This source file includes following definitions.
- nds32_pmu_map_cache_event
- nds32_pmu_map_hw_event
- nds32_pmu_map_raw_event
- nds32_pmu_map_event
- nds32_spav3_map_event
- nds32_pfm_getreset_flags
- nds32_pfm_has_overflowed
- nds32_pfm_counter_has_overflowed
- nds32_pmu_event_set_period
- nds32_pmu_handle_irq
- nds32_pfm_counter_valid
- nds32_pfm_disable_counter
- nds32_pmu_set_event_filter
- nds32_pfm_write_evtsel
- nds32_pfm_enable_counter
- nds32_pfm_enable_intens
- nds32_pfm_disable_intens
- event_requires_mode_exclusion
- nds32_pmu_enable_event
- nds32_pmu_disable_event
- nds32_pmu_read_counter
- nds32_pmu_write_counter
- nds32_pmu_get_event_idx
- nds32_pmu_start
- nds32_pmu_stop
- nds32_pmu_reset
- nds32_pmu_init
- nds32_read_num_pfm_events
- device_pmu_init
- probe_current_pmu
- nds32_pmu_enable
- nds32_pmu_disable
- nds32_pmu_release_hardware
- nds32_pmu_dispatch_irq
- nds32_pmu_reserve_hardware
- validate_event
- validate_group
- __hw_perf_event_init
- nds32_pmu_event_init
- nds32_start
- nds32_pmu_add
- nds32_pmu_event_update
- nds32_stop
- nds32_pmu_del
- nds32_pmu_read
- nds32_pmu_cpumask_show
- nds32_init
- nds32_pmu_register
- cpu_pmu_get_cpu_events
- cpu_pmu_request_irq
- cpu_pmu_free_irq
- cpu_pmu_init
- cpu_pmu_device_probe
- register_pmu_driver
- unwind_frame_kernel
- walk_stackframe
- callchain_trace
- user_backtrace
- user_backtrace_opt_size
- perf_callchain_user
- perf_callchain_kernel
- perf_instruction_pointer
- perf_misc_flags
1
2
3
4
5
6
7
8
9 #include <linux/perf_event.h>
10 #include <linux/bitmap.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/platform_device.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/ftrace.h>
19 #include <linux/uaccess.h>
20 #include <linux/sched/clock.h>
21 #include <linux/percpu-defs.h>
22
23 #include <asm/pmu.h>
24 #include <asm/irq_regs.h>
25 #include <asm/nds32.h>
26 #include <asm/stacktrace.h>
27 #include <asm/perf_event.h>
28 #include <nds32_intrinsic.h>
29
30
31 static struct nds32_pmu *cpu_pmu;
32
33 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
34 static void nds32_pmu_start(struct nds32_pmu *cpu_pmu);
35 static void nds32_pmu_stop(struct nds32_pmu *cpu_pmu);
36 static struct platform_device_id cpu_pmu_plat_device_ids[] = {
37 {.name = "nds32-pfm"},
38 {},
39 };
40
41 static int nds32_pmu_map_cache_event(const unsigned int (*cache_map)
42 [PERF_COUNT_HW_CACHE_MAX]
43 [PERF_COUNT_HW_CACHE_OP_MAX]
44 [PERF_COUNT_HW_CACHE_RESULT_MAX], u64 config)
45 {
46 unsigned int cache_type, cache_op, cache_result, ret;
47
48 cache_type = (config >> 0) & 0xff;
49 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
50 return -EINVAL;
51
52 cache_op = (config >> 8) & 0xff;
53 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
54 return -EINVAL;
55
56 cache_result = (config >> 16) & 0xff;
57 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
58 return -EINVAL;
59
60 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
61
62 if (ret == CACHE_OP_UNSUPPORTED)
63 return -ENOENT;
64
65 return ret;
66 }
67
68 static int
69 nds32_pmu_map_hw_event(const unsigned int (*event_map)[PERF_COUNT_HW_MAX],
70 u64 config)
71 {
72 int mapping;
73
74 if (config >= PERF_COUNT_HW_MAX)
75 return -ENOENT;
76
77 mapping = (*event_map)[config];
78 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
79 }
80
81 static int nds32_pmu_map_raw_event(u32 raw_event_mask, u64 config)
82 {
83 int ev_type = (int)(config & raw_event_mask);
84 int idx = config >> 8;
85
86 switch (idx) {
87 case 0:
88 ev_type = PFM_OFFSET_MAGIC_0 + ev_type;
89 if (ev_type >= SPAV3_0_SEL_LAST || ev_type <= SPAV3_0_SEL_BASE)
90 return -ENOENT;
91 break;
92 case 1:
93 ev_type = PFM_OFFSET_MAGIC_1 + ev_type;
94 if (ev_type >= SPAV3_1_SEL_LAST || ev_type <= SPAV3_1_SEL_BASE)
95 return -ENOENT;
96 break;
97 case 2:
98 ev_type = PFM_OFFSET_MAGIC_2 + ev_type;
99 if (ev_type >= SPAV3_2_SEL_LAST || ev_type <= SPAV3_2_SEL_BASE)
100 return -ENOENT;
101 break;
102 default:
103 return -ENOENT;
104 }
105
106 return ev_type;
107 }
108
109 int
110 nds32_pmu_map_event(struct perf_event *event,
111 const unsigned int (*event_map)[PERF_COUNT_HW_MAX],
112 const unsigned int (*cache_map)
113 [PERF_COUNT_HW_CACHE_MAX]
114 [PERF_COUNT_HW_CACHE_OP_MAX]
115 [PERF_COUNT_HW_CACHE_RESULT_MAX], u32 raw_event_mask)
116 {
117 u64 config = event->attr.config;
118
119 switch (event->attr.type) {
120 case PERF_TYPE_HARDWARE:
121 return nds32_pmu_map_hw_event(event_map, config);
122 case PERF_TYPE_HW_CACHE:
123 return nds32_pmu_map_cache_event(cache_map, config);
