
 374         unsigned long flags;
 375         int retval;
 376         unsigned int offset = 0;
 377         unsigned long spu_cookie = 0, app_dcookie;
 378 
 379         retval = prepare_cached_spu_info(spu, objectId);
 380         if (retval)
 381                 goto out;
 382 
 383         /* Get dcookie first because a mutex_lock is taken in that
 384          * code path, so interrupts must not be disabled.
 385          */
 386         app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
 387         if (!app_dcookie || !spu_cookie) {
 388                 retval  = -ENOENT;
 389                 goto out;
 390         }
 391 
 392         /* Record context info in event buffer */
 393         spin_lock_irqsave(&buffer_lock, flags);
 394         spu_buff_add(ESCAPE_CODE, spu->number);
 395         spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
 396         spu_buff_add(spu->number, spu->number);
 397         spu_buff_add(spu->pid, spu->number);
 398         spu_buff_add(spu->tgid, spu->number);
 399         spu_buff_add(app_dcookie, spu->number);
 400         spu_buff_add(spu_cookie, spu->number);
 401         spu_buff_add(offset, spu->number);
 402 
 403         /* Set flag to indicate SPU PC data can now be written out.  If
 404          * the SPU program counter data is seen before an SPU context
 405          * record is seen, the postprocessing will fail.
 406          */
 407         spu_buff[spu->number].ctx_sw_seen = 1;
 408 
 409         spin_unlock_irqrestore(&buffer_lock, flags);
 410         smp_wmb();      /* insure spu event buffer updates are written */
 411                         /* don't want entries intermingled... */
 412 out:
 413         return retval;
 414 }
 415 
 416 /*
 417  * This function is invoked on either a bind_context or unbind_context.
 418  * If called for an unbind_context, the val arg is 0; otherwise,
 419  * it is the object-id value for the spu context.
 420  * The data arg is of type 'struct spu *'.
 421  */
 422 static int spu_active_notify(struct notifier_block *self, unsigned long val,
 423                                 void *data)
 424 {
 425         int retval;
 426         unsigned long flags;
 427         struct spu *the_spu = data;
 428 
 429         pr_debug("SPU event notification arrived\n");
 430         if (!val) {
 431                 spin_lock_irqsave(&cache_lock, flags);
 432                 retval = release_cached_info(the_spu->number);
 433                 spin_unlock_irqrestore(&cache_lock, flags);
 434         } else {
 435                 retval = process_context_switch(the_spu, val);
 436         }
 437         return retval;
 438 }
 439 
 440 static struct notifier_block spu_active = {
 441         .notifier_call = spu_active_notify,
 442 };
 443 
 444 static int number_of_online_nodes(void)
 445 {
 446         u32 cpu; u32 tmp;
 447         int nodes = 0;
 448         for_each_online_cpu(cpu) {
 449                 tmp = cbe_cpu_to_node(cpu) + 1;
 450                 if (tmp > nodes)
 451                         nodes++;
 452         }
 453         return nodes;
 454 }
 455 
 456 static int oprofile_spu_buff_create(void)
 457 {
 458         int spu;
 459 
 460         max_spu_buff = oprofile_get_cpu_buffer_size();
 461 
 462         for (spu = 0; spu < num_spu_nodes; spu++) {
 463                 /* create circular buffers to store the data in.
 464                  * use locks to manage accessing the buffers
 465                  */
 466                 spu_buff[spu].head = 0;
 467                 spu_buff[spu].tail = 0;
 468 
 469                 /*
 470                  * Create a buffer for each SPU.  Can't reliably
 471                  * create a single buffer for all spus due to not
 472                  * enough contiguous kernel memory.
 473                  */
 474 
 475                 spu_buff[spu].buff = kzalloc((max_spu_buff
 476                                               * sizeof(unsigned long)),
 477                                              GFP_KERNEL);
 478 
 479                 if (!spu_buff[spu].buff) {
 480                         printk(KERN_ERR "SPU_PROF: "
 481                                "%s, line %d:  oprofile_spu_buff_create "
 482                        "failed to allocate spu buffer %d.\n",
 483                                __func__, __LINE__, spu);
 484 
 485                         /* release the spu buffers that have been allocated */
 486                         while (spu >= 0) {
 487                                 kfree(spu_buff[spu].buff);
 488                                 spu_buff[spu].buff = 0;
 489                                 spu--;
 490                         }
 491                         return -ENOMEM;
 492                 }
 493         }
 494         return 0;
 495 }
 496 
 497 /* The main purpose of this function is to synchronize
 498  * OProfile with SPUFS by registering to be notified of
 499  * SPU task switches.
 500  *
 501  * NOTE: When profiling SPUs, we must ensure that only
 502  * spu_sync_start is invoked and not the generic sync_start
 503  * in drivers/oprofile/oprof.c.  A return value of
 504  * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
 505  * accomplish this.
 506  */
 507 int spu_sync_start(void)
 508 {
 509         int spu;
 510         int ret = SKIP_GENERIC_SYNC;
 511         int register_ret;
 512         unsigned long flags = 0;
 513 
 514         spu_prof_num_nodes = number_of_online_nodes();
 515         num_spu_nodes = spu_prof_num_nodes * 8;
 516         INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
 517 
 518         /* create buffer for storing the SPU data to put in
 519          * the kernel buffer.
