root/net/wireless/reg.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_cfg80211_regdom
  2. get_wiphy_regdom
  3. reg_dfs_region_str
  4. reg_get_dfs_region
  5. rcu_free_regdom
  6. get_last_request
  7. reg_free_request
  8. reg_free_last_request
  9. reg_update_last_request
  10. reset_regdomains
  11. update_world_regdomain
  12. is_world_regdom
  13. is_alpha2_set
  14. is_unknown_alpha2
  15. is_intersected_alpha2
  16. is_an_alpha2
  17. alpha2_equal
  18. regdom_changes
  19. is_user_regdom_saved
  20. reg_copy_regd
  21. cfg80211_save_user_regdom
  22. reg_regdb_apply
  23. reg_schedule_apply
  24. crda_timeout_work
  25. cancel_crda_timeout
  26. cancel_crda_timeout_sync
  27. reset_crda_timeouts
  28. call_crda
  29. cancel_crda_timeout
  30. cancel_crda_timeout_sync
  31. reset_crda_timeouts
  32. call_crda
  33. ecw2cw
  34. valid_wmm
  35. valid_rule
  36. valid_country
  37. load_keys_from_buffer
  38. load_builtin_regdb_keys
  39. regdb_has_valid_signature
  40. free_regdb_keyring
  41. load_builtin_regdb_keys
  42. regdb_has_valid_signature
  43. free_regdb_keyring
  44. valid_regdb
  45. set_wmm_rule
  46. __regdb_query_wmm
  47. reg_query_regdb_wmm
  48. regdb_query_country
  49. query_regdb
  50. regdb_fw_cb
  51. query_regdb_file
  52. reg_reload_regdb
  53. reg_query_database
  54. reg_is_valid_request
  55. reg_get_regdomain
  56. reg_get_max_bandwidth_from_range
  57. reg_get_max_bandwidth
  58. is_valid_reg_rule
  59. is_valid_rd
  60. freq_in_rule_band
  61. reg_intersect_dfs_region
  62. reg_wmm_rules_intersect
  63. reg_rules_intersect
  64. rule_contains
  65. add_rule
  66. regdom_intersect
  67. map_regdom_flags
  68. freq_reg_info_regd
  69. __freq_reg_info
  70. freq_reg_info
  71. reg_initiator_name
  72. reg_rule_to_chan_bw_flags
  73. handle_channel
  74. handle_band
  75. reg_request_cell_base
  76. reg_last_request_cell_base
  77. reg_ignore_cell_hint
  78. reg_dev_ignore_cell_hint
  79. reg_ignore_cell_hint
  80. reg_dev_ignore_cell_hint
  81. wiphy_strict_alpha2_regd
  82. ignore_reg_update
  83. reg_is_world_roaming
  84. handle_reg_beacon
  85. wiphy_update_new_beacon
  86. wiphy_update_beacon_reg
  87. reg_process_beacons
  88. is_ht40_allowed
  89. reg_process_ht_flags_channel
  90. reg_process_ht_flags_band
  91. reg_process_ht_flags
  92. reg_call_notifier
  93. reg_wdev_chan_valid
  94. reg_leave_invalid_chans
  95. reg_check_chans_work
  96. reg_check_channels
  97. wiphy_update_regulatory
  98. update_all_wiphy_regulatory
  99. handle_channel_custom
  100. handle_band_custom
  101. wiphy_apply_custom_regulatory
  102. reg_set_request_processed
  103. reg_process_hint_core
  104. __reg_process_hint_user
  105. reg_process_hint_user
  106. __reg_process_hint_driver
  107. reg_process_hint_driver
  108. __reg_process_hint_country_ie
  109. reg_process_hint_country_ie
  110. reg_dfs_domain_same
  111. reg_copy_dfs_chan_state
  112. wiphy_share_dfs_chan_state
  113. wiphy_all_share_dfs_chan_state
  114. reg_process_hint
  115. notify_self_managed_wiphys
  116. reg_process_pending_hints
  117. reg_process_pending_beacon_hints
  118. reg_process_self_managed_hints
  119. reg_todo
  120. queue_regulatory_request
  121. regulatory_hint_core
  122. regulatory_hint_user
  123. regulatory_hint_indoor
  124. regulatory_netlink_notify
  125. regulatory_hint
  126. regulatory_hint_country_ie
  127. restore_alpha2
  128. restore_custom_reg_settings
  129. restore_regulatory_settings
  130. is_wiphy_all_set_reg_flag
  131. regulatory_hint_disconnect
  132. freq_is_chan_12_13_14
  133. pending_reg_beacon
  134. regulatory_hint_found_beacon
  135. print_rd_rules
  136. reg_supported_dfs_region
  137. print_regdomain
  138. print_regdomain_info
  139. reg_set_rd_core
  140. reg_set_rd_user
  141. reg_set_rd_driver
  142. reg_set_rd_country_ie
  143. set_regdom
  144. __regulatory_set_wiphy_regd
  145. regulatory_set_wiphy_regd
  146. regulatory_set_wiphy_regd_sync_rtnl
  147. wiphy_regulatory_register
  148. wiphy_regulatory_deregister
  149. cfg80211_get_unii
  150. regulatory_indoor_allowed
  151. regulatory_pre_cac_allowed
  152. cfg80211_check_and_end_cac
  153. regulatory_propagate_dfs_state
  154. regulatory_init_db
  155. regulatory_init
  156. regulatory_exit

   1 /*
   2  * Copyright 2002-2005, Instant802 Networks, Inc.
   3  * Copyright 2005-2006, Devicescape Software, Inc.
   4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
   5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6  * Copyright 2013-2014  Intel Mobile Communications GmbH
   7  * Copyright      2017  Intel Deutschland GmbH
   8  * Copyright (C) 2018 - 2019 Intel Corporation
   9  *
  10  * Permission to use, copy, modify, and/or distribute this software for any
  11  * purpose with or without fee is hereby granted, provided that the above
  12  * copyright notice and this permission notice appear in all copies.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21  */
  22 
  23 
  24 /**
  25  * DOC: Wireless regulatory infrastructure
  26  *
  27  * The usual implementation is for a driver to read a device EEPROM to
  28  * determine which regulatory domain it should be operating under, then
  29  * looking up the allowable channels in a driver-local table and finally
  30  * registering those channels in the wiphy structure.
  31  *
  32  * Another set of compliance enforcement is for drivers to use their
  33  * own compliance limits which can be stored on the EEPROM. The host
  34  * driver or firmware may ensure these are used.
  35  *
  36  * In addition to all this we provide an extra layer of regulatory
  37  * conformance. For drivers which do not have any regulatory
  38  * information CRDA provides the complete regulatory solution.
  39  * For others it provides a community effort on further restrictions
  40  * to enhance compliance.
  41  *
  42  * Note: When number of rules --> infinity we will not be able to
  43  * index on alpha2 any more, instead we'll probably have to
  44  * rely on some SHA1 checksum of the regdomain for example.
  45  *
  46  */
  47 
  48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49 
  50 #include <linux/kernel.h>
  51 #include <linux/export.h>
  52 #include <linux/slab.h>
  53 #include <linux/list.h>
  54 #include <linux/ctype.h>
  55 #include <linux/nl80211.h>
  56 #include <linux/platform_device.h>
  57 #include <linux/verification.h>
  58 #include <linux/moduleparam.h>
  59 #include <linux/firmware.h>
  60 #include <net/cfg80211.h>
  61 #include "core.h"
  62 #include "reg.h"
  63 #include "rdev-ops.h"
  64 #include "nl80211.h"
  65 
  66 /*
  67  * Grace period we give before making sure all current interfaces reside on
  68  * channels allowed by the current regulatory domain.
  69  */
  70 #define REG_ENFORCE_GRACE_MS 60000
  71 
  72 /**
  73  * enum reg_request_treatment - regulatory request treatment
  74  *
  75  * @REG_REQ_OK: continue processing the regulatory request
  76  * @REG_REQ_IGNORE: ignore the regulatory request
  77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78  *      be intersected with the current one.
  79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80  *      regulatory settings, and no further processing is required.
  81  */
  82 enum reg_request_treatment {
  83         REG_REQ_OK,
  84         REG_REQ_IGNORE,
  85         REG_REQ_INTERSECT,
  86         REG_REQ_ALREADY_SET,
  87 };
  88 
  89 static struct regulatory_request core_request_world = {
  90         .initiator = NL80211_REGDOM_SET_BY_CORE,
  91         .alpha2[0] = '0',
  92         .alpha2[1] = '0',
  93         .intersect = false,
  94         .processed = true,
  95         .country_ie_env = ENVIRON_ANY,
  96 };
  97 
  98 /*
  99  * Receipt of information from last regulatory request,
 100  * protected by RTNL (and can be accessed with RCU protection)
 101  */
 102 static struct regulatory_request __rcu *last_request =
 103         (void __force __rcu *)&core_request_world;
 104 
 105 /* To trigger userspace events and load firmware */
 106 static struct platform_device *reg_pdev;
 107 
 108 /*
 109  * Central wireless core regulatory domains, we only need two,
 110  * the current one and a world regulatory domain in case we have no
 111  * information to give us an alpha2.
 112  * (protected by RTNL, can be read under RCU)
 113  */
 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115 
 116 /*
 117  * Number of devices that registered to the core
 118  * that support cellular base station regulatory hints
 119  * (protected by RTNL)
 120  */
 121 static int reg_num_devs_support_basehint;
 122 
 123 /*
 124  * State variable indicating if the platform on which the devices
 125  * are attached is operating in an indoor environment. The state variable
 126  * is relevant for all registered devices.
 127  */
 128 static bool reg_is_indoor;
 129 static spinlock_t reg_indoor_lock;
 130 
 131 /* Used to track the userspace process controlling the indoor setting */
 132 static u32 reg_is_indoor_portid;
 133 
 134 static void restore_regulatory_settings(bool reset_user, bool cached);
 135 static void print_regdomain(const struct ieee80211_regdomain *rd);
 136 
 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 138 {
 139         return rcu_dereference_rtnl(cfg80211_regdomain);
 140 }
 141 
 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 143 {
 144         return rcu_dereference_rtnl(wiphy->regd);
 145 }
 146 
 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 148 {
 149         switch (dfs_region) {
 150         case NL80211_DFS_UNSET:
 151                 return "unset";
 152         case NL80211_DFS_FCC:
 153                 return "FCC";
 154         case NL80211_DFS_ETSI:
 155                 return "ETSI";
 156         case NL80211_DFS_JP:
 157                 return "JP";
 158         }
 159         return "Unknown";
 160 }
 161 
 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 163 {
 164         const struct ieee80211_regdomain *regd = NULL;
 165         const struct ieee80211_regdomain *wiphy_regd = NULL;
 166 
 167         regd = get_cfg80211_regdom();
 168         if (!wiphy)
 169                 goto out;
 170 
 171         wiphy_regd = get_wiphy_regdom(wiphy);
 172         if (!wiphy_regd)
 173                 goto out;
 174 
 175         if (wiphy_regd->dfs_region == regd->dfs_region)
 176                 goto out;
 177 
 178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 179                  dev_name(&wiphy->dev),
 180                  reg_dfs_region_str(wiphy_regd->dfs_region),
 181                  reg_dfs_region_str(regd->dfs_region));
 182 
 183 out:
 184         return regd->dfs_region;
 185 }
 186 
 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 188 {
 189         if (!r)
 190                 return;
 191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 192 }
 193 
 194 static struct regulatory_request *get_last_request(void)
 195 {
 196         return rcu_dereference_rtnl(last_request);
 197 }
 198 
 199 /* Used to queue up regulatory hints */
 200 static LIST_HEAD(reg_requests_list);
 201 static spinlock_t reg_requests_lock;
 202 
 203 /* Used to queue up beacon hints for review */
 204 static LIST_HEAD(reg_pending_beacons);
 205 static spinlock_t reg_pending_beacons_lock;
 206 
 207 /* Used to keep track of processed beacon hints */
 208 static LIST_HEAD(reg_beacon_list);
 209 
 210 struct reg_beacon {
 211         struct list_head list;
 212         struct ieee80211_channel chan;
 213 };
 214 
 215 static void reg_check_chans_work(struct work_struct *work);
 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 217 
 218 static void reg_todo(struct work_struct *work);
 219 static DECLARE_WORK(reg_work, reg_todo);
 220 
 221 /* We keep a static world regulatory domain in case of the absence of CRDA */
 222 static const struct ieee80211_regdomain world_regdom = {
 223         .n_reg_rules = 8,
 224         .alpha2 =  "00",
 225         .reg_rules = {
 226                 /* IEEE 802.11b/g, channels 1..11 */
 227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 228                 /* IEEE 802.11b/g, channels 12..13. */
 229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
 230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 231                 /* IEEE 802.11 channel 14 - Only JP enables
 232                  * this and for 802.11b only */
 233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
 234                         NL80211_RRF_NO_IR |
 235                         NL80211_RRF_NO_OFDM),
 236                 /* IEEE 802.11a, channel 36..48 */
 237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
 238                         NL80211_RRF_NO_IR |
 239                         NL80211_RRF_AUTO_BW),
 240 
 241                 /* IEEE 802.11a, channel 52..64 - DFS required */
 242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
 243                         NL80211_RRF_NO_IR |
 244                         NL80211_RRF_AUTO_BW |
 245                         NL80211_RRF_DFS),
 246 
 247                 /* IEEE 802.11a, channel 100..144 - DFS required */
 248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
 249                         NL80211_RRF_NO_IR |
 250                         NL80211_RRF_DFS),
 251 
 252                 /* IEEE 802.11a, channel 149..165 */
 253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
 254                         NL80211_RRF_NO_IR),
 255 
 256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
 257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 258         }
 259 };
 260 
 261 /* protected by RTNL */
 262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
 263         &world_regdom;
 264 
 265 static char *ieee80211_regdom = "00";
 266 static char user_alpha2[2];
 267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
 268 
 269 module_param(ieee80211_regdom, charp, 0444);
 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 271 
 272 static void reg_free_request(struct regulatory_request *request)
 273 {
 274         if (request == &core_request_world)
 275                 return;
 276 
 277         if (request != get_last_request())
 278                 kfree(request);
 279 }
 280 
 281 static void reg_free_last_request(void)
 282 {
 283         struct regulatory_request *lr = get_last_request();
 284 
 285         if (lr != &core_request_world && lr)
 286                 kfree_rcu(lr, rcu_head);
 287 }
 288 
 289 static void reg_update_last_request(struct regulatory_request *request)
 290 {
 291         struct regulatory_request *lr;
 292 
 293         lr = get_last_request();
 294         if (lr == request)
 295                 return;
 296 
 297         reg_free_last_request();
 298         rcu_assign_pointer(last_request, request);
 299 }
 300 
 301 static void reset_regdomains(bool full_reset,
 302                              const struct ieee80211_regdomain *new_regdom)
 303 {
 304         const struct ieee80211_regdomain *r;
 305 
 306         ASSERT_RTNL();
 307 
 308         r = get_cfg80211_regdom();
 309 
 310         /* avoid freeing static information or freeing something twice */
 311         if (r == cfg80211_world_regdom)
 312                 r = NULL;
 313         if (cfg80211_world_regdom == &world_regdom)
 314                 cfg80211_world_regdom = NULL;
 315         if (r == &world_regdom)
 316                 r = NULL;
 317 
 318         rcu_free_regdom(r);
 319         rcu_free_regdom(cfg80211_world_regdom);
 320 
 321         cfg80211_world_regdom = &world_regdom;
 322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 323 
 324         if (!full_reset)
 325                 return;
 326 
 327         reg_update_last_request(&core_request_world);
 328 }
 329 
 330 /*
 331  * Dynamic world regulatory domain requested by the wireless
 332  * core upon initialization
 333  */
 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 335 {
 336         struct regulatory_request *lr;
 337 
 338         lr = get_last_request();
 339 
 340         WARN_ON(!lr);
 341 
 342         reset_regdomains(false, rd);
 343 
 344         cfg80211_world_regdom = rd;
 345 }
 346 
 347 bool is_world_regdom(const char *alpha2)
 348 {
 349         if (!alpha2)
 350                 return false;
 351         return alpha2[0] == '0' && alpha2[1] == '0';
 352 }
 353 
 354 static bool is_alpha2_set(const char *alpha2)
 355 {
 356         if (!alpha2)
 357                 return false;
 358         return alpha2[0] && alpha2[1];
 359 }
 360 
 361 static bool is_unknown_alpha2(const char *alpha2)
 362 {
 363         if (!alpha2)
 364                 return false;
 365         /*
 366          * Special case where regulatory domain was built by driver
 367          * but a specific alpha2 cannot be determined
 368          */
 369         return alpha2[0] == '9' && alpha2[1] == '9';
 370 }
 371 
 372 static bool is_intersected_alpha2(const char *alpha2)
 373 {
 374         if (!alpha2)
 375                 return false;
 376         /*
 377          * Special case where regulatory domain is the
 378          * result of an intersection between two regulatory domain
 379          * structures
 380          */
 381         return alpha2[0] == '9' && alpha2[1] == '8';
 382 }
 383 
 384 static bool is_an_alpha2(const char *alpha2)
 385 {
 386         if (!alpha2)
 387                 return false;
 388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 389 }
 390 
 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 392 {
 393         if (!alpha2_x || !alpha2_y)
 394                 return false;
 395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 396 }
 397 
 398 static bool regdom_changes(const char *alpha2)
 399 {
 400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 401 
 402         if (!r)
 403                 return true;
 404         return !alpha2_equal(r->alpha2, alpha2);
 405 }
 406 
 407 /*
 408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 410  * has ever been issued.