124 case PERF_TYPE_RAW:
125 return nds32_pmu_map_raw_event(raw_event_mask, config);
126 }
127
128 return -ENOENT;
129 }
130
131 static int nds32_spav3_map_event(struct perf_event *event)
132 {
133 return nds32_pmu_map_event(event, &nds32_pfm_perf_map,
134 &nds32_pfm_perf_cache_map, SOFTWARE_EVENT_MASK);
135 }
136
137 static inline u32 nds32_pfm_getreset_flags(void)
138 {
139
140 u32 val = __nds32__mfsr(NDS32_SR_PFM_CTL);
141 u32 old_val = val;
142
143
144 u32 ov_flag = PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2];
145
146 __nds32__mtsr(val | ov_flag, NDS32_SR_PFM_CTL);
147
148 return old_val;
149 }
150
151 static inline int nds32_pfm_has_overflowed(u32 pfm)
152 {
153 u32 ov_flag = PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2];
154
155 return pfm & ov_flag;
156 }
157
158 static inline int nds32_pfm_counter_has_overflowed(u32 pfm, int idx)
159 {
160 u32 mask = 0;
161
162 switch (idx) {
163 case 0:
164 mask = PFM_CTL_OVF[0];
165 break;
166 case 1:
167 mask = PFM_CTL_OVF[1];
168 break;
169 case 2:
170 mask = PFM_CTL_OVF[2];
171 break;
172 default:
173 pr_err("%s index wrong\n", __func__);
174 break;
175 }
176 return pfm & mask;
177 }
178
179
180
181
182
183 int nds32_pmu_event_set_period(struct perf_event *event)
184 {
185 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
186 struct hw_perf_event *hwc = &event->hw;
187 s64 left = local64_read(&hwc->period_left);
188 s64 period = hwc->sample_period;
189 int ret = 0;
190
191
192 if (unlikely(period != hwc->last_period))
193 left = period - (hwc->last_period - left);
194
195 if (unlikely(left <= -period)) {
196 left = period;
197 local64_set(&hwc->period_left, left);
198 hwc->last_period = period;
199 ret = 1;
200 }
201
202 if (unlikely(left <= 0)) {
203 left += period;
204 local64_set(&hwc->period_left, left);
205 hwc->last_period = period;
206 ret = 1;
207 }
208
209 if (left > (s64)nds32_pmu->max_period)
210 left = nds32_pmu->max_period;
211
212
213
214
215
216 local64_set(&hwc->prev_count, (u64)(-left));
217
218 nds32_pmu->write_counter(event, (u64)(-left) & nds32_pmu->max_period);
219
220 perf_event_update_userpage(event);
221
222 return ret;
223 }
224
225 static irqreturn_t nds32_pmu_handle_irq(int irq_num, void *dev)
226 {
227 u32 pfm;
228 struct perf_sample_data data;
229 struct nds32_pmu *cpu_pmu = (struct nds32_pmu *)dev;
230 struct pmu_hw_events *cpuc = cpu_pmu->get_hw_events();
231 struct pt_regs *regs;
232 int idx;
233
234
235
236 pfm = nds32_pfm_getreset_flags();
237
238
239
240
241 if (!nds32_pfm_has_overflowed(pfm))
242 return IRQ_NONE;
243
244
245
246
247 regs = get_irq_regs();
248
249 nds32_pmu_stop(cpu_pmu);
250 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
251 struct perf_event *event = cpuc->events[idx];
252 struct hw_perf_event *hwc;
253
254
255 if (!event)
256 continue;
257
258
259
260
261
262 if (!nds32_pfm_counter_has_overflowed(pfm, idx))
263 continue;
264
265 hwc = &event->hw;
266 nds32_pmu_event_update(event);
267 perf_sample_data_init(&data, 0, hwc->last_period);
268 if (!nds32_pmu_event_set_period(event))
269 continue;
270
271 if (perf_event_overflow(event, &data, regs))
272 cpu_pmu->disable(event);
273 }
274 nds32_pmu_start(cpu_pmu);
275
276
277
278
279
280
281
282 irq_work_run();
283
284 return IRQ_HANDLED;
285 }
286
287 static inline int nds32_pfm_counter_valid(struct nds32_pmu *cpu_pmu, int idx)
288 {
289 return ((idx >= 0) && (idx < cpu_pmu->num_events));
290 }
291
292 static inline int nds32_pfm_disable_counter(int idx)
293 {
294 unsigned int val = __nds32__mfsr(NDS32_SR_PFM_CTL);
295 u32 mask = 0;
296
297 mask = PFM_CTL_EN[idx];
298 val &= ~mask;
299 val &= ~(PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
300 __nds32__mtsr_isb(val, NDS32_SR_PFM_CTL);
301 return idx;
302 }
303
304
305
306
307 static int nds32_pmu_set_event_filter(struct hw_perf_event *event,
308 struct perf_event_attr *attr)
309 {
310 unsigned long config_base = 0;
311 int idx = event->idx;
312 unsigned long no_kernel_tracing = 0;
313 unsigned long no_user_tracing = 0;
314
315 if (idx == -1)
316 return 0;
317
318 no_kernel_tracing = PFM_CTL_KS[idx];
319 no_user_tracing = PFM_CTL_KU[idx];
320
321
322
323 if (attr->exclude_user)
324 config_base |= no_user_tracing;
325
326 if (attr->exclude_kernel)
327 config_base |= no_kernel_tracing;
328
329
330
331
332
333 event->config_base |= config_base;
334 return 0;
335 }
336
337 static inline void nds32_pfm_write_evtsel(int idx, u32 evnum)
338 {
339 u32 offset = 0;
340 u32 ori_val = __nds32__mfsr(NDS32_SR_PFM_CTL);
341 u32 ev_mask = 0;