 520          */
 521         ret = oprofile_spu_buff_create();
 522         if (ret)
 523                 goto out;
 524 
 525         spin_lock_irqsave(&buffer_lock, flags);
 526         for (spu = 0; spu < num_spu_nodes; spu++) {
 527                 spu_buff_add(ESCAPE_CODE, spu);
 528                 spu_buff_add(SPU_PROFILING_CODE, spu);
 529                 spu_buff_add(num_spu_nodes, spu);
 530         }
 531         spin_unlock_irqrestore(&buffer_lock, flags);
 532 
 533         for (spu = 0; spu < num_spu_nodes; spu++) {
 534                 spu_buff[spu].ctx_sw_seen = 0;
 535                 spu_buff[spu].last_guard_val = 0;
 536         }
 537 
 538         /* Register for SPU events  */
 539         register_ret = spu_switch_event_register(&spu_active);
 540         if (register_ret) {
 541                 ret = SYNC_START_ERROR;
 542                 goto out;
 543         }
 544 
 545         pr_debug("spu_sync_start -- running.\n");
 546 out:
 547         return ret;
 548 }
 549 
 550 /* Record SPU program counter samples to the oprofile event buffer. */
 551 void spu_sync_buffer(int spu_num, unsigned int *samples,
 552                      int num_samples)
 553 {
 554         unsigned long long file_offset;
 555         unsigned long flags;
 556         int i;
 557         struct vma_to_fileoffset_map *map;
 558         struct spu *the_spu;
 559         unsigned long long spu_num_ll = spu_num;
 560         unsigned long long spu_num_shifted = spu_num_ll << 32;
 561         struct cached_info *c_info;
 562 
 563         /* We need to obtain the cache_lock here because it's
 564          * possible that after getting the cached_info, the SPU job
 565          * corresponding to this cached_info may end, thus resulting
 566          * in the destruction of the cached_info.
 567          */
 568         spin_lock_irqsave(&cache_lock, flags);
 569         c_info = get_cached_info(NULL, spu_num);
 570         if (!c_info) {
 571                 /* This legitimately happens when the SPU task ends before all
 572                  * samples are recorded.
 573                  * No big deal -- so we just drop a few samples.
 574                  */
 575                 pr_debug("SPU_PROF: No cached SPU contex "
 576                           "for SPU #%d. Dropping samples.\n", spu_num);
 577                 goto out;
 578         }
 579 
 580         map = c_info->map;
 581         the_spu = c_info->the_spu;
 582         spin_lock(&buffer_lock);
 583         for (i = 0; i < num_samples; i++) {
 584                 unsigned int sample = *(samples+i);
 585                 int grd_val = 0;
 586                 file_offset = 0;
 587                 if (sample == 0)
 588                         continue;
 589                 file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
 590 
 591                 /* If overlays are used by this SPU application, the guard
 592                  * value is non-zero, indicating which overlay section is in
 593                  * use.  We need to discard samples taken during the time
 594                  * period which an overlay occurs (i.e., guard value changes).
 595                  */
 596                 if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
 597                         spu_buff[spu_num].last_guard_val = grd_val;
 598                         /* Drop the rest of the samples. */
 599                         break;
 600                 }
 601 
 602                 /* We must ensure that the SPU context switch has been written
 603                  * out before samples for the SPU.  Otherwise, the SPU context
 604                  * information is not available and the postprocessing of the
 605                  * SPU PC will fail with no available anonymous map information.
 606                  */
 607                 if (spu_buff[spu_num].ctx_sw_seen)
 608                         spu_buff_add((file_offset | spu_num_shifted),
 609                                          spu_num);
 610         }
 611         spin_unlock(&buffer_lock);
 612 out:
 613         spin_unlock_irqrestore(&cache_lock, flags);
 614 }
 615 
 616 
 617 int spu_sync_stop(void)
 618 {
 619         unsigned long flags = 0;
 620         int ret;
 621         int k;
 622 
 623         ret = spu_switch_event_unregister(&spu_active);
 624 
 625         if (ret)
 626                 printk(KERN_ERR "SPU_PROF: "
 627                        "%s, line %d: spu_switch_event_unregister "      \
 628                        "returned %d\n",
 629                        __func__, __LINE__, ret);
 630 
 631         /* flush any remaining data in the per SPU buffers */
 632         sync_spu_buff();
 633 
 634         spin_lock_irqsave(&cache_lock, flags);
 635         ret = release_cached_info(RELEASE_ALL);
 636         spin_unlock_irqrestore(&cache_lock, flags);
 637 
 638         /* remove scheduled work queue item rather then waiting
 639          * for every queued entry to execute.  Then flush pending
 640          * system wide buffer to event buffer.
 641          */
 642         cancel_delayed_work(&spu_work);
 643 
 644         for (k = 0; k < num_spu_nodes; k++) {
 645                 spu_buff[k].ctx_sw_seen = 0;
 646 
 647                 /*
 648                  * spu_sys_buff will be null if there was a problem
 649                  * allocating the buffer.  Only delete if it exists.
 650                  */
 651                 kfree(spu_buff[k].buff);
 652                 spu_buff[k].buff = 0;
 653         }
 654         pr_debug("spu_sync_stop -- done.\n");
 655         return ret;
 656 }
 657 

/* [<][>][^][v][top][bottom][index][help] */