 411  */
 412 static bool is_user_regdom_saved(void)
 413 {
 414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 415                 return false;
 416 
 417         /* This would indicate a mistake on the design */
 418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 419                  "Unexpected user alpha2: %c%c\n",
 420                  user_alpha2[0], user_alpha2[1]))
 421                 return false;
 422 
 423         return true;
 424 }
 425 
 426 static const struct ieee80211_regdomain *
 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 428 {
 429         struct ieee80211_regdomain *regd;
 430         unsigned int i;
 431 
 432         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 433                        GFP_KERNEL);
 434         if (!regd)
 435                 return ERR_PTR(-ENOMEM);
 436 
 437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 438 
 439         for (i = 0; i < src_regd->n_reg_rules; i++)
 440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 441                        sizeof(struct ieee80211_reg_rule));
 442 
 443         return regd;
 444 }
 445 
 446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 447 {
 448         ASSERT_RTNL();
 449 
 450         if (!IS_ERR(cfg80211_user_regdom))
 451                 kfree(cfg80211_user_regdom);
 452         cfg80211_user_regdom = reg_copy_regd(rd);
 453 }
 454 
 455 struct reg_regdb_apply_request {
 456         struct list_head list;
 457         const struct ieee80211_regdomain *regdom;
 458 };
 459 
 460 static LIST_HEAD(reg_regdb_apply_list);
 461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
 462 
 463 static void reg_regdb_apply(struct work_struct *work)
 464 {
 465         struct reg_regdb_apply_request *request;
 466 
 467         rtnl_lock();
 468 
 469         mutex_lock(&reg_regdb_apply_mutex);
 470         while (!list_empty(&reg_regdb_apply_list)) {
 471                 request = list_first_entry(&reg_regdb_apply_list,
 472                                            struct reg_regdb_apply_request,
 473                                            list);
 474                 list_del(&request->list);
 475 
 476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 477                 kfree(request);
 478         }
 479         mutex_unlock(&reg_regdb_apply_mutex);
 480 
 481         rtnl_unlock();
 482 }
 483 
 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 485 
 486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 487 {
 488         struct reg_regdb_apply_request *request;
 489 
 490         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 491         if (!request) {
 492                 kfree(regdom);
 493                 return -ENOMEM;
 494         }
 495 
 496         request->regdom = regdom;
 497 
 498         mutex_lock(&reg_regdb_apply_mutex);
 499         list_add_tail(&request->list, &reg_regdb_apply_list);
 500         mutex_unlock(&reg_regdb_apply_mutex);
 501 
 502         schedule_work(&reg_regdb_work);
 503         return 0;
 504 }
 505 
 506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
 507 /* Max number of consecutive attempts to communicate with CRDA  */
 508 #define REG_MAX_CRDA_TIMEOUTS 10
 509 
 510 static u32 reg_crda_timeouts;
 511 
 512 static void crda_timeout_work(struct work_struct *work);
 513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 514 
 515 static void crda_timeout_work(struct work_struct *work)
 516 {
 517         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 518         rtnl_lock();
 519         reg_crda_timeouts++;
 520         restore_regulatory_settings(true, false);
 521         rtnl_unlock();
 522 }
 523 
 524 static void cancel_crda_timeout(void)
 525 {
 526         cancel_delayed_work(&crda_timeout);
 527 }
 528 
 529 static void cancel_crda_timeout_sync(void)
 530 {
 531         cancel_delayed_work_sync(&crda_timeout);
 532 }
 533 
 534 static void reset_crda_timeouts(void)
 535 {
 536         reg_crda_timeouts = 0;
 537 }
 538 
 539 /*
 540  * This lets us keep regulatory code which is updated on a regulatory
 541  * basis in userspace.
 542  */
 543 static int call_crda(const char *alpha2)
 544 {
 545         char country[12];
 546         char *env[] = { country, NULL };
 547         int ret;
 548 
 549         snprintf(country, sizeof(country), "COUNTRY=%c%c",
 550                  alpha2[0], alpha2[1]);
 551 
 552         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 553                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 554                 return -EINVAL;
 555         }
 556 
 557         if (!is_world_regdom((char *) alpha2))
 558                 pr_debug("Calling CRDA for country: %c%c\n",
 559                          alpha2[0], alpha2[1]);
 560         else
 561                 pr_debug("Calling CRDA to update world regulatory domain\n");
 562 
 563         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 564         if (ret)
 565                 return ret;
 566 
 567         queue_delayed_work(system_power_efficient_wq,
 568                            &crda_timeout, msecs_to_jiffies(3142));
 569         return 0;
 570 }
 571 #else
 572 static inline void cancel_crda_timeout(void) {}
 573 static inline void cancel_crda_timeout_sync(void) {}
 574 static inline void reset_crda_timeouts(void) {}
 575 static inline int call_crda(const char *alpha2)
 576 {
 577         return -ENODATA;
 578 }
 579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 580 
 581 /* code to directly load a firmware database through request_firmware */
 582 static const struct fwdb_header *regdb;
 583 
 584 struct fwdb_country {
 585         u8 alpha2[2];
 586         __be16 coll_ptr;
 587         /* this struct cannot be extended */
 588 } __packed __aligned(4);
 589 
 590 struct fwdb_collection {
 591         u8 len;
 592         u8 n_rules;
 593         u8 dfs_region;
 594         /* no optional data yet */
 595         /* aligned to 2, then followed by __be16 array of rule pointers */
 596 } __packed __aligned(4);
 597 
 598 enum fwdb_flags {
 599         FWDB_FLAG_NO_OFDM       = BIT(0),
 600         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
 601         FWDB_FLAG_DFS           = BIT(2),
 602         FWDB_FLAG_NO_IR         = BIT(3),
 603         FWDB_FLAG_AUTO_BW       = BIT(4),
 604 };
 605 
 606 struct fwdb_wmm_ac {
 607         u8 ecw;
 608         u8 aifsn;
 609         __be16 cot;
 610 } __packed;
 611 
 612 struct fwdb_wmm_rule {
 613         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 614         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 615 } __packed;
 616 
 617 struct fwdb_rule {
 618         u8 len;
 619         u8 flags;
 620         __be16 max_eirp;
 621         __be32 start, end, max_bw;
 622         /* start of optional data */
 623         __be16 cac_timeout;
 624         __be16 wmm_ptr;
 625 } __packed __aligned(4);
 626 
 627 #define FWDB_MAGIC 0x52474442
 628 #define FWDB_VERSION 20
 629 
 630 struct fwdb_header {
 631         __be32 magic;
 632         __be32 version;
 633         struct fwdb_country country[];
 634 } __packed __aligned(4);
 635 
 636 static int ecw2cw(int ecw)
 637 {
 638         return (1 << ecw) - 1;
 639 }
 640 
 641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
 642 {
 643         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 644         int i;
 645 
 646         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 647                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 648                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 649                 u8 aifsn = ac[i].aifsn;
 650 
 651                 if (cw_min >= cw_max)
 652                         return false;
 653 
 654                 if (aifsn < 1)
 655                         return false;
 656         }
 657 
 658         return true;
 659 }
 660 
 661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 662 {
 663         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 664 
 665         if ((u8 *)rule + sizeof(rule->len) > data + size)
 666                 return false;
 667 
 668         /* mandatory fields */
 669         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 670                 return false;
 671         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 672                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 673                 struct fwdb_wmm_rule *wmm;
 674 
 675                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 676                         return false;
 677 
 678                 wmm = (void *)(data + wmm_ptr);
 679 
 680                 if (!valid_wmm(wmm))
 681                         return false;
 682         }
 683         return true;
 684 }
 685 
 686 static bool valid_country(const u8 *data, unsigned int size,
 687                           const struct fwdb_country *country)
 688 {
 689         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 690         struct fwdb_collection *coll = (void *)(data + ptr);
 691         __be16 *rules_ptr;
 692         unsigned int i;
 693 
 694         /* make sure we can read len/n_rules */
 695         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 696                 return false;
 697 
 698         /* make sure base struct and all rules fit */
 699         if ((u8 *)coll + ALIGN(coll->len, 2) +
 700             (coll->n_rules * 2) > data + size)
 701                 return false;
 702 
 703         /* mandatory fields must exist */
 704         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 705                 return false;
 706 
 707         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 708 
 709         for (i = 0; i < coll->n_rules; i++) {
 710                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 711 
 712                 if (!valid_rule(data, size, rule_ptr))
 713                         return false;
 714         }
 715 
 716         return true;
 717 }
 718 
 719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 720 static struct key *builtin_regdb_keys;
 721 
 722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
 723 {
 724         const u8 *end = p + buflen;
 725         size_t plen;
 726         key_ref_t key;
 727 
 728         while (p < end) {
 729                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
 730                  * than 256 bytes in size.