342 u32 no_kernel_mask = 0;
343 u32 no_user_mask = 0;
344 u32 val;
345
346 offset = PFM_CTL_OFFSEL[idx];
347
348 no_kernel_mask = PFM_CTL_KS[idx];
349 no_user_mask = PFM_CTL_KU[idx];
350 ori_val &= ~no_kernel_mask;
351 ori_val &= ~no_user_mask;
352 if (evnum & no_kernel_mask)
353 ori_val |= no_kernel_mask;
354
355 if (evnum & no_user_mask)
356 ori_val |= no_user_mask;
357
358
359 ev_mask = PFM_CTL_SEL[idx];
360 ori_val &= ~ev_mask;
361 evnum &= SOFTWARE_EVENT_MASK;
362
363
364 evnum = get_converted_evet_hw_num(evnum);
365 val = ori_val | (evnum << offset);
366 val &= ~(PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
367 __nds32__mtsr_isb(val, NDS32_SR_PFM_CTL);
368 }
369
370 static inline int nds32_pfm_enable_counter(int idx)
371 {
372 unsigned int val = __nds32__mfsr(NDS32_SR_PFM_CTL);
373 u32 mask = 0;
374
375 mask = PFM_CTL_EN[idx];
376 val |= mask;
377 val &= ~(PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
378 __nds32__mtsr_isb(val, NDS32_SR_PFM_CTL);
379 return idx;
380 }
381
382 static inline int nds32_pfm_enable_intens(int idx)
383 {
384 unsigned int val = __nds32__mfsr(NDS32_SR_PFM_CTL);
385 u32 mask = 0;
386
387 mask = PFM_CTL_IE[idx];
388 val |= mask;
389 val &= ~(PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
390 __nds32__mtsr_isb(val, NDS32_SR_PFM_CTL);
391 return idx;
392 }
393
394 static inline int nds32_pfm_disable_intens(int idx)
395 {
396 unsigned int val = __nds32__mfsr(NDS32_SR_PFM_CTL);
397 u32 mask = 0;
398
399 mask = PFM_CTL_IE[idx];
400 val &= ~mask;
401 val &= ~(PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
402 __nds32__mtsr_isb(val, NDS32_SR_PFM_CTL);
403 return idx;
404 }
405
406 static int event_requires_mode_exclusion(struct perf_event_attr *attr)
407 {
408
409 return attr->exclude_user || attr->exclude_kernel;
410 }
411
412 static void nds32_pmu_enable_event(struct perf_event *event)
413 {
414 unsigned long flags;
415 unsigned int evnum = 0;
416 struct hw_perf_event *hwc = &event->hw;
417 struct nds32_pmu *cpu_pmu = to_nds32_pmu(event->pmu);
418 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
419 int idx = hwc->idx;
420
421 if (!nds32_pfm_counter_valid(cpu_pmu, idx)) {
422 pr_err("CPU enabling wrong pfm counter IRQ enable\n");
423 return;
424 }
425
426
427
428
429
430 raw_spin_lock_irqsave(&events->pmu_lock, flags);
431
432
433
434
435 nds32_pfm_disable_counter(idx);
436
437
438
439
440 if ((!cpu_pmu->set_event_filter ||
441 cpu_pmu->set_event_filter(hwc, &event->attr)) &&
442 event_requires_mode_exclusion(&event->attr)) {
443 pr_notice
444 ("NDS32 performance counters do not support mode exclusion\n");
445 hwc->config_base = 0;
446 }
447
448 evnum = hwc->config_base;
449 nds32_pfm_write_evtsel(idx, evnum);
450
451
452
453
454 nds32_pfm_enable_intens(idx);
455
456
457
458
459 nds32_pfm_enable_counter(idx);
460
461 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
462 }
463
464 static void nds32_pmu_disable_event(struct perf_event *event)
465 {
466 unsigned long flags;
467 struct hw_perf_event *hwc = &event->hw;
468 struct nds32_pmu *cpu_pmu = to_nds32_pmu(event->pmu);
469 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
470 int idx = hwc->idx;
471
472 if (!nds32_pfm_counter_valid(cpu_pmu, idx)) {
473 pr_err("CPU disabling wrong pfm counter IRQ enable %d\n", idx);
474 return;
475 }
476
477
478
479
480 raw_spin_lock_irqsave(&events->pmu_lock, flags);
481
482
483
484
485 nds32_pfm_disable_counter(idx);
486
487
488
489
490 nds32_pfm_disable_intens(idx);
491
492 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
493 }
494
495 static inline u32 nds32_pmu_read_counter(struct perf_event *event)
496 {
497 struct nds32_pmu *cpu_pmu = to_nds32_pmu(event->pmu);
498 struct hw_perf_event *hwc = &event->hw;
499 int idx = hwc->idx;
500 u32 count = 0;
501
502 if (!nds32_pfm_counter_valid(cpu_pmu, idx)) {
503 pr_err("CPU reading wrong counter %d\n", idx);
504 } else {
505 switch (idx) {
506 case PFMC0:
507 count = __nds32__mfsr(NDS32_SR_PFMC0);
508 break;
509 case PFMC1:
510 count = __nds32__mfsr(NDS32_SR_PFMC1);
511 break;
512 case PFMC2:
513 count = __nds32__mfsr(NDS32_SR_PFMC2);
514 break;
515 default:
516 pr_err
517 ("%s: CPU has no performance counters %d\n",
518 __func__, idx);
519 }
520 }
521 return count;
522 }
523
524 static inline void nds32_pmu_write_counter(struct perf_event *event, u32 value)
525 {
526 struct nds32_pmu *cpu_pmu = to_nds32_pmu(event->pmu);
527 struct hw_perf_event *hwc = &event->hw;
528 int idx = hwc->idx;
529
530 if (!nds32_pfm_counter_valid(cpu_pmu, idx)) {
531 pr_err("CPU writing wrong counter %d\n", idx);
532 } else {
533 switch (idx) {
534 case PFMC0:
535 __nds32__mtsr_isb(value, NDS32_SR_PFMC0);
536 break;
537 case PFMC1:
538 __nds32__mtsr_isb(value, NDS32_SR_PFMC1);
539 break;
540 case PFMC2:
541 __nds32__mtsr_isb(value, NDS32_SR_PFMC2);
542 break;
543 default:
544 pr_err
545 ("%s: CPU has no performance counters %d\n",
546 __func__, idx);
547 }
548 }
549 }
550
551 static int nds32_pmu_get_event_idx(struct pmu_hw_events *cpuc,
552 struct perf_event *event)
553 {
554 int idx;
555 struct hw_perf_event *hwc = &event->hw;
556
557
558
559
560
561
562
563
564
565
566
567 unsigned long evtype = hwc->config_base & SOFTWARE_EVENT_MASK;
568
569 idx = get_converted_event_idx(evtype);
570
571
572
573 if (evtype == SPAV3_0_SEL_TOTAL_CYCLES) {
574 if (!test_and_set_bit(idx, cpuc->used_mask))
575 return idx;
576 if (!test_and_set_bit(NDS32_IDX_COUNTER0, cpuc->used_mask))
577 return NDS32_IDX_COUNTER0;
578 if (!test_and_set_bit(NDS32_IDX_COUNTER1, cpuc->used_mask))
579 return NDS32_IDX_COUNTER1;
580 } else if (evtype == SPAV3_1_SEL_COMPLETED_INSTRUCTION) {
581 if (!test_and_set_bit(idx, cpuc->used_mask))
582 return idx;
583 else if (!test_and_set_bit(NDS32_IDX_COUNTER1, cpuc->used_mask))
584 return NDS32_IDX_COUNTER1;
585 else if (!test_and_set_bit
586 (NDS32_IDX_CYCLE_COUNTER, cpuc->used_mask))
587 return NDS32_IDX_CYCLE_COUNTER;
588 } else {
589 if (!test_and_set_bit(idx, cpuc->used_mask))
590 return idx;
591 }
592 return -EAGAIN;
593 }
594
595 static void nds32_pmu_start(struct nds32_pmu *cpu_pmu)
596 {
597 unsigned long flags;
598 unsigned int val;
599 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
600
601 raw_spin_lock_irqsave(&events->pmu_lock, flags);
602
603
604 val = __nds32__mfsr(NDS32_SR_PFM_CTL);
605 val |= (PFM_CTL_EN[0] | PFM_CTL_EN[1] | PFM_CTL_EN[2]);
606 val &= ~(PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
607 __nds32__mtsr_isb(val, NDS32_SR_PFM_CTL);
608
609 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
610 }
611
612 static void nds32_pmu_stop(struct nds32_pmu *cpu_pmu)
613 {
614 unsigned long flags;
615 unsigned int val;
616 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
617
618 raw_spin_lock_irqsave(&events->pmu_lock, flags);
619
620
621 val = __nds32__mfsr(NDS32_SR_PFM_CTL);
622 val &= ~(PFM_CTL_EN[0] | PFM_CTL_EN[1] | PFM_CTL_EN[2]);
623 val &= ~(PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
624 __nds32__mtsr_isb(val, NDS32_SR_PFM_CTL);
625
626 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
627 }
628
629 static void nds32_pmu_reset(void *info)
630 {
631 u32 val = 0;
632
633 val |= (PFM_CTL_OVF[0] | PFM_CTL_OVF[1] | PFM_CTL_OVF[2]);
634 __nds32__mtsr(val, NDS32_SR_PFM_CTL);
635 __nds32__mtsr(0, NDS32_SR_PFM_CTL);
636 __nds32__mtsr(0, NDS32_SR_PFMC0);
637 __nds32__mtsr(0, NDS32_SR_PFMC1);
638 __nds32__mtsr(0, NDS32_SR_PFMC2);
639 }
640
641 static void nds32_pmu_init(struct nds32_pmu *cpu_pmu)
642 {
643 cpu_pmu->handle_irq = nds32_pmu_handle_irq;
644 cpu_pmu->enable = nds32_pmu_enable_event;
645 cpu_pmu->disable = nds32_pmu_disable_event;
646 cpu_pmu->read_counter = nds32_pmu_read_counter;
647 cpu_pmu->write_counter = nds32_pmu_write_counter;
648 cpu_pmu->get_event_idx = nds32_pmu_get_event_idx;
649 cpu_pmu->start = nds32_pmu_start;
650 cpu_pmu->stop = nds32_pmu_stop;
651 cpu_pmu->reset = nds32_pmu_reset;
652 cpu_pmu->max_period = 0xFFFFFFFF;
653 };
654
655 static u32 nds32_read_num_pfm_events(void)
656 {
657
658 return 3;
659 }
660
661 static int device_pmu_init(struct nds32_pmu *cpu_pmu)
662 {
663 nds32_pmu_init(cpu_pmu);
664
665
666
667
668 cpu_pmu->name = "nds32v3-pmu";
669 cpu_pmu->map_event = nds32_spav3_map_event;
670 cpu_pmu->num_events = nds32_read_num_pfm_events();
671 cpu_pmu->set_event_filter = nds32_pmu_set_event_filter;
672 return 0;
673 }
674
675
676
677
678 static int probe_current_pmu(struct nds32_pmu *pmu)
679 {
680 int ret;
681
682 get_cpu();
683 ret = -ENODEV;
684
685
686
687
688
689 device_pmu_init(pmu);
690 put_cpu();
691 return ret;
692 }
693
694 static void nds32_pmu_enable(struct pmu *pmu)
695 {
696 struct nds32_pmu *nds32_pmu = to_nds32_pmu(pmu);
697 struct pmu_hw_events *hw_events = nds32_pmu->get_hw_events();
698 int enabled = bitmap_weight(hw_events->used_mask,
699 nds32_pmu->num_events);
700
701 if (enabled)
702 nds32_pmu->start(nds32_pmu);
703 }
704
705 static void nds32_pmu_disable(struct pmu *pmu)
706 {
707 struct nds32_pmu *nds32_pmu = to_nds32_pmu(pmu);
708
709 nds32_pmu->stop(nds32_pmu);
710 }
711
712 static void nds32_pmu_release_hardware(struct nds32_pmu *nds32_pmu)