 731                  */
 732                 if (end - p < 4)
 733                         goto dodgy_cert;
 734                 if (p[0] != 0x30 &&
 735                     p[1] != 0x82)
 736                         goto dodgy_cert;
 737                 plen = (p[2] << 8) | p[3];
 738                 plen += 4;
 739                 if (plen > end - p)
 740                         goto dodgy_cert;
 741 
 742                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
 743                                            "asymmetric", NULL, p, plen,
 744                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 745                                             KEY_USR_VIEW | KEY_USR_READ),
 746                                            KEY_ALLOC_NOT_IN_QUOTA |
 747                                            KEY_ALLOC_BUILT_IN |
 748                                            KEY_ALLOC_BYPASS_RESTRICTION);
 749                 if (IS_ERR(key)) {
 750                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
 751                                PTR_ERR(key));
 752                 } else {
 753                         pr_notice("Loaded X.509 cert '%s'\n",
 754                                   key_ref_to_ptr(key)->description);
 755                         key_ref_put(key);
 756                 }
 757                 p += plen;
 758         }
 759 
 760         return;
 761 
 762 dodgy_cert:
 763         pr_err("Problem parsing in-kernel X.509 certificate list\n");
 764 }
 765 
 766 static int __init load_builtin_regdb_keys(void)
 767 {
 768         builtin_regdb_keys =
 769                 keyring_alloc(".builtin_regdb_keys",
 770                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 771                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 772                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 773                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 774         if (IS_ERR(builtin_regdb_keys))
 775                 return PTR_ERR(builtin_regdb_keys);
 776 
 777         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 778 
 779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 780         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
 781 #endif
 782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 783         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 784                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
 785 #endif
 786 
 787         return 0;
 788 }
 789 
 790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 791 {
 792         const struct firmware *sig;
 793         bool result;
 794 
 795         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 796                 return false;
 797 
 798         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 799                                         builtin_regdb_keys,
 800                                         VERIFYING_UNSPECIFIED_SIGNATURE,
 801                                         NULL, NULL) == 0;
 802 
 803         release_firmware(sig);
 804 
 805         return result;
 806 }
 807 
 808 static void free_regdb_keyring(void)
 809 {
 810         key_put(builtin_regdb_keys);
 811 }
 812 #else
 813 static int load_builtin_regdb_keys(void)
 814 {
 815         return 0;
 816 }
 817 
 818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 819 {
 820         return true;
 821 }
 822 
 823 static void free_regdb_keyring(void)
 824 {
 825 }
 826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 827 
 828 static bool valid_regdb(const u8 *data, unsigned int size)
 829 {
 830         const struct fwdb_header *hdr = (void *)data;
 831         const struct fwdb_country *country;
 832 
 833         if (size < sizeof(*hdr))
 834                 return false;
 835 
 836         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 837                 return false;
 838 
 839         if (hdr->version != cpu_to_be32(FWDB_VERSION))
 840                 return false;
 841 
 842         if (!regdb_has_valid_signature(data, size))
 843                 return false;
 844 
 845         country = &hdr->country[0];
 846         while ((u8 *)(country + 1) <= data + size) {
 847                 if (!country->coll_ptr)
 848                         break;
 849                 if (!valid_country(data, size, country))
 850                         return false;
 851                 country++;
 852         }
 853 
 854         return true;
 855 }
 856 
 857 static void set_wmm_rule(const struct fwdb_header *db,
 858                          const struct fwdb_country *country,
 859                          const struct fwdb_rule *rule,
 860                          struct ieee80211_reg_rule *rrule)
 861 {
 862         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 863         struct fwdb_wmm_rule *wmm;
 864         unsigned int i, wmm_ptr;
 865 
 866         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 867         wmm = (void *)((u8 *)db + wmm_ptr);
 868 
 869         if (!valid_wmm(wmm)) {
 870                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 871                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 872                        country->alpha2[0], country->alpha2[1]);
 873                 return;
 874         }
 875 
 876         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 877                 wmm_rule->client[i].cw_min =
 878                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 879                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 880                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 881                 wmm_rule->client[i].cot =
 882                         1000 * be16_to_cpu(wmm->client[i].cot);
 883                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 884                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 885                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 886                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 887         }
 888 
 889         rrule->has_wmm = true;
 890 }
 891 
 892 static int __regdb_query_wmm(const struct fwdb_header *db,
 893                              const struct fwdb_country *country, int freq,
 894                              struct ieee80211_reg_rule *rrule)
 895 {
 896         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 897         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 898         int i;
 899 
 900         for (i = 0; i < coll->n_rules; i++) {
 901                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 902                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 903                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 904 
 905                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 906                         continue;
 907 
 908                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 909                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 910                         set_wmm_rule(db, country, rule, rrule);
 911                         return 0;
 912                 }
 913         }
 914 
 915         return -ENODATA;
 916 }
 917 
 918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 919 {
 920         const struct fwdb_header *hdr = regdb;
 921         const struct fwdb_country *country;
 922 
 923         if (!regdb)
 924                 return -ENODATA;
 925 
 926         if (IS_ERR(regdb))
 927                 return PTR_ERR(regdb);
 928 
 929         country = &hdr->country[0];
 930         while (country->coll_ptr) {
 931                 if (alpha2_equal(alpha2, country->alpha2))
 932                         return __regdb_query_wmm(regdb, country, freq, rule);
 933 
 934                 country++;
 935         }
 936 
 937         return -ENODATA;
 938 }
 939 EXPORT_SYMBOL(reg_query_regdb_wmm);
 940 
 941 static int regdb_query_country(const struct fwdb_header *db,
 942                                const struct fwdb_country *country)
 943 {
 944         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 945         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 946         struct ieee80211_regdomain *regdom;
 947         unsigned int i;
 948 
 949         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 950                          GFP_KERNEL);
 951         if (!regdom)
 952                 return -ENOMEM;
 953 
 954         regdom->n_reg_rules = coll->n_rules;
 955         regdom->alpha2[0] = country->alpha2[0];
 956         regdom->alpha2[1] = country->alpha2[1];
 957         regdom->dfs_region = coll->dfs_region;
 958 
 959         for (i = 0; i < regdom->n_reg_rules; i++) {
 960                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 961                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 962                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 963                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 964 
 965                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 966                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 967                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 968 
 969                 rrule->power_rule.max_antenna_gain = 0;
 970                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 971 
 972                 rrule->flags = 0;
 973                 if (rule->flags & FWDB_FLAG_NO_OFDM)
 974                         rrule->flags |= NL80211_RRF_NO_OFDM;
 975                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 976                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 977                 if (rule->flags & FWDB_FLAG_DFS)
 978                         rrule->flags |= NL80211_RRF_DFS;
 979                 if (rule->flags & FWDB_FLAG_NO_IR)
 980                         rrule->flags |= NL80211_RRF_NO_IR;
 981                 if (rule->flags & FWDB_FLAG_AUTO_BW)
 982                         rrule->flags |= NL80211_RRF_AUTO_BW;
 983 
 984                 rrule->dfs_cac_ms = 0;
 985 
 986                 /* handle optional data */
 987                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
 988                         rrule->dfs_cac_ms =
 989                                 1000 * be16_to_cpu(rule->cac_timeout);
 990                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
 991                         set_wmm_rule(db, country, rule, rrule);
 992         }
 993 
 994         return reg_schedule_apply(regdom);
 995 }
 996 
 997 static int query_regdb(const char *alpha2)
 998 {
 999         const struct fwdb_header *hdr = regdb;
1000         const struct fwdb_country *country;
1001 
1002         ASSERT_RTNL();
1003 
1004         if (IS_ERR(regdb))
1005                 return PTR_ERR(regdb);
1006 
1007         country = &hdr->country[0];
1008         while (country->coll_ptr) {
1009                 if (alpha2_equal(alpha2, country->alpha2))
1010                         return regdb_query_country(regdb, country);
1011                 country++;
1012         }
1013 
1014         return -ENODATA;
1015 }
1016 
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019         int set_error = 0;
1020         bool restore = true;
1021         void *db;
1022 
1023         if (!fw) {
1024                 pr_info("failed to load regulatory.db\n");
1025                 set_error = -ENODATA;
1026         } else if (!valid_regdb(fw->data, fw->size)) {
1027                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028                 set_error = -EINVAL;
1029         }
1030 
1031         rtnl_lock();
1032         if (regdb && !IS_ERR(regdb)) {
1033                 /* negative case - a bug
1034                  * positive case - can happen due to race in case of multiple cb's in
1035                  * queue, due to usage of asynchronous callback
1036                  *
1037                  * Either case, just restore and free new db.
1038                  */
1039         } else if (set_error) {
1040                 regdb = ERR_PTR(set_error);
1041         } else if (fw) {
1042                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043                 if (db) {
1044                         regdb = db;
1045                         restore = context && query_regdb(context);
1046                 } else {
1047                         restore = true;
1048                 }
1049         }
1050 
1051         if (restore)
1052                 restore_regulatory_settings(true, false);
1053 
1054         rtnl_unlock();
1055 
1056         kfree(context);
1057 
1058         release_firmware(fw);
1059 }
1060 
1061 static int query_regdb_file(const char *alpha2)
1062 {
1063         ASSERT_RTNL();
1064 
1065         if (regdb)
1066                 return query_regdb(alpha2);
1067 
1068         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069         if (!alpha2)
1070                 return -ENOMEM;
1071 
1072         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073                                        &reg_pdev->dev, GFP_KERNEL,
1074                                        (void *)alpha2, regdb_fw_cb);
1075 }
1076 
1077 int reg_reload_regdb(void)
1078 {
1079         const struct firmware *fw;
1080         void *db;
1081         int err;
1082 
1083         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084         if (err)
1085                 return err;
1086 
1087         if (!valid_regdb(fw->data, fw->size)) {
1088                 err = -ENODATA;
1089                 goto out;
1090         }
1091 
1092         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093         if (!db) {
1094                 err = -ENOMEM;
1095                 goto out;
1096         }
1097 
1098         rtnl_lock();
1099         if (!IS_ERR_OR_NULL(regdb))
1100                 kfree(regdb);
1101         regdb = db;
1102         rtnl_unlock();
1103 
1104  out:
1105         release_firmware(fw);
1106         return err;
1107 }
1108 
1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111         if (query_regdb_file(request->alpha2) == 0)
1112                 return true;
1113 
1114         if (call_crda(request->alpha2) == 0)
1115                 return true;
1116 
1117         return false;
1118 }
1119 
1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122         struct regulatory_request *lr = get_last_request();
1123 
1124         if (!lr || lr->processed)
1125                 return false;
1126 
1127         return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129 
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132         struct regulatory_request *lr = get_last_request();
1133 
1134         /*
1135          * Follow the driver's regulatory domain, if present, unless a country
1136          * IE has been processed or a user wants to help complaince further
1137          */
1138         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140             wiphy->regd)
1141                 return get_wiphy_regdom(wiphy);
1142 
1143         return get_cfg80211_regdom();
1144 }
1145 
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148                                  const struct ieee80211_reg_rule *rule)
1149 {
1150         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151         const struct ieee80211_freq_range *freq_range_tmp;
1152         const struct ieee80211_reg_rule *tmp;
1153         u32 start_freq, end_freq, idx, no;
1154 
1155         for (idx = 0; idx < rd->n_reg_rules; idx++)
1156                 if (rule == &rd->reg_rules[idx])
1157                         break;
1158 
1159         if (idx == rd->n_reg_rules)
1160                 return 0;
1161 
1162         /* get start_freq */
1163         no = idx;
1164 
1165         while (no) {
1166                 tmp = &rd->reg_rules[--no];
1167                 freq_range_tmp = &tmp->freq_range;
1168 
1169                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170                         break;
1171 
1172                 freq_range = freq_range_tmp;
1173         }
1174 
1175         start_freq = freq_range->start_freq_khz;
1176 
1177         /* get end_freq */
1178         freq_range = &rule->freq_range;
1179         no = idx;
1180 
1181         while (no < rd->n_reg_rules - 1) {
1182                 tmp = &rd->reg_rules[++no];
1183                 freq_range_tmp = &tmp->freq_range;
1184 
1185                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186                         break;
1187 
1188                 freq_range = freq_range_tmp;
1189         }
1190 
1191         end_freq = freq_range->end_freq_khz;
1192 
1193         return end_freq - start_freq;
1194 }
1195 
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197                                    const struct ieee80211_reg_rule *rule)
1198 {
1199         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200 
1201         if (rule->flags & NL80211_RRF_NO_160MHZ)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203         if (rule->flags & NL80211_RRF_NO_80MHZ)
1204                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205 
1206         /*
1207          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208          * are not allowed.
1209          */
1210         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211             rule->flags & NL80211_RRF_NO_HT40PLUS)
1212                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213 
1214         return bw;
1215 }
1216 
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221         u32 freq_diff;
1222 
1223         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224                 return false;
1225 
1226         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227                 return false;
1228 
1229         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230 
1231         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232             freq_range->max_bandwidth_khz > freq_diff)
1233                 return false;
1234 
1235         return true;
1236 }
1237 
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240         const struct ieee80211_reg_rule *reg_rule = NULL;
1241         unsigned int i;
1242 
1243         if (!rd->n_reg_rules)
1244                 return false;
1245 
1246         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247                 return false;
1248 
1249         for (i = 0; i < rd->n_reg_rules; i++) {
1250                 reg_rule = &rd->reg_rules[i];
1251                 if (!is_valid_reg_rule(reg_rule))
1252                         return false;
1253         }
1254 
1255         return true;
1256 }
1257 
1258 /**
1259  * freq_in_rule_band - tells us if a frequency is in a frequency band
1260  * @freq_range: frequency rule we want to query
1261  * @freq_khz: frequency we are inquiring about
1262  *
1263  * This lets us know if a specific frequency rule is or is not relevant to
1264  * a specific frequency's band. Bands are device specific and artificial
1265  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266  * however it is safe for now to assume that a frequency rule should not be
1267  * part of a frequency's band if the start freq or end freq are off by more
1268  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269  * 60 GHz band.
1270  * This resolution can be lowered and should be considered as we add
1271  * regulatory rule support for other "bands".
1272  **/
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274                               u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ  1000000
1277         /*
1278          * From 802.11ad: directional multi-gigabit (DMG):
1279          * Pertaining to operation in a frequency band containing a channel
1280          * with the Channel starting frequency above 45 GHz.
1281          */
1282         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285                 return true;
1286         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287                 return true;
1288         return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291 
1292 /*
1293  * Later on we can perhaps use the more restrictive DFS
1294  * region but we don't have information for that yet so
1295  * for now simply disallow conflicts.
1296  */
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299                          const enum nl80211_dfs_regions dfs_region2)
1300 {
1301         if (dfs_region1 != dfs_region2)
1302                 return NL80211_DFS_UNSET;
1303         return dfs_region1;
1304 }
1305 
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307                                     const struct ieee80211_wmm_ac *wmm_ac2,
1308                                     struct ieee80211_wmm_ac *intersect)
1309 {
1310         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315 
1316 /*
1317  * Helper for regdom_intersect(), this does the real
1318  * mathematical intersection fun
1319  */
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321                                const struct ieee80211_regdomain *rd2,
1322                                const struct ieee80211_reg_rule *rule1,
1323                                const struct ieee80211_reg_rule *rule2,
1324                                struct ieee80211_reg_rule *intersected_rule)
1325 {
1326         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327         struct ieee80211_freq_range *freq_range;
1328         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329         struct ieee80211_power_rule *power_rule;
1330         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331         struct ieee80211_wmm_rule *wmm_rule;
1332         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333 
1334         freq_range1 = &rule1->freq_range;
1335         freq_range2 = &rule2->freq_range;
1336         freq_range = &intersected_rule->freq_range;
1337 
1338         power_rule1 = &rule1->power_rule;
1339         power_rule2 = &rule2->power_rule;
1340         power_rule = &intersected_rule->power_rule;
1341 
1342         wmm_rule1 = &rule1->wmm_rule;
1343         wmm_rule2 = &rule2->wmm_rule;
1344         wmm_rule = &intersected_rule->wmm_rule;
1345 
1346         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347                                          freq_range2->start_freq_khz);
1348         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349                                        freq_range2->end_freq_khz);
1350 
1351         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353 
1354         if (rule1->flags & NL80211_RRF_AUTO_BW)
1355                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356         if (rule2->flags & NL80211_RRF_AUTO_BW)
1357                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358 
1359         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360 
1361         intersected_rule->flags = rule1->flags | rule2->flags;
1362 
1363         /*
1364          * In case NL80211_RRF_AUTO_BW requested for both rules
1365          * set AUTO_BW in intersected rule also. Next we will
1366          * calculate BW correctly in handle_channel function.
1367          * In other case remove AUTO_BW flag while we calculate
1368          * maximum bandwidth correctly and auto calculation is
1369          * not required.
1370          */
1371         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372             (rule2->flags & NL80211_RRF_AUTO_BW))
1373                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374         else
1375                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376 
1377         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378         if (freq_range->max_bandwidth_khz > freq_diff)
1379                 freq_range->max_bandwidth_khz = freq_diff;
1380 
1381         power_rule->max_eirp = min(power_rule1->max_eirp,
1382                 power_rule2->max_eirp);
1383         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384                 power_rule2->max_antenna_gain);
1385 
1386         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387                                            rule2->dfs_cac_ms);
1388 
1389         if (rule1->has_wmm && rule2->has_wmm) {
1390                 u8 ac;
1391 
1392                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394                                                 &wmm_rule2->client[ac],
1395                                                 &wmm_rule->client[ac]);
1396                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397                                                 &wmm_rule2->ap[ac],
1398                                                 &wmm_rule->ap[ac]);
1399                 }
1400 
1401                 intersected_rule->has_wmm = true;
1402         } else if (rule1->has_wmm) {
1403                 *wmm_rule = *wmm_rule1;
1404                 intersected_rule->has_wmm = true;
1405         } else if (rule2->has_wmm) {
1406                 *wmm_rule = *wmm_rule2;
1407                 intersected_rule->has_wmm = true;
1408         } else {
1409                 intersected_rule->has_wmm = false;
1410         }
1411 
1412         if (!is_valid_reg_rule(intersected_rule))
1413                 return -EINVAL;
1414 
1415         return 0;
1416 }
1417 
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420                           struct ieee80211_reg_rule *r2)
1421 {
1422         /* for simplicity, currently consider only same flags */
1423         if (r1->flags != r2->flags)
1424                 return false;
1425 
1426         /* verify r1 is more restrictive */
1427         if ((r1->power_rule.max_antenna_gain >
1428              r2->power_rule.max_antenna_gain) ||
1429             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430                 return false;
1431 
1432         /* make sure r2's range is contained within r1 */
1433         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435                 return false;
1436 
1437         /* and finally verify that r1.max_bw >= r2.max_bw */
1438         if (r1->freq_range.max_bandwidth_khz <
1439             r2->freq_range.max_bandwidth_khz)
1440                 return false;
1441 
1442         return true;
1443 }
1444 
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449         struct ieee80211_reg_rule *tmp_rule;
1450         int i;
1451 
1452         for (i = 0; i < *n_rules; i++) {
1453                 tmp_rule = &reg_rules[i];
1454                 /* rule is already contained - do nothing */
1455                 if (rule_contains(tmp_rule, rule))
1456                         return;
1457 
1458                 /* extend rule if possible */
1459                 if (rule_contains(rule, tmp_rule)) {
1460                         memcpy(tmp_rule, rule, sizeof(*rule));
1461                         return;
1462                 }
1463         }
1464 
1465         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466         (*n_rules)++;
1467 }
1468 
1469 /**
1470  * regdom_intersect - do the intersection between two regulatory domains
1471  * @rd1: first regulatory domain
1472  * @rd2: second regulatory domain
1473  *
1474  * Use this function to get the intersection between two regulatory domains.
1475  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476  * as no one single alpha2 can represent this regulatory domain.
1477  *
1478  * Returns a pointer to the regulatory domain structure which will hold the
1479  * resulting intersection of rules between rd1 and rd2. We will
1480  * kzalloc() this structure for you.
1481  */
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484                  const struct ieee80211_regdomain *rd2)
1485 {
1486         int r;
1487         unsigned int x, y;
1488         unsigned int num_rules = 0;
1489         const struct ieee80211_reg_rule *rule1, *rule2;
1490         struct ieee80211_reg_rule intersected_rule;
1491         struct ieee80211_regdomain *rd;
1492 
1493         if (!rd1 || !rd2)
1494                 return NULL;
1495 
1496         /*
1497          * First we get a count of the rules we'll need, then we actually
1498          * build them. This is to so we can malloc() and free() a
1499          * regdomain once. The reason we use reg_rules_intersect() here
1500          * is it will return -EINVAL if the rule computed makes no sense.
1501          * All rules that do check out OK are valid.
1502          */
1503 
1504         for (x = 0; x < rd1->n_reg_rules; x++) {
1505                 rule1 = &rd1->reg_rules[x];
1506                 for (y = 0; y < rd2->n_reg_rules; y++) {
1507                         rule2 = &rd2->reg_rules[y];
1508                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509                                                  &intersected_rule))
1510                                 num_rules++;
1511                 }
1512         }
1513 
1514         if (!num_rules)
1515                 return NULL;
1516 
1517         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518         if (!rd)
1519                 return NULL;
1520 
1521         for (x = 0; x < rd1->n_reg_rules; x++) {
1522                 rule1 = &rd1->reg_rules[x];
1523                 for (y = 0; y < rd2->n_reg_rules; y++) {
1524                         rule2 = &rd2->reg_rules[y];
1525                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526                                                 &intersected_rule);
1527                         /*
1528                          * No need to memset here the intersected rule here as
1529                          * we're not using the stack anymore
1530                          */
1531                         if (r)
1532                                 continue;
1533 
1534                         add_rule(&intersected_rule, rd->reg_rules,
1535                                  &rd->n_reg_rules);
1536                 }
1537         }
1538 
1539         rd->alpha2[0] = '9';
1540         rd->alpha2[1] = '8';
1541         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542                                                   rd2->dfs_region);
1543 
1544         return rd;
1545 }
1546 
1547 /*
1548  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549  * want to just have the channel structure use these
1550  */
1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553         u32 channel_flags = 0;
1554         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555                 channel_flags |= IEEE80211_CHAN_NO_IR;
1556         if (rd_flags & NL80211_RRF_DFS)
1557                 channel_flags |= IEEE80211_CHAN_RADAR;
1558         if (rd_flags & NL80211_RRF_NO_OFDM)
1559                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568         if (rd_flags & NL80211_RRF_NO_80MHZ)
1569                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570         if (rd_flags & NL80211_RRF_NO_160MHZ)
1571                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572         return channel_flags;
1573 }
1574 
1575 static const struct ieee80211_reg_rule *
1576 freq_reg_info_regd(u32 center_freq,
1577                    const struct ieee80211_regdomain *regd, u32 bw)
1578 {
1579         int i;
1580         bool band_rule_found = false;
1581         bool bw_fits = false;
1582 
1583         if (!regd)
1584                 return ERR_PTR(-EINVAL);
1585 
1586         for (i = 0; i < regd->n_reg_rules; i++) {
1587                 const struct ieee80211_reg_rule *rr;
1588                 const struct ieee80211_freq_range *fr = NULL;
1589 
1590                 rr = &regd->reg_rules[i];
1591                 fr = &rr->freq_range;
1592 
1593                 /*
1594                  * We only need to know if one frequency rule was
1595                  * was in center_freq's band, that's enough, so lets
1596                  * not overwrite it once found
1597                  */
1598                 if (!band_rule_found)
1599                         band_rule_found = freq_in_rule_band(fr, center_freq);
1600 
1601                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1602 
1603                 if (band_rule_found && bw_fits)
1604                         return rr;
1605         }
1606 
1607         if (!band_rule_found)
1608                 return ERR_PTR(-ERANGE);
1609 
1610         return ERR_PTR(-EINVAL);
1611 }
1612 
1613 static const struct ieee80211_reg_rule *
1614 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1615 {
1616         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1617         const struct ieee80211_reg_rule *reg_rule = NULL;
1618         u32 bw;
1619 
1620         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1621                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1622                 if (!IS_ERR(reg_rule))
1623                         return reg_rule;
1624         }
1625 
1626         return reg_rule;
1627 }
1628 
1629 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1630                                                u32 center_freq)
1631 {
1632         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1633 }
1634 EXPORT_SYMBOL(freq_reg_info);
1635 
1636 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1637 {
1638         switch (initiator) {
1639         case NL80211_REGDOM_SET_BY_CORE:
1640                 return "core";
1641         case NL80211_REGDOM_SET_BY_USER:
1642                 return "user";
1643         case NL80211_REGDOM_SET_BY_DRIVER:
1644                 return "driver";
1645         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1646                 return "country element";
1647         default:
1648                 WARN_ON(1);
1649                 return "bug";
1650         }
1651 }
1652 EXPORT_SYMBOL(reg_initiator_name);
1653 
1654 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1655                                           const struct ieee80211_reg_rule *reg_rule,
1656                                           const struct ieee80211_channel *chan)
1657 {
1658         const struct ieee80211_freq_range *freq_range = NULL;
1659         u32 max_bandwidth_khz, bw_flags = 0;
1660 
1661         freq_range = &reg_rule->freq_range;
1662 
1663         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1664         /* Check if auto calculation requested */
1665         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1666                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1667 
1668         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1669         if (!cfg80211_does_bw_fit_range(freq_range,
1670                                         MHZ_TO_KHZ(chan->center_freq),
1671                                         MHZ_TO_KHZ(10)))
1672                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673         if (!cfg80211_does_bw_fit_range(freq_range,
1674                                         MHZ_TO_KHZ(chan->center_freq),
1675                                         MHZ_TO_KHZ(20)))
1676                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1677 
1678         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1679                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1680         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1681                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1682         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1683                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1684         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1685                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1686         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1687                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1688         return bw_flags;
1689 }
1690 
1691 /*
1692  * Note that right now we assume the desired channel bandwidth
1693  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1694  * per channel, the primary and the extension channel).
1695  */
1696 static void handle_channel(struct wiphy *wiphy,
1697                            enum nl80211_reg_initiator initiator,
1698                            struct ieee80211_channel *chan)
1699 {
1700         u32 flags, bw_flags = 0;
1701         const struct ieee80211_reg_rule *reg_rule = NULL;
1702         const struct ieee80211_power_rule *power_rule = NULL;
1703         struct wiphy *request_wiphy = NULL;
1704         struct regulatory_request *lr = get_last_request();
1705         const struct ieee80211_regdomain *regd;
1706 
1707         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1708 
1709         flags = chan->orig_flags;
1710 
1711         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1712         if (IS_ERR(reg_rule)) {
1713                 /*
1714                  * We will disable all channels that do not match our
1715                  * received regulatory rule unless the hint is coming
1716                  * from a Country IE and the Country IE had no information
1717                  * about a band. The IEEE 802.11 spec allows for an AP
1718                  * to send only a subset of the regulatory rules allowed,
1719                  * so an AP in the US that only supports 2.4 GHz may only send
1720                  * a country IE with information for the 2.4 GHz band
1721                  * while 5 GHz is still supported.
1722                  */
1723                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1724                     PTR_ERR(reg_rule) == -ERANGE)
1725                         return;
1726 
1727                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1728                     request_wiphy && request_wiphy == wiphy &&
1729                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1730                         pr_debug("Disabling freq %d MHz for good\n",
1731                                  chan->center_freq);
1732                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1733                         chan->flags = chan->orig_flags;
1734                 } else {
1735                         pr_debug("Disabling freq %d MHz\n",
1736                                  chan->center_freq);
1737                         chan->flags |= IEEE80211_CHAN_DISABLED;
1738                 }
1739                 return;
1740         }
1741 
1742         regd = reg_get_regdomain(wiphy);
1743 
1744         power_rule = &reg_rule->power_rule;
1745         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746 
1747         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1748             request_wiphy && request_wiphy == wiphy &&
1749             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1750                 /*
1751                  * This guarantees the driver's requested regulatory domain
1752                  * will always be used as a base for further regulatory
1753                  * settings
1754                  */
1755                 chan->flags = chan->orig_flags =
1756                         map_regdom_flags(reg_rule->flags) | bw_flags;
1757                 chan->max_antenna_gain = chan->orig_mag =
1758                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1760                         (int) MBM_TO_DBM(power_rule->max_eirp);
1761 
1762                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1763                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1764                         if (reg_rule->dfs_cac_ms)
1765                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1766                 }
1767 
1768                 return;
1769         }
1770 
1771         chan->dfs_state = NL80211_DFS_USABLE;
1772         chan->dfs_state_entered = jiffies;
1773 
1774         chan->beacon_found = false;
1775         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1776         chan->max_antenna_gain =
1777                 min_t(int, chan->orig_mag,
1778                       MBI_TO_DBI(power_rule->max_antenna_gain));
1779         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1780 
1781         if (chan->flags & IEEE80211_CHAN_RADAR) {
1782                 if (reg_rule->dfs_cac_ms)
1783                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1784                 else
1785                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786         }
1787 
1788         if (chan->orig_mpwr) {
1789                 /*
1790                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1791                  * will always follow the passed country IE power settings.
1792                  */
1793                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1794                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1795                         chan->max_power = chan->max_reg_power;
1796                 else
1797                         chan->max_power = min(chan->orig_mpwr,
1798                                               chan->max_reg_power);
1799         } else
1800                 chan->max_power = chan->max_reg_power;
1801 }
1802 
1803 static void handle_band(struct wiphy *wiphy,
1804                         enum nl80211_reg_initiator initiator,
1805                         struct ieee80211_supported_band *sband)
1806 {
1807         unsigned int i;
1808 
1809         if (!sband)
1810                 return;
1811 
1812         for (i = 0; i < sband->n_channels; i++)
1813                 handle_channel(wiphy, initiator, &sband->channels[i]);
1814 }
1815 
1816 static bool reg_request_cell_base(struct regulatory_request *request)
1817 {
1818         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1819                 return false;
1820         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1821 }
1822 
1823 bool reg_last_request_cell_base(void)
1824 {
1825         return reg_request_cell_base(get_last_request());
1826 }
1827 
1828 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1829 /* Core specific check */
1830 static enum reg_request_treatment
1831 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1832 {
1833         struct regulatory_request *lr = get_last_request();
1834 
1835         if (!reg_num_devs_support_basehint)
1836                 return REG_REQ_IGNORE;
1837 
1838         if (reg_request_cell_base(lr) &&
1839             !regdom_changes(pending_request->alpha2))
1840                 return REG_REQ_ALREADY_SET;
1841 
1842         return REG_REQ_OK;
1843 }
1844 
1845 /* Device specific check */
1846 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1847 {
1848         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1849 }
1850 #else
1851 static enum reg_request_treatment
1852 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1853 {
1854         return REG_REQ_IGNORE;
1855 }
1856 
1857 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1858 {
1859         return true;
1860 }
1861 #endif
1862 
1863 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1864 {
1865         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1866             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1867                 return true;
1868         return false;
1869 }
1870 
1871 static bool ignore_reg_update(struct wiphy *wiphy,
1872                               enum nl80211_reg_initiator initiator)
1873 {
1874         struct regulatory_request *lr = get_last_request();
1875 
1876         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1877                 return true;
1878 
1879         if (!lr) {
1880                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1881                          reg_initiator_name(initiator));
1882                 return true;
1883         }
1884 
1885         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1886             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1887                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1888                          reg_initiator_name(initiator));
1889                 return true;
1890         }
1891 
1892         /*
1893          * wiphy->regd will be set once the device has its own
1894          * desired regulatory domain set
1895          */
1896         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1897             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1898             !is_world_regdom(lr->alpha2)) {
1899                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1900                          reg_initiator_name(initiator));
1901                 return true;
1902         }
1903 
1904         if (reg_request_cell_base(lr))
1905                 return reg_dev_ignore_cell_hint(wiphy);
1906 
1907         return false;
1908 }
1909 
1910 static bool reg_is_world_roaming(struct wiphy *wiphy)
1911 {
1912         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1913         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1914         struct regulatory_request *lr = get_last_request();
1915 
1916         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1917                 return true;
1918 
1919         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1920             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1921                 return true;
1922 
1923         return false;
1924 }
1925 
1926 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1927                               struct reg_beacon *reg_beacon)
1928 {
1929         struct ieee80211_supported_band *sband;
1930         struct ieee80211_channel *chan;
1931         bool channel_changed = false;
1932         struct ieee80211_channel chan_before;
1933 
1934         sband = wiphy->bands[reg_beacon->chan.band];
1935         chan = &sband->channels[chan_idx];
1936 
1937         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1938                 return;
1939 
1940         if (chan->beacon_found)
1941                 return;
1942 
1943         chan->beacon_found = true;
1944 
1945         if (!reg_is_world_roaming(wiphy))
1946                 return;
1947 
1948         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1949                 return;
1950 
1951         chan_before = *chan;
1952 
1953         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1954                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1955                 channel_changed = true;
1956         }
1957 
1958         if (channel_changed)
1959                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1960 }
1961 
1962 /*
1963  * Called when a scan on a wiphy finds a beacon on
1964  * new channel
1965  */
1966 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1967                                     struct reg_beacon *reg_beacon)
1968 {
1969         unsigned int i;
1970         struct ieee80211_supported_band *sband;
1971 
1972         if (!wiphy->bands[reg_beacon->chan.band])
1973                 return;
1974 
1975         sband = wiphy->bands[reg_beacon->chan.band];
1976 
1977         for (i = 0; i < sband->n_channels; i++)
1978                 handle_reg_beacon(wiphy, i, reg_beacon);
1979 }
1980 
1981 /*
1982  * Called upon reg changes or a new wiphy is added
1983  */
1984 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1985 {
1986         unsigned int i;
1987         struct ieee80211_supported_band *sband;
1988         struct reg_beacon *reg_beacon;
1989 
1990         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1991                 if (!wiphy->bands[reg_beacon->chan.band])
1992                         continue;
1993                 sband = wiphy->bands[reg_beacon->chan.band];
1994                 for (i = 0; i < sband->n_channels; i++)
1995                         handle_reg_beacon(wiphy, i, reg_beacon);
1996         }
1997 }
1998 
1999 /* Reap the advantages of previously found beacons */
2000 static void reg_process_beacons(struct wiphy *wiphy)
2001 {
2002         /*
2003          * Means we are just firing up cfg80211, so no beacons would
2004          * have been processed yet.