713 {
714 nds32_pmu->free_irq(nds32_pmu);
715 pm_runtime_put_sync(&nds32_pmu->plat_device->dev);
716 }
717
718 static irqreturn_t nds32_pmu_dispatch_irq(int irq, void *dev)
719 {
720 struct nds32_pmu *nds32_pmu = (struct nds32_pmu *)dev;
721 int ret;
722 u64 start_clock, finish_clock;
723
724 start_clock = local_clock();
725 ret = nds32_pmu->handle_irq(irq, dev);
726 finish_clock = local_clock();
727
728 perf_sample_event_took(finish_clock - start_clock);
729 return ret;
730 }
731
732 static int nds32_pmu_reserve_hardware(struct nds32_pmu *nds32_pmu)
733 {
734 int err;
735 struct platform_device *pmu_device = nds32_pmu->plat_device;
736
737 if (!pmu_device)
738 return -ENODEV;
739
740 pm_runtime_get_sync(&pmu_device->dev);
741 err = nds32_pmu->request_irq(nds32_pmu, nds32_pmu_dispatch_irq);
742 if (err) {
743 nds32_pmu_release_hardware(nds32_pmu);
744 return err;
745 }
746
747 return 0;
748 }
749
750 static int
751 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
752 struct perf_event *event)
753 {
754 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
755
756 if (is_software_event(event))
757 return 1;
758
759 if (event->pmu != pmu)
760 return 0;
761
762 if (event->state < PERF_EVENT_STATE_OFF)
763 return 1;
764
765 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
766 return 1;
767
768 return nds32_pmu->get_event_idx(hw_events, event) >= 0;
769 }
770
771 static int validate_group(struct perf_event *event)
772 {
773 struct perf_event *sibling, *leader = event->group_leader;
774 struct pmu_hw_events fake_pmu;
775 DECLARE_BITMAP(fake_used_mask, MAX_COUNTERS);
776
777
778
779
780 memset(fake_used_mask, 0, sizeof(fake_used_mask));
781
782 if (!validate_event(event->pmu, &fake_pmu, leader))
783 return -EINVAL;
784
785 for_each_sibling_event(sibling, leader) {
786 if (!validate_event(event->pmu, &fake_pmu, sibling))
787 return -EINVAL;
788 }
789
790 if (!validate_event(event->pmu, &fake_pmu, event))
791 return -EINVAL;
792
793 return 0;
794 }
795
796 static int __hw_perf_event_init(struct perf_event *event)
797 {
798 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
799 struct hw_perf_event *hwc = &event->hw;
800 int mapping;
801
802 mapping = nds32_pmu->map_event(event);
803
804 if (mapping < 0) {
805 pr_debug("event %x:%llx not supported\n", event->attr.type,
806 event->attr.config);
807 return mapping;
808 }
809
810
811
812
813
814
815
816 hwc->idx = -1;
817 hwc->config_base = 0;
818 hwc->config = 0;
819 hwc->event_base = 0;
820
821
822
823
824 if ((!nds32_pmu->set_event_filter ||
825 nds32_pmu->set_event_filter(hwc, &event->attr)) &&
826 event_requires_mode_exclusion(&event->attr)) {
827 pr_debug
828 ("NDS performance counters do not support mode exclusion\n");
829 return -EOPNOTSUPP;
830 }
831
832
833
834
835 hwc->config_base |= (unsigned long)mapping;
836
837 if (!hwc->sample_period) {
838
839
840
841
842
843
844 hwc->sample_period = nds32_pmu->max_period >> 1;
845 hwc->last_period = hwc->sample_period;
846 local64_set(&hwc->period_left, hwc->sample_period);
847 }
848
849 if (event->group_leader != event) {
850 if (validate_group(event) != 0)
851 return -EINVAL;
852 }
853
854 return 0;
855 }
856
857 static int nds32_pmu_event_init(struct perf_event *event)
858 {
859 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
860 int err = 0;
861 atomic_t *active_events = &nds32_pmu->active_events;
862
863
864 if (has_branch_stack(event))
865 return -EOPNOTSUPP;
866
867 if (nds32_pmu->map_event(event) == -ENOENT)
868 return -ENOENT;
869
870 if (!atomic_inc_not_zero(active_events)) {
871 if (atomic_read(active_events) == 0) {
872
873 err = nds32_pmu_reserve_hardware(nds32_pmu);
874 }
875
876 if (!err)
877 atomic_inc(active_events);
878 }
879
880 if (err)
881 return err;
882
883 err = __hw_perf_event_init(event);
884
885 return err;
886 }
887
888 static void nds32_start(struct perf_event *event, int flags)
889 {
890 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
891 struct hw_perf_event *hwc = &event->hw;
892
893
894
895
896 if (flags & PERF_EF_RELOAD)
897 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
898
899 hwc->state = 0;
900
901 nds32_pmu_event_set_period(event);
902
903 nds32_pmu->enable(event);
904 }
905
906 static int nds32_pmu_add(struct perf_event *event, int flags)
907 {
908 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
909 struct pmu_hw_events *hw_events = nds32_pmu->get_hw_events();
910 struct hw_perf_event *hwc = &event->hw;
911 int idx;
912 int err = 0;
913
914 perf_pmu_disable(event->pmu);
915
916
917 idx = nds32_pmu->get_event_idx(hw_events, event);
918 if (idx < 0) {
919 err = idx;
920 goto out;
921 }
922
923
924
925
926
927 event->hw.idx = idx;
928 nds32_pmu->disable(event);
929 hw_events->events[idx] = event;
930
931 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
932 if (flags & PERF_EF_START)
933 nds32_start(event, PERF_EF_RELOAD);
934
935
936 perf_event_update_userpage(event);
937
938 out:
939 perf_pmu_enable(event->pmu);
940 return err;
941 }
942
943 u64 nds32_pmu_event_update(struct perf_event *event)
944 {
945 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
946 struct hw_perf_event *hwc = &event->hw;
947 u64 delta, prev_raw_count, new_raw_count;
948
949 again:
950 prev_raw_count = local64_read(&hwc->prev_count);
951 new_raw_count = nds32_pmu->read_counter(event);
952
953 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
954 new_raw_count) != prev_raw_count) {
955 goto again;
956 }
957
958
959
960
961 delta = (new_raw_count - prev_raw_count) & nds32_pmu->max_period;
962
963 local64_add(delta, &event->count);
964 local64_sub(delta, &hwc->period_left);
965
966 return new_raw_count;
967 }
968
969 static void nds32_stop(struct perf_event *event, int flags)
970 {
971 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
972 struct hw_perf_event *hwc = &event->hw;
973
974
975
976
977 if (!(hwc->state & PERF_HES_STOPPED)) {
978 nds32_pmu->disable(event);
979 nds32_pmu_event_update(event);
980 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
981 }
982 }
983
984 static void nds32_pmu_del(struct perf_event *event, int flags)
985 {
986 struct nds32_pmu *nds32_pmu = to_nds32_pmu(event->pmu);
987 struct pmu_hw_events *hw_events = nds32_pmu->get_hw_events();
988 struct hw_perf_event *hwc = &event->hw;
989 int idx = hwc->idx;
990
991 nds32_stop(event, PERF_EF_UPDATE);
992 hw_events->events[idx] = NULL;
993 clear_bit(idx, hw_events->used_mask);
994
995 perf_event_update_userpage(event);
996 }
997
998 static void nds32_pmu_read(struct perf_event *event)
999 {
1000 nds32_pmu_event_update(event);
1001 }
1002
1003
1004 PMU_FORMAT_ATTR(event, "config:0-63");
1005
1006 static struct attribute *nds32_arch_formats_attr[] = {
1007 &format_attr_event.attr,
1008 NULL,
1009 };
1010
1011 static struct attribute_group nds32_pmu_format_group = {
1012 .name = "format",
1013 .attrs = nds32_arch_formats_attr,
1014 };
1015
1016 static ssize_t nds32_pmu_cpumask_show(struct device *dev,
1017 struct device_attribute *attr,
1018 char *buf)
1019 {
1020 return 0;
1021 }
1022
1023 static DEVICE_ATTR(cpus, 0444, nds32_pmu_cpumask_show, NULL);
1024
1025 static struct attribute *nds32_pmu_common_attrs[] = {
1026 &dev_attr_cpus.attr,
1027 NULL,
1028 };
1029
1030 static struct attribute_group nds32_pmu_common_group = {
1031 .attrs = nds32_pmu_common_attrs,
1032 };
1033
1034 static const struct attribute_group *nds32_pmu_attr_groups[] = {
1035 &nds32_pmu_format_group,
1036 &nds32_pmu_common_group,
1037 NULL,
1038 };
1039
1040 static void nds32_init(struct nds32_pmu *nds32_pmu)
1041 {
1042 atomic_set(&nds32_pmu->active_events, 0);
1043
1044 nds32_pmu->pmu = (struct pmu) {
1045 .pmu_enable = nds32_pmu_enable,
1046 .pmu_disable = nds32_pmu_disable,
1047 .attr_groups = nds32_pmu_attr_groups,
1048 .event_init = nds32_pmu_event_init,
1049 .add = nds32_pmu_add,
1050 .del = nds32_pmu_del,
1051 .start = nds32_start,
1052 .stop = nds32_stop,
1053 .read = nds32_pmu_read,
1054 };
1055 }
1056
1057 int nds32_pmu_register(struct nds32_pmu *nds32_pmu, int type)
1058 {
1059 nds32_init(nds32_pmu);
1060 pm_runtime_enable(&nds32_pmu->plat_device->dev);
1061 pr_info("enabled with %s PMU driver, %d counters available\n",
1062 nds32_pmu->name, nds32_pmu->num_events);
1063 return perf_pmu_register(&nds32_pmu->pmu, nds32_pmu->name, type);
1064 }
1065
1066 static struct pmu_hw_events *cpu_pmu_get_cpu_events(void)
1067 {
1068 return this_cpu_ptr(&cpu_hw_events);
1069 }
1070
1071 static int cpu_pmu_request_irq(struct nds32_pmu *cpu_pmu, irq_handler_t handler)
1072 {
1073 int err, irq, irqs;
1074 struct platform_device *pmu_device = cpu_pmu->plat_device;
1075
1076 if (!pmu_device)
1077 return -ENODEV;
1078
1079 irqs = min(pmu_device->num_resources, num_possible_cpus());
1080 if (irqs < 1) {
1081 pr_err("no irqs for PMUs defined\n");
1082 return -ENODEV;
1083 }
1084
1085 irq = platform_get_irq(pmu_device, 0);
1086 err = request_irq(irq, handler, IRQF_NOBALANCING, "nds32-pfm",
1087 cpu_pmu);
1088 if (err) {
1089 pr_err("unable to request IRQ%d for NDS PMU counters\n",
1090 irq);