2005          */
2006         if (!last_request)
2007                 return;
2008         wiphy_update_beacon_reg(wiphy);
2009 }
2010 
2011 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2012 {
2013         if (!chan)
2014                 return false;
2015         if (chan->flags & IEEE80211_CHAN_DISABLED)
2016                 return false;
2017         /* This would happen when regulatory rules disallow HT40 completely */
2018         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2019                 return false;
2020         return true;
2021 }
2022 
2023 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2024                                          struct ieee80211_channel *channel)
2025 {
2026         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2027         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2028         const struct ieee80211_regdomain *regd;
2029         unsigned int i;
2030         u32 flags;
2031 
2032         if (!is_ht40_allowed(channel)) {
2033                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2034                 return;
2035         }
2036 
2037         /*
2038          * We need to ensure the extension channels exist to
2039          * be able to use HT40- or HT40+, this finds them (or not)
2040          */
2041         for (i = 0; i < sband->n_channels; i++) {
2042                 struct ieee80211_channel *c = &sband->channels[i];
2043 
2044                 if (c->center_freq == (channel->center_freq - 20))
2045                         channel_before = c;
2046                 if (c->center_freq == (channel->center_freq + 20))
2047                         channel_after = c;
2048         }
2049 
2050         flags = 0;
2051         regd = get_wiphy_regdom(wiphy);
2052         if (regd) {
2053                 const struct ieee80211_reg_rule *reg_rule =
2054                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2055                                            regd, MHZ_TO_KHZ(20));
2056 
2057                 if (!IS_ERR(reg_rule))
2058                         flags = reg_rule->flags;
2059         }
2060 
2061         /*
2062          * Please note that this assumes target bandwidth is 20 MHz,
2063          * if that ever changes we also need to change the below logic
2064          * to include that as well.
2065          */
2066         if (!is_ht40_allowed(channel_before) ||
2067             flags & NL80211_RRF_NO_HT40MINUS)
2068                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2069         else
2070                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2071 
2072         if (!is_ht40_allowed(channel_after) ||
2073             flags & NL80211_RRF_NO_HT40PLUS)
2074                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2075         else
2076                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2077 }
2078 
2079 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2080                                       struct ieee80211_supported_band *sband)
2081 {
2082         unsigned int i;
2083 
2084         if (!sband)
2085                 return;
2086 
2087         for (i = 0; i < sband->n_channels; i++)
2088                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2089 }
2090 
2091 static void reg_process_ht_flags(struct wiphy *wiphy)
2092 {
2093         enum nl80211_band band;
2094 
2095         if (!wiphy)
2096                 return;
2097 
2098         for (band = 0; band < NUM_NL80211_BANDS; band++)
2099                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2100 }
2101 
2102 static void reg_call_notifier(struct wiphy *wiphy,
2103                               struct regulatory_request *request)
2104 {
2105         if (wiphy->reg_notifier)
2106                 wiphy->reg_notifier(wiphy, request);
2107 }
2108 
2109 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2110 {
2111         struct cfg80211_chan_def chandef = {};
2112         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2113         enum nl80211_iftype iftype;
2114 
2115         wdev_lock(wdev);
2116         iftype = wdev->iftype;
2117 
2118         /* make sure the interface is active */
2119         if (!wdev->netdev || !netif_running(wdev->netdev))
2120                 goto wdev_inactive_unlock;
2121 
2122         switch (iftype) {
2123         case NL80211_IFTYPE_AP:
2124         case NL80211_IFTYPE_P2P_GO:
2125                 if (!wdev->beacon_interval)
2126                         goto wdev_inactive_unlock;
2127                 chandef = wdev->chandef;
2128                 break;
2129         case NL80211_IFTYPE_ADHOC:
2130                 if (!wdev->ssid_len)
2131                         goto wdev_inactive_unlock;
2132                 chandef = wdev->chandef;
2133                 break;
2134         case NL80211_IFTYPE_STATION:
2135         case NL80211_IFTYPE_P2P_CLIENT:
2136                 if (!wdev->current_bss ||
2137                     !wdev->current_bss->pub.channel)
2138                         goto wdev_inactive_unlock;
2139 
2140                 if (!rdev->ops->get_channel ||
2141                     rdev_get_channel(rdev, wdev, &chandef))
2142                         cfg80211_chandef_create(&chandef,
2143                                                 wdev->current_bss->pub.channel,
2144                                                 NL80211_CHAN_NO_HT);
2145                 break;
2146         case NL80211_IFTYPE_MONITOR:
2147         case NL80211_IFTYPE_AP_VLAN:
2148         case NL80211_IFTYPE_P2P_DEVICE:
2149                 /* no enforcement required */
2150                 break;
2151         default:
2152                 /* others not implemented for now */
2153                 WARN_ON(1);
2154                 break;
2155         }
2156 
2157         wdev_unlock(wdev);
2158 
2159         switch (iftype) {
2160         case NL80211_IFTYPE_AP:
2161         case NL80211_IFTYPE_P2P_GO:
2162         case NL80211_IFTYPE_ADHOC:
2163                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2164         case NL80211_IFTYPE_STATION:
2165         case NL80211_IFTYPE_P2P_CLIENT:
2166                 return cfg80211_chandef_usable(wiphy, &chandef,
2167                                                IEEE80211_CHAN_DISABLED);
2168         default:
2169                 break;
2170         }
2171 
2172         return true;
2173 
2174 wdev_inactive_unlock:
2175         wdev_unlock(wdev);
2176         return true;
2177 }
2178 
2179 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2180 {
2181         struct wireless_dev *wdev;
2182         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2183 
2184         ASSERT_RTNL();
2185 
2186         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2187                 if (!reg_wdev_chan_valid(wiphy, wdev))
2188                         cfg80211_leave(rdev, wdev);
2189 }
2190 
2191 static void reg_check_chans_work(struct work_struct *work)
2192 {
2193         struct cfg80211_registered_device *rdev;
2194 
2195         pr_debug("Verifying active interfaces after reg change\n");
2196         rtnl_lock();
2197 
2198         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2199                 if (!(rdev->wiphy.regulatory_flags &
2200                       REGULATORY_IGNORE_STALE_KICKOFF))
2201                         reg_leave_invalid_chans(&rdev->wiphy);
2202 
2203         rtnl_unlock();
2204 }
2205 
2206 static void reg_check_channels(void)
2207 {
2208         /*
2209          * Give usermode a chance to do something nicer (move to another
2210          * channel, orderly disconnection), before forcing a disconnection.
2211          */
2212         mod_delayed_work(system_power_efficient_wq,
2213                          &reg_check_chans,
2214                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2215 }
2216 
2217 static void wiphy_update_regulatory(struct wiphy *wiphy,
2218                                     enum nl80211_reg_initiator initiator)
2219 {
2220         enum nl80211_band band;
2221         struct regulatory_request *lr = get_last_request();
2222 
2223         if (ignore_reg_update(wiphy, initiator)) {
2224                 /*
2225                  * Regulatory updates set by CORE are ignored for custom
2226                  * regulatory cards. Let us notify the changes to the driver,
2227                  * as some drivers used this to restore its orig_* reg domain.
2228                  */
2229                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2230                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2231                     !(wiphy->regulatory_flags &
2232                       REGULATORY_WIPHY_SELF_MANAGED))
2233                         reg_call_notifier(wiphy, lr);
2234                 return;
2235         }
2236 
2237         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2238 
2239         for (band = 0; band < NUM_NL80211_BANDS; band++)
2240                 handle_band(wiphy, initiator, wiphy->bands[band]);
2241 
2242         reg_process_beacons(wiphy);
2243         reg_process_ht_flags(wiphy);
2244         reg_call_notifier(wiphy, lr);
2245 }
2246 
2247 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2248 {
2249         struct cfg80211_registered_device *rdev;
2250         struct wiphy *wiphy;
2251 
2252         ASSERT_RTNL();
2253 
2254         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2255                 wiphy = &rdev->wiphy;
2256                 wiphy_update_regulatory(wiphy, initiator);
2257         }
2258 
2259         reg_check_channels();
2260 }
2261 
2262 static void handle_channel_custom(struct wiphy *wiphy,
2263                                   struct ieee80211_channel *chan,
2264                                   const struct ieee80211_regdomain *regd,
2265                                   u32 min_bw)
2266 {
2267         u32 bw_flags = 0;
2268         const struct ieee80211_reg_rule *reg_rule = NULL;
2269         const struct ieee80211_power_rule *power_rule = NULL;
2270         u32 bw;
2271 
2272         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2273                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2274                                               regd, bw);
2275                 if (!IS_ERR(reg_rule))
2276                         break;
2277         }
2278 
2279         if (IS_ERR_OR_NULL(reg_rule)) {
2280                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2281                          chan->center_freq);
2282                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2283                         chan->flags |= IEEE80211_CHAN_DISABLED;
2284                 } else {
2285                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2286                         chan->flags = chan->orig_flags;
2287                 }
2288                 return;
2289         }
2290 
2291         power_rule = &reg_rule->power_rule;
2292         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2293 
2294         chan->dfs_state_entered = jiffies;
2295         chan->dfs_state = NL80211_DFS_USABLE;
2296 
2297         chan->beacon_found = false;
2298 
2299         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2300                 chan->flags = chan->orig_flags | bw_flags |
2301                               map_regdom_flags(reg_rule->flags);
2302         else
2303                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2304 
2305         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2306         chan->max_reg_power = chan->max_power =
2307                 (int) MBM_TO_DBM(power_rule->max_eirp);
2308 
2309         if (chan->flags & IEEE80211_CHAN_RADAR) {
2310                 if (reg_rule->dfs_cac_ms)
2311                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2312                 else
2313                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2314         }
2315 
2316         chan->max_power = chan->max_reg_power;
2317 }
2318 
2319 static void handle_band_custom(struct wiphy *wiphy,
2320                                struct ieee80211_supported_band *sband,
2321                                const struct ieee80211_regdomain *regd)
2322 {
2323         unsigned int i;
2324 
2325         if (!sband)
2326                 return;
2327 
2328         /*
2329          * We currently assume that you always want at least 20 MHz,
2330          * otherwise channel 12 might get enabled if this rule is
2331          * compatible to US, which permits 2402 - 2472 MHz.
2332          */
2333         for (i = 0; i < sband->n_channels; i++)
2334                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2335                                       MHZ_TO_KHZ(20));
2336 }
2337 
2338 /* Used by drivers prior to wiphy registration */
2339 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2340                                    const struct ieee80211_regdomain *regd)
2341 {
2342         enum nl80211_band band;
2343         unsigned int bands_set = 0;
2344 
2345         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2346              "wiphy should have REGULATORY_CUSTOM_REG\n");
2347         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2348 
2349         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2350                 if (!wiphy->bands[band])
2351                         continue;
2352                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2353                 bands_set++;
2354         }
2355 
2356         /*
2357          * no point in calling this if it won't have any effect
2358          * on your device's supported bands.
2359          */
2360         WARN_ON(!bands_set);
2361 }
2362 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2363 
2364 static void reg_set_request_processed(void)
2365 {
2366         bool need_more_processing = false;
2367         struct regulatory_request *lr = get_last_request();
2368 
2369         lr->processed = true;
2370 
2371         spin_lock(&reg_requests_lock);
2372         if (!list_empty(&reg_requests_list))
2373                 need_more_processing = true;
2374         spin_unlock(&reg_requests_lock);
2375 
2376         cancel_crda_timeout();
2377 
2378         if (need_more_processing)
2379                 schedule_work(&reg_work);
2380 }
2381 
2382 /**
2383  * reg_process_hint_core - process core regulatory requests
2384  * @pending_request: a pending core regulatory request
2385  *
2386  * The wireless subsystem can use this function to process
2387  * a regulatory request issued by the regulatory core.