1091 return err;
1092 }
1093 return 0;
1094 }
1095
1096 static void cpu_pmu_free_irq(struct nds32_pmu *cpu_pmu)
1097 {
1098 int irq;
1099 struct platform_device *pmu_device = cpu_pmu->plat_device;
1100
1101 irq = platform_get_irq(pmu_device, 0);
1102 if (irq >= 0)
1103 free_irq(irq, cpu_pmu);
1104 }
1105
1106 static void cpu_pmu_init(struct nds32_pmu *cpu_pmu)
1107 {
1108 int cpu;
1109 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1110
1111 raw_spin_lock_init(&events->pmu_lock);
1112
1113 cpu_pmu->get_hw_events = cpu_pmu_get_cpu_events;
1114 cpu_pmu->request_irq = cpu_pmu_request_irq;
1115 cpu_pmu->free_irq = cpu_pmu_free_irq;
1116
1117
1118 if (cpu_pmu->reset)
1119 on_each_cpu(cpu_pmu->reset, cpu_pmu, 1);
1120 }
1121
1122 const static struct of_device_id cpu_pmu_of_device_ids[] = {
1123 {.compatible = "andestech,nds32v3-pmu",
1124 .data = device_pmu_init},
1125 {},
1126 };
1127
1128 static int cpu_pmu_device_probe(struct platform_device *pdev)
1129 {
1130 const struct of_device_id *of_id;
1131 int (*init_fn)(struct nds32_pmu *nds32_pmu);
1132 struct device_node *node = pdev->dev.of_node;
1133 struct nds32_pmu *pmu;
1134 int ret = -ENODEV;
1135
1136 if (cpu_pmu) {
1137 pr_notice("[perf] attempt to register multiple PMU devices!\n");
1138 return -ENOSPC;
1139 }
1140
1141 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
1142 if (!pmu)
1143 return -ENOMEM;
1144
1145 of_id = of_match_node(cpu_pmu_of_device_ids, pdev->dev.of_node);
1146 if (node && of_id) {
1147 init_fn = of_id->data;
1148 ret = init_fn(pmu);
1149 } else {
1150 ret = probe_current_pmu(pmu);
1151 }
1152
1153 if (ret) {
1154 pr_notice("[perf] failed to probe PMU!\n");
1155 goto out_free;
1156 }
1157
1158 cpu_pmu = pmu;
1159 cpu_pmu->plat_device = pdev;
1160 cpu_pmu_init(cpu_pmu);
1161 ret = nds32_pmu_register(cpu_pmu, PERF_TYPE_RAW);
1162
1163 if (!ret)
1164 return 0;
1165
1166 out_free:
1167 pr_notice("[perf] failed to register PMU devices!\n");
1168 kfree(pmu);
1169 return ret;
1170 }
1171
1172 static struct platform_driver cpu_pmu_driver = {
1173 .driver = {
1174 .name = "nds32-pfm",
1175 .of_match_table = cpu_pmu_of_device_ids,
1176 },
1177 .probe = cpu_pmu_device_probe,
1178 .id_table = cpu_pmu_plat_device_ids,
1179 };
1180
1181 static int __init register_pmu_driver(void)
1182 {
1183 int err = 0;
1184
1185 err = platform_driver_register(&cpu_pmu_driver);
1186 if (err)
1187 pr_notice("[perf] PMU initialization failed\n");
1188 else
1189 pr_notice("[perf] PMU initialization done\n");
1190
1191 return err;
1192 }
1193
1194 device_initcall(register_pmu_driver);
1195
1196
1197
1198
1199
1200 static int unwind_frame_kernel(struct stackframe *frame)
1201 {
1202 int graph = 0;
1203 #ifdef CONFIG_FRAME_POINTER
1204
1205 if (!kstack_end((void *)frame->fp) &&
1206 !((unsigned long)frame->fp & 0x3) &&
1207 ((unsigned long)frame->fp >= TASK_SIZE)) {
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223 frame->lp = ((unsigned long *)frame->fp)[-1];
1224 frame->fp = ((unsigned long *)frame->fp)[FP_OFFSET];
1225
1226 if (__kernel_text_address(frame->lp))
1227 frame->lp = ftrace_graph_ret_addr
1228 (NULL, &graph, frame->lp, NULL);
1229
1230 return 0;
1231 } else {
1232 return -EPERM;
1233 }
1234 #else
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248 if (!kstack_end((void *)frame->sp)) {
1249 frame->lp = ((unsigned long *)frame->sp)[1];
1250
1251
1252
1253 if (__kernel_text_address(frame->lp))
1254 frame->lp = ftrace_graph_ret_addr
1255 (tsk, &graph, frame->lp, NULL);
1256
1257 frame->sp = ((unsigned long *)frame->sp) + 1;
1258
1259 return 0;
1260 } else {
1261 return -EPERM;
1262 }
1263 #endif
1264 }
1265
1266 static void notrace
1267 walk_stackframe(struct stackframe *frame,
1268 int (*fn_record)(struct stackframe *, void *),
1269 void *data)
1270 {
1271 while (1) {
1272 int ret;
1273
1274 if (fn_record(frame, data))
1275 break;
1276
1277 ret = unwind_frame_kernel(frame);
1278 if (ret < 0)
1279 break;
1280 }
1281 }
1282
1283
1284
1285
1286
1287
1288 static int callchain_trace(struct stackframe *fr, void *data)
1289 {
1290 struct perf_callchain_entry_ctx *entry = data;
1291
1292 perf_callchain_store(entry, fr->lp);
1293 return 0;
1294 }
1295
1296
1297
1298
1299
1300 static unsigned long
1301 user_backtrace(struct perf_callchain_entry_ctx *entry, unsigned long fp)
1302 {
1303 struct frame_tail buftail;
1304 unsigned long lp = 0;
1305 unsigned long *user_frame_tail =
1306 (unsigned long *)(fp - (unsigned long)sizeof(buftail));
1307
1308
1309 if (!access_ok(user_frame_tail, sizeof(buftail)))
1310 return 0;
1311 if (__copy_from_user_inatomic
1312 (&buftail, user_frame_tail, sizeof(buftail)))
1313 return 0;
1314
1315
1316
1317
1318 lp = buftail.stack_lp;
1319 fp = buftail.stack_fp;
1320 perf_callchain_store(entry, lp);
1321 return fp;
1322 }
1323
1324 static unsigned long
1325 user_backtrace_opt_size(struct perf_callchain_entry_ctx *entry,
1326 unsigned long fp)
1327 {
1328 struct frame_tail_opt_size buftail;
1329 unsigned long lp = 0;
1330
1331 unsigned long *user_frame_tail =
1332 (unsigned long *)(fp - (unsigned long)sizeof(buftail));
1333
1334
1335 if (!access_ok(user_frame_tail, sizeof(buftail)))
1336 return 0;
1337 if (__copy_from_user_inatomic
1338 (&buftail, user_frame_tail, sizeof(buftail)))
1339 return 0;
1340
1341
1342
1343
1344 lp = buftail.stack_lp;
1345 fp = buftail.stack_fp;
1346
1347 perf_callchain_store(entry, lp);
1348 return fp;
1349 }
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361 unsigned long leaf_fp;
1362 void
1363 perf_callchain_user(struct perf_callchain_entry_ctx *entry,
1364 struct pt_regs *regs)
1365 {
1366 unsigned long fp = 0;
1367 unsigned long gp = 0;
1368 unsigned long lp = 0;
1369 unsigned long sp = 0;
1370 unsigned long *user_frame_tail;
1371
1372 leaf_fp = 0;
1373
1374 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1375
1376 return;
1377 }
1378
1379 perf_callchain_store(entry, regs->ipc);
1380 fp = regs->fp;
1381 gp = regs->gp;
1382 lp = regs->lp;
1383 sp = regs->sp;
1384 if (entry->nr < PERF_MAX_STACK_DEPTH &&
1385 (unsigned long)fp && !((unsigned long)fp & 0x7) && fp > sp) {
1386 user_frame_tail =
1387 (unsigned long *)(fp - (unsigned long)sizeof(fp));
1388
1389 if (!access_ok(user_frame_tail, sizeof(fp)))
1390 return;
1391
1392 if (__copy_from_user_inatomic
1393 (&leaf_fp, user_frame_tail, sizeof(fp)))
1394 return;
1395
1396 if (leaf_fp == lp) {
1397
1398
1399
1400
1401
1402
1403 struct frame_tail buftail;
1404
1405 user_frame_tail =
1406 (unsigned long *)(fp -
1407 (unsigned long)sizeof(buftail));
1408
1409 if (!access_ok(user_frame_tail, sizeof(buftail)))
1410 return;
1411
1412 if (__copy_from_user_inatomic
1413 (&buftail, user_frame_tail, sizeof(buftail)))
1414 return;
1415
1416 if (buftail.stack_fp == gp) {
1417
1418
1419
1420 struct frame_tail_opt_size buftail_opt_size;
1421
1422 user_frame_tail =
1423 (unsigned long *)(fp - (unsigned long)
1424 sizeof(buftail_opt_size));
1425
1426 if (!access_ok(user_frame_tail,
1427 sizeof(buftail_opt_size)))
1428 return;
1429
1430 if (__copy_from_user_inatomic
1431 (&buftail_opt_size, user_frame_tail,
1432 sizeof(buftail_opt_size)))
1433 return;
1434
1435 perf_callchain_store(entry, lp);
1436 fp = buftail_opt_size.stack_fp;
1437
1438 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1439 (unsigned long)fp &&
1440 !((unsigned long)fp & 0x7) &&
1441 fp > sp) {
1442 sp = fp;
1443 fp = user_backtrace_opt_size(entry, fp);
1444 }
1445
1446 } else {
1447
1448
1449
1450 fp = buftail.stack_fp;
1451 perf_callchain_store(entry, lp);
1452 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1453 (unsigned long)fp &&
1454 !((unsigned long)fp & 0x7) &&
1455 fp > sp) {
1456 sp = fp;
1457 fp = user_backtrace(entry, fp);
1458 }
1459 }
1460 } else {
1461
1462 fp = leaf_fp;
1463 perf_callchain_store(entry, lp);
1464
1465
1466 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1467 (unsigned long)fp &&
1468 !((unsigned long)fp & 0x7) && fp > sp) {
1469 sp = fp;
1470 fp = user_backtrace(entry, fp);
1471 }
1472 }
1473 return;
1474 }
1475 }
1476
1477
1478 void
1479 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1480 struct pt_regs *regs)
1481 {
1482 struct stackframe fr;
1483
1484 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1485
1486 return;
1487 }
1488 fr.fp = regs->fp;
1489 fr.lp = regs->lp;
1490 fr.sp = regs->sp;
1491 walk_stackframe(&fr, callchain_trace, entry);
1492 }
1493
1494 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1495 {
1496
1497 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1498 return perf_guest_cbs->get_guest_ip();
1499
1500 return instruction_pointer(regs);
1501 }
1502
1503 unsigned long perf_misc_flags(struct pt_regs *regs)
1504 {
1505 int misc = 0;
1506
1507
1508 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1509 if (perf_guest_cbs->is_user_mode())
1510 misc |= PERF_RECORD_MISC_GUEST_USER;
1511 else
1512 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1513 } else {
1514 if (user_mode(regs))
1515 misc |= PERF_RECORD_MISC_USER;
1516 else
1517 misc |= PERF_RECORD_MISC_KERNEL;
1518 }
1519
1520 return misc;
1521 }