2388  */
2389 static enum reg_request_treatment
2390 reg_process_hint_core(struct regulatory_request *core_request)
2391 {
2392         if (reg_query_database(core_request)) {
2393                 core_request->intersect = false;
2394                 core_request->processed = false;
2395                 reg_update_last_request(core_request);
2396                 return REG_REQ_OK;
2397         }
2398 
2399         return REG_REQ_IGNORE;
2400 }
2401 
2402 static enum reg_request_treatment
2403 __reg_process_hint_user(struct regulatory_request *user_request)
2404 {
2405         struct regulatory_request *lr = get_last_request();
2406 
2407         if (reg_request_cell_base(user_request))
2408                 return reg_ignore_cell_hint(user_request);
2409 
2410         if (reg_request_cell_base(lr))
2411                 return REG_REQ_IGNORE;
2412 
2413         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2414                 return REG_REQ_INTERSECT;
2415         /*
2416          * If the user knows better the user should set the regdom
2417          * to their country before the IE is picked up
2418          */
2419         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2420             lr->intersect)
2421                 return REG_REQ_IGNORE;
2422         /*
2423          * Process user requests only after previous user/driver/core
2424          * requests have been processed
2425          */
2426         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2427              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2428              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2429             regdom_changes(lr->alpha2))
2430                 return REG_REQ_IGNORE;
2431 
2432         if (!regdom_changes(user_request->alpha2))
2433                 return REG_REQ_ALREADY_SET;
2434 
2435         return REG_REQ_OK;
2436 }
2437 
2438 /**
2439  * reg_process_hint_user - process user regulatory requests
2440  * @user_request: a pending user regulatory request
2441  *
2442  * The wireless subsystem can use this function to process
2443  * a regulatory request initiated by userspace.
2444  */
2445 static enum reg_request_treatment
2446 reg_process_hint_user(struct regulatory_request *user_request)
2447 {
2448         enum reg_request_treatment treatment;
2449 
2450         treatment = __reg_process_hint_user(user_request);
2451         if (treatment == REG_REQ_IGNORE ||
2452             treatment == REG_REQ_ALREADY_SET)
2453                 return REG_REQ_IGNORE;
2454 
2455         user_request->intersect = treatment == REG_REQ_INTERSECT;
2456         user_request->processed = false;
2457 
2458         if (reg_query_database(user_request)) {
2459                 reg_update_last_request(user_request);
2460                 user_alpha2[0] = user_request->alpha2[0];
2461                 user_alpha2[1] = user_request->alpha2[1];
2462                 return REG_REQ_OK;
2463         }
2464 
2465         return REG_REQ_IGNORE;
2466 }
2467 
2468 static enum reg_request_treatment
2469 __reg_process_hint_driver(struct regulatory_request *driver_request)
2470 {
2471         struct regulatory_request *lr = get_last_request();
2472 
2473         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2474                 if (regdom_changes(driver_request->alpha2))
2475                         return REG_REQ_OK;
2476                 return REG_REQ_ALREADY_SET;
2477         }
2478 
2479         /*
2480          * This would happen if you unplug and plug your card
2481          * back in or if you add a new device for which the previously
2482          * loaded card also agrees on the regulatory domain.
2483          */
2484         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2485             !regdom_changes(driver_request->alpha2))
2486                 return REG_REQ_ALREADY_SET;
2487 
2488         return REG_REQ_INTERSECT;
2489 }
2490 
2491 /**
2492  * reg_process_hint_driver - process driver regulatory requests
2493  * @driver_request: a pending driver regulatory request
2494  *
2495  * The wireless subsystem can use this function to process
2496  * a regulatory request issued by an 802.11 driver.
2497  *
2498  * Returns one of the different reg request treatment values.
2499  */
2500 static enum reg_request_treatment
2501 reg_process_hint_driver(struct wiphy *wiphy,
2502                         struct regulatory_request *driver_request)
2503 {
2504         const struct ieee80211_regdomain *regd, *tmp;
2505         enum reg_request_treatment treatment;
2506 
2507         treatment = __reg_process_hint_driver(driver_request);
2508 
2509         switch (treatment) {
2510         case REG_REQ_OK:
2511                 break;
2512         case REG_REQ_IGNORE:
2513                 return REG_REQ_IGNORE;
2514         case REG_REQ_INTERSECT:
2515         case REG_REQ_ALREADY_SET:
2516                 regd = reg_copy_regd(get_cfg80211_regdom());
2517                 if (IS_ERR(regd))
2518                         return REG_REQ_IGNORE;
2519 
2520                 tmp = get_wiphy_regdom(wiphy);
2521                 rcu_assign_pointer(wiphy->regd, regd);
2522                 rcu_free_regdom(tmp);
2523         }
2524 
2525 
2526         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2527         driver_request->processed = false;
2528 
2529         /*
2530          * Since CRDA will not be called in this case as we already
2531          * have applied the requested regulatory domain before we just
2532          * inform userspace we have processed the request
2533          */
2534         if (treatment == REG_REQ_ALREADY_SET) {
2535                 nl80211_send_reg_change_event(driver_request);
2536                 reg_update_last_request(driver_request);
2537                 reg_set_request_processed();
2538                 return REG_REQ_ALREADY_SET;
2539         }
2540 
2541         if (reg_query_database(driver_request)) {
2542                 reg_update_last_request(driver_request);
2543                 return REG_REQ_OK;
2544         }
2545 
2546         return REG_REQ_IGNORE;
2547 }
2548 
2549 static enum reg_request_treatment
2550 __reg_process_hint_country_ie(struct wiphy *wiphy,
2551                               struct regulatory_request *country_ie_request)
2552 {
2553         struct wiphy *last_wiphy = NULL;
2554         struct regulatory_request *lr = get_last_request();
2555 
2556         if (reg_request_cell_base(lr)) {
2557                 /* Trust a Cell base station over the AP's country IE */
2558                 if (regdom_changes(country_ie_request->alpha2))
2559                         return REG_REQ_IGNORE;
2560                 return REG_REQ_ALREADY_SET;
2561         } else {
2562                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2563                         return REG_REQ_IGNORE;
2564         }
2565 
2566         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2567                 return -EINVAL;
2568 
2569         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2570                 return REG_REQ_OK;
2571 
2572         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2573 
2574         if (last_wiphy != wiphy) {
2575                 /*
2576                  * Two cards with two APs claiming different
2577                  * Country IE alpha2s. We could
2578                  * intersect them, but that seems unlikely
2579                  * to be correct. Reject second one for now.
2580                  */
2581                 if (regdom_changes(country_ie_request->alpha2))
2582                         return REG_REQ_IGNORE;
2583                 return REG_REQ_ALREADY_SET;
2584         }
2585 
2586         if (regdom_changes(country_ie_request->alpha2))
2587                 return REG_REQ_OK;
2588         return REG_REQ_ALREADY_SET;
2589 }
2590 
2591 /**
2592  * reg_process_hint_country_ie - process regulatory requests from country IEs
2593  * @country_ie_request: a regulatory request from a country IE
2594  *
2595  * The wireless subsystem can use this function to process
2596  * a regulatory request issued by a country Information Element.
2597  *
2598  * Returns one of the different reg request treatment values.
2599  */
2600 static enum reg_request_treatment
2601 reg_process_hint_country_ie(struct wiphy *wiphy,
2602                             struct regulatory_request *country_ie_request)
2603 {
2604         enum reg_request_treatment treatment;
2605 
2606         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2607 
2608         switch (treatment) {
2609         case REG_REQ_OK:
2610                 break;
2611         case REG_REQ_IGNORE:
2612                 return REG_REQ_IGNORE;
2613         case REG_REQ_ALREADY_SET:
2614                 reg_free_request(country_ie_request);
2615                 return REG_REQ_ALREADY_SET;
2616         case REG_REQ_INTERSECT:
2617                 /*
2618                  * This doesn't happen yet, not sure we
2619                  * ever want to support it for this case.
2620                  */
2621                 WARN_ONCE(1, "Unexpected intersection for country elements");
2622                 return REG_REQ_IGNORE;
2623         }
2624 
2625         country_ie_request->intersect = false;
2626         country_ie_request->processed = false;
2627 
2628         if (reg_query_database(country_ie_request)) {
2629                 reg_update_last_request(country_ie_request);
2630                 return REG_REQ_OK;
2631         }
2632 
2633         return REG_REQ_IGNORE;
2634 }
2635 
2636 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2637 {
2638         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2639         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2640         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2641         bool dfs_domain_same;
2642 
2643         rcu_read_lock();
2644 
2645         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2646         wiphy1_regd = rcu_dereference(wiphy1->regd);
2647         if (!wiphy1_regd)
2648                 wiphy1_regd = cfg80211_regd;
2649 
2650         wiphy2_regd = rcu_dereference(wiphy2->regd);
2651         if (!wiphy2_regd)
2652                 wiphy2_regd = cfg80211_regd;
2653 
2654         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2655 
2656         rcu_read_unlock();
2657 
2658         return dfs_domain_same;
2659 }
2660 
2661 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2662                                     struct ieee80211_channel *src_chan)
2663 {
2664         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2665             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2666                 return;
2667 
2668         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2669             src_chan->flags & IEEE80211_CHAN_DISABLED)
2670                 return;
2671 
2672         if (src_chan->center_freq == dst_chan->center_freq &&
2673             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2674                 dst_chan->dfs_state = src_chan->dfs_state;
2675                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2676         }
2677 }
2678 
2679 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2680                                        struct wiphy *src_wiphy)
2681 {
2682         struct ieee80211_supported_band *src_sband, *dst_sband;
2683         struct ieee80211_channel *src_chan, *dst_chan;
2684         int i, j, band;
2685 
2686         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2687                 return;
2688 
2689         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2690                 dst_sband = dst_wiphy->bands[band];
2691                 src_sband = src_wiphy->bands[band];
2692                 if (!dst_sband || !src_sband)
2693                         continue;
2694 
2695                 for (i = 0; i < dst_sband->n_channels; i++) {
2696                         dst_chan = &dst_sband->channels[i];
2697                         for (j = 0; j < src_sband->n_channels; j++) {
2698                                 src_chan = &src_sband->channels[j];
2699                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2700                         }
2701                 }
2702         }
2703 }
2704 
2705 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2706 {
2707         struct cfg80211_registered_device *rdev;
2708 
2709         ASSERT_RTNL();
2710 
2711         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2712                 if (wiphy == &rdev->wiphy)
2713                         continue;
2714                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2715         }
2716 }
2717 
2718 /* This processes *all* regulatory hints */
2719 static void reg_process_hint(struct regulatory_request *reg_request)
2720 {
2721         struct wiphy *wiphy = NULL;
2722         enum reg_request_treatment treatment;
2723         enum nl80211_reg_initiator initiator = reg_request->initiator;
2724 
2725         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2726                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2727 
2728         switch (initiator) {
2729         case NL80211_REGDOM_SET_BY_CORE:
2730                 treatment = reg_process_hint_core(reg_request);
2731                 break;
2732         case NL80211_REGDOM_SET_BY_USER:
2733                 treatment = reg_process_hint_user(reg_request);
2734                 break;
2735         case NL80211_REGDOM_SET_BY_DRIVER:
2736                 if (!wiphy)
2737                         goto out_free;
2738                 treatment = reg_process_hint_driver(wiphy, reg_request);
2739                 break;
2740         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2741                 if (!wiphy)
2742                         goto out_free;
2743                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2744                 break;
2745         default:
2746                 WARN(1, "invalid initiator %d\n", initiator);
2747                 goto out_free;
2748         }
2749 
2750         if (treatment == REG_REQ_IGNORE)
2751                 goto out_free;
2752 
2753         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2754              "unexpected treatment value %d\n", treatment);
2755 
2756         /* This is required so that the orig_* parameters are saved.
2757          * NOTE: treatment must be set for any case that reaches here!
2758          */
2759         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2760             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2761                 wiphy_update_regulatory(wiphy, initiator);
2762                 wiphy_all_share_dfs_chan_state(wiphy);
2763                 reg_check_channels();
2764         }
2765 
2766         return;
2767 
2768 out_free:
2769         reg_free_request(reg_request);
2770 }
2771 
2772 static void notify_self_managed_wiphys(struct regulatory_request *request)
2773 {
2774         struct cfg80211_registered_device *rdev;
2775         struct wiphy *wiphy;
2776 
2777         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2778                 wiphy = &rdev->wiphy;
2779                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2780                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2781                         reg_call_notifier(wiphy, request);
2782         }
2783 }
2784 
2785 /*
2786  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2787  * Regulatory hints come on a first come first serve basis and we
2788  * must process each one atomically.
2789  */
2790 static void reg_process_pending_hints(void)
2791 {
2792         struct regulatory_request *reg_request, *lr;
2793 
2794         lr = get_last_request();
2795 
2796         /* When last_request->processed becomes true this will be rescheduled */
2797         if (lr && !lr->processed) {
2798                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2799                 return;
2800         }
2801 
2802         spin_lock(&reg_requests_lock);
2803 
2804         if (list_empty(&reg_requests_list)) {
2805                 spin_unlock(&reg_requests_lock);
2806                 return;
2807         }
2808 
2809         reg_request = list_first_entry(&reg_requests_list,
2810                                        struct regulatory_request,
2811                                        list);
2812         list_del_init(&reg_request->list);
2813 
2814         spin_unlock(&reg_requests_lock);
2815 
2816         notify_self_managed_wiphys(reg_request);
2817 
2818         reg_process_hint(reg_request);
2819 
2820         lr = get_last_request();
2821 
2822         spin_lock(&reg_requests_lock);
2823         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2824                 schedule_work(&reg_work);
2825         spin_unlock(&reg_requests_lock);
2826 }
2827 
2828 /* Processes beacon hints -- this has nothing to do with country IEs */
2829 static void reg_process_pending_beacon_hints(void)
2830 {
2831         struct cfg80211_registered_device *rdev;
2832         struct reg_beacon *pending_beacon, *tmp;
2833 
2834         /* This goes through the _pending_ beacon list */
2835         spin_lock_bh(&reg_pending_beacons_lock);
2836 
2837         list_for_each_entry_safe(pending_beacon, tmp,
2838                                  &reg_pending_beacons, list) {
2839                 list_del_init(&pending_beacon->list);
2840 
2841                 /* Applies the beacon hint to current wiphys */
2842                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2843                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2844 
2845                 /* Remembers the beacon hint for new wiphys or reg changes */
2846                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2847         }
2848 
2849         spin_unlock_bh(&reg_pending_beacons_lock);
2850 }
2851 
2852 static void reg_process_self_managed_hints(void)
2853 {
2854         struct cfg80211_registered_device *rdev;
2855         struct wiphy *wiphy;
2856         const struct ieee80211_regdomain *tmp;
2857         const struct ieee80211_regdomain *regd;
2858         enum nl80211_band band;
2859         struct regulatory_request request = {};
2860 
2861         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2862                 wiphy = &rdev->wiphy;
2863 
2864                 spin_lock(&reg_requests_lock);
2865                 regd = rdev->requested_regd;
2866                 rdev->requested_regd = NULL;
2867                 spin_unlock(&reg_requests_lock);
2868 
2869                 if (regd == NULL)
2870                         continue;
2871 
2872                 tmp = get_wiphy_regdom(wiphy);
2873                 rcu_assign_pointer(wiphy->regd, regd);
2874                 rcu_free_regdom(tmp);
2875 
2876                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2877                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2878 
2879                 reg_process_ht_flags(wiphy);
2880 
2881                 request.wiphy_idx = get_wiphy_idx(wiphy);
2882                 request.alpha2[0] = regd->alpha2[0];
2883                 request.alpha2[1] = regd->alpha2[1];
2884                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2885 
2886                 nl80211_send_wiphy_reg_change_event(&request);
2887         }
2888 
2889         reg_check_channels();
2890 }
2891 
2892 static void reg_todo(struct work_struct *work)
2893 {
2894         rtnl_lock();
2895         reg_process_pending_hints();
2896         reg_process_pending_beacon_hints();
2897         reg_process_self_managed_hints();
2898         rtnl_unlock();
2899 }
2900 
2901 static void queue_regulatory_request(struct regulatory_request *request)
2902 {
2903         request->alpha2[0] = toupper(request->alpha2[0]);
2904         request->alpha2[1] = toupper(request->alpha2[1]);
2905 
2906         spin_lock(&reg_requests_lock);
2907         list_add_tail(&request->list, &reg_requests_list);
2908         spin_unlock(&reg_requests_lock);
2909 
2910         schedule_work(&reg_work);
2911 }
2912 
2913 /*
2914  * Core regulatory hint -- happens during cfg80211_init()
2915  * and when we restore regulatory settings.
2916  */
2917 static int regulatory_hint_core(const char *alpha2)
2918 {
2919         struct regulatory_request *request;
2920 
2921         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2922         if (!request)
2923                 return -ENOMEM;
2924 
2925         request->alpha2[0] = alpha2[0];
2926         request->alpha2[1] = alpha2[1];
2927         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2928         request->wiphy_idx = WIPHY_IDX_INVALID;
2929 
2930         queue_regulatory_request(request);
2931 
2932         return 0;
2933 }
2934 
2935 /* User hints */
2936 int regulatory_hint_user(const char *alpha2,
2937                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2938 {
2939         struct regulatory_request *request;
2940 
2941         if (WARN_ON(!alpha2))
2942                 return -EINVAL;
2943 
2944         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2945         if (!request)
2946                 return -ENOMEM;
2947 
2948         request->wiphy_idx = WIPHY_IDX_INVALID;
2949         request->alpha2[0] = alpha2[0];
2950         request->alpha2[1] = alpha2[1];
2951         request->initiator = NL80211_REGDOM_SET_BY_USER;
2952         request->user_reg_hint_type = user_reg_hint_type;
2953 
2954         /* Allow calling CRDA again */
2955         reset_crda_timeouts();
2956 
2957         queue_regulatory_request(request);
2958 
2959         return 0;
2960 }
2961 
2962 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2963 {
2964         spin_lock(&reg_indoor_lock);
2965 
2966         /* It is possible that more than one user space process is trying to
2967          * configure the indoor setting. To handle such cases, clear the indoor
2968          * setting in case that some process does not think that the device
2969          * is operating in an indoor environment. In addition, if a user space
2970          * process indicates that it is controlling the indoor setting, save its
2971          * portid, i.e., make it the owner.
2972          */
2973         reg_is_indoor = is_indoor;
2974         if (reg_is_indoor) {
2975                 if (!reg_is_indoor_portid)
2976                         reg_is_indoor_portid = portid;
2977         } else {
2978                 reg_is_indoor_portid = 0;
2979         }
2980 
2981         spin_unlock(&reg_indoor_lock);
2982 
2983         if (!is_indoor)
2984                 reg_check_channels();
2985 
2986         return 0;
2987 }
2988 
2989 void regulatory_netlink_notify(u32 portid)
2990 {
2991         spin_lock(&reg_indoor_lock);
2992 
2993         if (reg_is_indoor_portid != portid) {
2994                 spin_unlock(&reg_indoor_lock);
2995                 return;
2996         }
2997 
2998         reg_is_indoor = false;
2999         reg_is_indoor_portid = 0;
3000 
3001         spin_unlock(&reg_indoor_lock);
3002 
3003         reg_check_channels();
3004 }
3005 
3006 /* Driver hints */
3007 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3008 {
3009         struct regulatory_request *request;
3010 
3011         if (WARN_ON(!alpha2 || !wiphy))
3012                 return -EINVAL;
3013 
3014         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3015 
3016         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3017         if (!request)
3018                 return -ENOMEM;
3019 
3020         request->wiphy_idx = get_wiphy_idx(wiphy);
3021 
3022         request->alpha2[0] = alpha2[0];
3023         request->alpha2[1] = alpha2[1];
3024         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3025 
3026         /* Allow calling CRDA again */
3027         reset_crda_timeouts();
3028 
3029         queue_regulatory_request(request);
3030 
3031         return 0;
3032 }
3033 EXPORT_SYMBOL(regulatory_hint);
3034 
3035 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3036                                 const u8 *country_ie, u8 country_ie_len)
3037 {
3038         char alpha2[2];
3039         enum environment_cap env = ENVIRON_ANY;
3040         struct regulatory_request *request = NULL, *lr;
3041 
3042         /* IE len must be evenly divisible by 2 */
3043         if (country_ie_len & 0x01)
3044                 return;
3045 
3046         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3047                 return;
3048 
3049         request = kzalloc(sizeof(*request), GFP_KERNEL);
3050         if (!request)
3051                 return;
3052 
3053         alpha2[0] = country_ie[0];
3054         alpha2[1] = country_ie[1];
3055 
3056         if (country_ie[2] == 'I')
3057                 env = ENVIRON_INDOOR;
3058         else if (country_ie[2] == 'O')
3059                 env = ENVIRON_OUTDOOR;
3060 
3061         rcu_read_lock();
3062         lr = get_last_request();
3063 
3064         if (unlikely(!lr))
3065                 goto out;
3066 
3067         /*
3068          * We will run this only upon a successful connection on cfg80211.
3069          * We leave conflict resolution to the workqueue, where can hold
3070          * the RTNL.
3071          */
3072         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3073             lr->wiphy_idx != WIPHY_IDX_INVALID)
3074                 goto out;
3075 
3076         request->wiphy_idx = get_wiphy_idx(wiphy);
3077         request->alpha2[0] = alpha2[0];
3078         request->alpha2[1] = alpha2[1];
3079         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3080         request->country_ie_env = env;
3081 
3082         /* Allow calling CRDA again */
3083         reset_crda_timeouts();
3084 
3085         queue_regulatory_request(request);
3086         request = NULL;
3087 out:
3088         kfree(request);
3089         rcu_read_unlock();
3090 }
3091 
3092 static void restore_alpha2(char *alpha2, bool reset_user)
3093 {
3094         /* indicates there is no alpha2 to consider for restoration */
3095         alpha2[0] = '9';
3096         alpha2[1] = '7';
3097 
3098         /* The user setting has precedence over the module parameter */
3099         if (is_user_regdom_saved()) {
3100                 /* Unless we're asked to ignore it and reset it */
3101                 if (reset_user) {
3102                         pr_debug("Restoring regulatory settings including user preference\n");
3103                         user_alpha2[0] = '9';
3104                         user_alpha2[1] = '7';
3105 
3106                         /*
3107                          * If we're ignoring user settings, we still need to
3108                          * check the module parameter to ensure we put things
3109                          * back as they were for a full restore.
3110                          */
3111                         if (!is_world_regdom(ieee80211_regdom)) {
3112                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3113                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3114                                 alpha2[0] = ieee80211_regdom[0];
3115                                 alpha2[1] = ieee80211_regdom[1];
3116                         }
3117                 } else {
3118                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3119                                  user_alpha2[0], user_alpha2[1]);
3120                         alpha2[0] = user_alpha2[0];
3121                         alpha2[1] = user_alpha2[1];
3122                 }
3123         } else if (!is_world_regdom(ieee80211_regdom)) {
3124                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3125                          ieee80211_regdom[0], ieee80211_regdom[1]);
3126                 alpha2[0] = ieee80211_regdom[0];
3127                 alpha2[1] = ieee80211_regdom[1];
3128         } else
3129                 pr_debug("Restoring regulatory settings\n");
3130 }
3131 
3132 static void restore_custom_reg_settings(struct wiphy *wiphy)
3133 {
3134         struct ieee80211_supported_band *sband;
3135         enum nl80211_band band;
3136         struct ieee80211_channel *chan;
3137         int i;
3138 
3139         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3140                 sband = wiphy->bands[band];
3141                 if (!sband)
3142                         continue;
3143                 for (i = 0; i < sband->n_channels; i++) {
3144                         chan = &sband->channels[i];
3145                         chan->flags = chan->orig_flags;
3146                         chan->max_antenna_gain = chan->orig_mag;
3147                         chan->max_power = chan->orig_mpwr;
3148                         chan->beacon_found = false;
3149                 }
3150         }
3151 }
3152 
3153 /*
3154  * Restoring regulatory settings involves ingoring any
3155  * possibly stale country IE information and user regulatory
3156  * settings if so desired, this includes any beacon hints
3157  * learned as we could have traveled outside to another country
3158  * after disconnection. To restore regulatory settings we do
3159  * exactly what we did at bootup:
3160  *
3161  *   - send a core regulatory hint
3162  *   - send a user regulatory hint if applicable
3163  *
3164  * Device drivers that send a regulatory hint for a specific country
3165  * keep their own regulatory domain on wiphy->regd so that does does
3166  * not need to be remembered.
3167  */
3168 static void restore_regulatory_settings(bool reset_user, bool cached)
3169 {
3170         char alpha2[2];
3171         char world_alpha2[2];
3172         struct reg_beacon *reg_beacon, *btmp;
3173         LIST_HEAD(tmp_reg_req_list);
3174         struct cfg80211_registered_device *rdev;
3175 
3176         ASSERT_RTNL();
3177 
3178         /*
3179          * Clear the indoor setting in case that it is not controlled by user
3180          * space, as otherwise there is no guarantee that the device is still
3181          * operating in an indoor environment.
3182          */
3183         spin_lock(&reg_indoor_lock);
3184         if (reg_is_indoor && !reg_is_indoor_portid) {
3185                 reg_is_indoor = false;
3186                 reg_check_channels();
3187         }
3188         spin_unlock(&reg_indoor_lock);
3189 
3190         reset_regdomains(true, &world_regdom);
3191         restore_alpha2(alpha2, reset_user);
3192 
3193         /*
3194          * If there's any pending requests we simply
3195          * stash them to a temporary pending queue and
3196          * add then after we've restored regulatory
3197          * settings.
3198          */
3199         spin_lock(&reg_requests_lock);
3200         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3201         spin_unlock(&reg_requests_lock);
3202 
3203         /* Clear beacon hints */
3204         spin_lock_bh(&reg_pending_beacons_lock);
3205         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3206                 list_del(&reg_beacon->list);
3207                 kfree(reg_beacon);
3208         }
3209         spin_unlock_bh(&reg_pending_beacons_lock);
3210 
3211         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3212                 list_del(&reg_beacon->list);
3213                 kfree(reg_beacon);
3214         }
3215 
3216         /* First restore to the basic regulatory settings */
3217         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3218         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3219 
3220         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3221                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3222                         continue;
3223                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3224                         restore_custom_reg_settings(&rdev->wiphy);
3225         }
3226 
3227         if (cached && (!is_an_alpha2(alpha2) ||
3228                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3229                 reset_regdomains(false, cfg80211_world_regdom);
3230                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3231                 print_regdomain(get_cfg80211_regdom());
3232                 nl80211_send_reg_change_event(&core_request_world);
3233                 reg_set_request_processed();
3234 
3235                 if (is_an_alpha2(alpha2) &&
3236                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3237                         struct regulatory_request *ureq;
3238 
3239                         spin_lock(&reg_requests_lock);
3240                         ureq = list_last_entry(&reg_requests_list,
3241                                                struct regulatory_request,
3242                                                list);
3243                         list_del(&ureq->list);
3244                         spin_unlock(&reg_requests_lock);
3245 
3246                         notify_self_managed_wiphys(ureq);
3247                         reg_update_last_request(ureq);
3248                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3249                                    REGD_SOURCE_CACHED);
3250                 }
3251         } else {
3252                 regulatory_hint_core(world_alpha2);
3253 
3254                 /*
3255                  * This restores the ieee80211_regdom module parameter
3256                  * preference or the last user requested regulatory
3257                  * settings, user regulatory settings takes precedence.
3258                  */
3259                 if (is_an_alpha2(alpha2))
3260                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3261         }
3262 
3263         spin_lock(&reg_requests_lock);
3264         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3265         spin_unlock(&reg_requests_lock);
3266 
3267         pr_debug("Kicking the queue\n");
3268 
3269         schedule_work(&reg_work);
3270 }
3271 
3272 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3273 {
3274         struct cfg80211_registered_device *rdev;
3275         struct wireless_dev *wdev;
3276 
3277         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3278                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3279                         wdev_lock(wdev);
3280                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3281                                 wdev_unlock(wdev);
3282                                 return false;
3283                         }
3284                         wdev_unlock(wdev);
3285                 }
3286         }
3287 
3288         return true;
3289 }
3290 
3291 void regulatory_hint_disconnect(void)
3292 {
3293         /* Restore of regulatory settings is not required when wiphy(s)
3294          * ignore IE from connected access point but clearance of beacon hints
3295          * is required when wiphy(s) supports beacon hints.
3296          */
3297         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3298                 struct reg_beacon *reg_beacon, *btmp;
3299 
3300                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3301                         return;
3302 
3303                 spin_lock_bh(&reg_pending_beacons_lock);
3304                 list_for_each_entry_safe(reg_beacon, btmp,
3305                                          &reg_pending_beacons, list) {
3306                         list_del(&reg_beacon->list);
3307                         kfree(reg_beacon);
3308                 }
3309                 spin_unlock_bh(&reg_pending_beacons_lock);
3310 
3311                 list_for_each_entry_safe(reg_beacon, btmp,
3312                                          &reg_beacon_list, list) {
3313                         list_del(&reg_beacon->list);
3314                         kfree(reg_beacon);
3315                 }
3316 
3317                 return;
3318         }
3319 
3320         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3321         restore_regulatory_settings(false, true);
3322 }
3323 
3324 static bool freq_is_chan_12_13_14(u32 freq)
3325 {
3326         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3327             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3328             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3329                 return true;
3330         return false;
3331 }
3332 
3333 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3334 {
3335         struct reg_beacon *pending_beacon;
3336 
3337         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3338                 if (beacon_chan->center_freq ==
3339                     pending_beacon->chan.center_freq)
3340                         return true;
3341         return false;
3342 }
3343 
3344 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3345                                  struct ieee80211_channel *beacon_chan,
3346                                  gfp_t gfp)
3347 {
3348         struct reg_beacon *reg_beacon;
3349         bool processing;
3350 
3351         if (beacon_chan->beacon_found ||
3352             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3353             (beacon_chan->band == NL80211_BAND_2GHZ &&
3354              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3355                 return 0;
3356 
3357         spin_lock_bh(&reg_pending_beacons_lock);
3358         processing = pending_reg_beacon(beacon_chan);
3359         spin_unlock_bh(&reg_pending_beacons_lock);
3360 
3361         if (processing)
3362                 return 0;
3363 
3364         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3365         if (!reg_beacon)
3366                 return -ENOMEM;
3367 
3368         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3369                  beacon_chan->center_freq,
3370                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3371                  wiphy_name(wiphy));
3372 
3373         memcpy(&reg_beacon->chan, beacon_chan,
3374                sizeof(struct ieee80211_channel));
3375 
3376         /*
3377          * Since we can be called from BH or and non-BH context
3378          * we must use spin_lock_bh()
3379          */
3380         spin_lock_bh(&reg_pending_beacons_lock);
3381         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3382         spin_unlock_bh(&reg_pending_beacons_lock);
3383 
3384         schedule_work(&reg_work);
3385 
3386         return 0;
3387 }
3388 
3389 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3390 {
3391         unsigned int i;
3392         const struct ieee80211_reg_rule *reg_rule = NULL;
3393         const struct ieee80211_freq_range *freq_range = NULL;
3394         const struct ieee80211_power_rule *power_rule = NULL;
3395         char bw[32], cac_time[32];
3396 
3397         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3398 
3399         for (i = 0; i < rd->n_reg_rules; i++) {
3400                 reg_rule = &rd->reg_rules[i];
3401                 freq_range = &reg_rule->freq_range;
3402                 power_rule = &reg_rule->power_rule;
3403 
3404                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3405                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3406                                  freq_range->max_bandwidth_khz,
3407                                  reg_get_max_bandwidth(rd, reg_rule));
3408                 else
3409                         snprintf(bw, sizeof(bw), "%d KHz",
3410                                  freq_range->max_bandwidth_khz);
3411 
3412                 if (reg_rule->flags & NL80211_RRF_DFS)
3413                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3414                                   reg_rule->dfs_cac_ms/1000);
3415                 else
3416                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3417 
3418 
3419                 /*
3420                  * There may not be documentation for max antenna gain
3421                  * in certain regions
3422                  */
3423                 if (power_rule->max_antenna_gain)
3424                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3425                                 freq_range->start_freq_khz,
3426                                 freq_range->end_freq_khz,
3427                                 bw,
3428                                 power_rule->max_antenna_gain,
3429                                 power_rule->max_eirp,
3430                                 cac_time);
3431                 else
3432                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3433                                 freq_range->start_freq_khz,
3434                                 freq_range->end_freq_khz,
3435                                 bw,
3436                                 power_rule->max_eirp,
3437                                 cac_time);
3438         }
3439 }
3440 
3441 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3442 {
3443         switch (dfs_region) {
3444         case NL80211_DFS_UNSET:
3445         case NL80211_DFS_FCC:
3446         case NL80211_DFS_ETSI:
3447         case NL80211_DFS_JP:
3448                 return true;
3449         default:
3450                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3451                 return false;
3452         }
3453 }
3454 
3455 static void print_regdomain(const struct ieee80211_regdomain *rd)
3456 {
3457         struct regulatory_request *lr = get_last_request();
3458 
3459         if (is_intersected_alpha2(rd->alpha2)) {
3460                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3461                         struct cfg80211_registered_device *rdev;
3462                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3463                         if (rdev) {
3464                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3465                                         rdev->country_ie_alpha2[0],
3466                                         rdev->country_ie_alpha2[1]);
3467                         } else
3468                                 pr_debug("Current regulatory domain intersected:\n");
3469                 } else
3470                         pr_debug("Current regulatory domain intersected:\n");
3471         } else if (is_world_regdom(rd->alpha2)) {
3472                 pr_debug("World regulatory domain updated:\n");
3473         } else {
3474                 if (is_unknown_alpha2(rd->alpha2))
3475                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3476                 else {
3477                         if (reg_request_cell_base(lr))
3478                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3479                                         rd->alpha2[0], rd->alpha2[1]);
3480                         else
3481                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3482                                         rd->alpha2[0], rd->alpha2[1]);
3483                 }
3484         }
3485 
3486         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3487         print_rd_rules(rd);
3488 }
3489 
3490 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3491 {
3492         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3493         print_rd_rules(rd);
3494 }
3495 
3496 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3497 {
3498         if (!is_world_regdom(rd->alpha2))
3499                 return -EINVAL;
3500         update_world_regdomain(rd);
3501         return 0;
3502 }
3503 
3504 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3505                            struct regulatory_request *user_request)
3506 {
3507         const struct ieee80211_regdomain *intersected_rd = NULL;
3508 
3509         if (!regdom_changes(rd->alpha2))
3510                 return -EALREADY;
3511 
3512         if (!is_valid_rd(rd)) {
3513                 pr_err("Invalid regulatory domain detected: %c%c\n",
3514                        rd->alpha2[0], rd->alpha2[1]);
3515                 print_regdomain_info(rd);
3516                 return -EINVAL;
3517         }
3518 
3519         if (!user_request->intersect) {
3520                 reset_regdomains(false, rd);
3521                 return 0;
3522         }
3523 
3524         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3525         if (!intersected_rd)
3526                 return -EINVAL;
3527 
3528         kfree(rd);
3529         rd = NULL;
3530         reset_regdomains(false, intersected_rd);
3531 
3532         return 0;
3533 }
3534 
3535 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3536                              struct regulatory_request *driver_request)
3537 {
3538         const struct ieee80211_regdomain *regd;
3539         const struct ieee80211_regdomain *intersected_rd = NULL;
3540         const struct ieee80211_regdomain *tmp;
3541         struct wiphy *request_wiphy;
3542 
3543         if (is_world_regdom(rd->alpha2))
3544                 return -EINVAL;
3545 
3546         if (!regdom_changes(rd->alpha2))
3547                 return -EALREADY;
3548 
3549         if (!is_valid_rd(rd)) {
3550                 pr_err("Invalid regulatory domain detected: %c%c\n",
3551                        rd->alpha2[0], rd->alpha2[1]);
3552                 print_regdomain_info(rd);
3553                 return -EINVAL;
3554         }
3555 
3556         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3557         if (!request_wiphy)
3558                 return -ENODEV;
3559 
3560         if (!driver_request->intersect) {
3561                 if (request_wiphy->regd)
3562                         return -EALREADY;
3563 
3564                 regd = reg_copy_regd(rd);
3565                 if (IS_ERR(regd))
3566                         return PTR_ERR(regd);
3567 
3568                 rcu_assign_pointer(request_wiphy->regd, regd);
3569                 reset_regdomains(false, rd);
3570                 return 0;
3571         }
3572 
3573         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3574         if (!intersected_rd)
3575                 return -EINVAL;
3576 
3577         /*
3578          * We can trash what CRDA provided now.
3579          * However if a driver requested this specific regulatory
3580          * domain we keep it for its private use
3581          */
3582         tmp = get_wiphy_regdom(request_wiphy);
3583         rcu_assign_pointer(request_wiphy->regd, rd);
3584         rcu_free_regdom(tmp);
3585 
3586         rd = NULL;
3587 
3588         reset_regdomains(false, intersected_rd);
3589 
3590         return 0;
3591 }
3592 
3593 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3594                                  struct regulatory_request *country_ie_request)
3595 {
3596         struct wiphy *request_wiphy;
3597 
3598         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3599             !is_unknown_alpha2(rd->alpha2))
3600                 return -EINVAL;
3601 
3602         /*
3603          * Lets only bother proceeding on the same alpha2 if the current
3604          * rd is non static (it means CRDA was present and was used last)
3605          * and the pending request came in from a country IE
3606          */
3607 
3608         if (!is_valid_rd(rd)) {
3609                 pr_err("Invalid regulatory domain detected: %c%c\n",
3610                        rd->alpha2[0], rd->alpha2[1]);
3611                 print_regdomain_info(rd);
3612                 return -EINVAL;
3613         }
3614 
3615         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3616         if (!request_wiphy)
3617                 return -ENODEV;
3618 
3619         if (country_ie_request->intersect)
3620                 return -EINVAL;
3621 
3622         reset_regdomains(false, rd);
3623         return 0;
3624 }
3625 
3626 /*
3627  * Use this call to set the current regulatory domain. Conflicts with
3628  * multiple drivers can be ironed out later. Caller must've already
3629  * kmalloc'd the rd structure.
3630  */
3631 int set_regdom(const struct ieee80211_regdomain *rd,
3632                enum ieee80211_regd_source regd_src)
3633 {
3634         struct regulatory_request *lr;
3635         bool user_reset = false;
3636         int r;
3637 
3638         if (IS_ERR_OR_NULL(rd))
3639                 return -ENODATA;
3640 
3641         if (!reg_is_valid_request(rd->alpha2)) {
3642                 kfree(rd);
3643                 return -EINVAL;
3644         }
3645 
3646         if (regd_src == REGD_SOURCE_CRDA)
3647                 reset_crda_timeouts();
3648 
3649         lr = get_last_request();
3650 
3651         /* Note that this doesn't update the wiphys, this is done below */
3652         switch (lr->initiator) {
3653         case NL80211_REGDOM_SET_BY_CORE:
3654                 r = reg_set_rd_core(rd);
3655                 break;
3656         case NL80211_REGDOM_SET_BY_USER:
3657                 cfg80211_save_user_regdom(rd);
3658                 r = reg_set_rd_user(rd, lr);
3659                 user_reset = true;
3660                 break;
3661         case NL80211_REGDOM_SET_BY_DRIVER:
3662                 r = reg_set_rd_driver(rd, lr);
3663                 break;
3664         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3665                 r = reg_set_rd_country_ie(rd, lr);
3666                 break;
3667         default:
3668                 WARN(1, "invalid initiator %d\n", lr->initiator);
3669                 kfree(rd);
3670                 return -EINVAL;
3671         }
3672 
3673         if (r) {
3674                 switch (r) {
3675                 case -EALREADY:
3676                         reg_set_request_processed();
3677                         break;
3678                 default:
3679                         /* Back to world regulatory in case of errors */
3680                         restore_regulatory_settings(user_reset, false);
3681                 }
3682 
3683                 kfree(rd);
3684                 return r;
3685         }
3686 
3687         /* This would make this whole thing pointless */
3688         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3689                 return -EINVAL;
3690 
3691         /* update all wiphys now with the new established regulatory domain */
3692         update_all_wiphy_regulatory(lr->initiator);
3693 
3694         print_regdomain(get_cfg80211_regdom());
3695 
3696         nl80211_send_reg_change_event(lr);
3697 
3698         reg_set_request_processed();
3699 
3700         return 0;
3701 }
3702 
3703 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3704                                        struct ieee80211_regdomain *rd)
3705 {
3706         const struct ieee80211_regdomain *regd;
3707         const struct ieee80211_regdomain *prev_regd;
3708         struct cfg80211_registered_device *rdev;
3709 
3710         if (WARN_ON(!wiphy || !rd))
3711                 return -EINVAL;
3712 
3713         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3714                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3715                 return -EPERM;
3716 
3717         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3718                 print_regdomain_info(rd);
3719                 return -EINVAL;
3720         }
3721 
3722         regd = reg_copy_regd(rd);
3723         if (IS_ERR(regd))
3724                 return PTR_ERR(regd);
3725 
3726         rdev = wiphy_to_rdev(wiphy);
3727 
3728         spin_lock(&reg_requests_lock);
3729         prev_regd = rdev->requested_regd;
3730         rdev->requested_regd = regd;
3731         spin_unlock(&reg_requests_lock);
3732 
3733         kfree(prev_regd);
3734         return 0;
3735 }
3736 
3737 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3738                               struct ieee80211_regdomain *rd)
3739 {
3740         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3741 
3742         if (ret)
3743                 return ret;
3744 
3745         schedule_work(&reg_work);
3746         return 0;
3747 }
3748 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3749 
3750 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3751                                         struct ieee80211_regdomain *rd)
3752 {
3753         int ret;
3754 
3755         ASSERT_RTNL();
3756 
3757         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3758         if (ret)
3759                 return ret;
3760 
3761         /* process the request immediately */
3762         reg_process_self_managed_hints();
3763         return 0;
3764 }
3765 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3766 
3767 void wiphy_regulatory_register(struct wiphy *wiphy)
3768 {
3769         struct regulatory_request *lr = get_last_request();
3770 
3771         /* self-managed devices ignore beacon hints and country IE */
3772         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3773                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3774                                            REGULATORY_COUNTRY_IE_IGNORE;
3775 
3776                 /*
3777                  * The last request may have been received before this
3778                  * registration call. Call the driver notifier if
3779                  * initiator is USER.
3780                  */
3781                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3782                         reg_call_notifier(wiphy, lr);
3783         }
3784 
3785         if (!reg_dev_ignore_cell_hint(wiphy))
3786                 reg_num_devs_support_basehint++;
3787 
3788         wiphy_update_regulatory(wiphy, lr->initiator);
3789         wiphy_all_share_dfs_chan_state(wiphy);
3790 }
3791 
3792 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3793 {
3794         struct wiphy *request_wiphy = NULL;
3795         struct regulatory_request *lr;
3796 
3797         lr = get_last_request();
3798 
3799         if (!reg_dev_ignore_cell_hint(wiphy))
3800                 reg_num_devs_support_basehint--;
3801 
3802         rcu_free_regdom(get_wiphy_regdom(wiphy));
3803         RCU_INIT_POINTER(wiphy->regd, NULL);
3804 
3805         if (lr)
3806                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3807 
3808         if (!request_wiphy || request_wiphy != wiphy)
3809                 return;
3810 
3811         lr->wiphy_idx = WIPHY_IDX_INVALID;
3812         lr->country_ie_env = ENVIRON_ANY;
3813 }
3814 
3815 /*
3816  * See FCC notices for UNII band definitions
3817  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3818  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3819  */
3820 int cfg80211_get_unii(int freq)
3821 {
3822         /* UNII-1 */
3823         if (freq >= 5150 && freq <= 5250)
3824                 return 0;
3825 
3826         /* UNII-2A */
3827         if (freq > 5250 && freq <= 5350)
3828                 return 1;
3829 
3830         /* UNII-2B */
3831         if (freq > 5350 && freq <= 5470)
3832                 return 2;
3833 
3834         /* UNII-2C */
3835         if (freq > 5470 && freq <= 5725)
3836                 return 3;
3837 
3838         /* UNII-3 */
3839         if (freq > 5725 && freq <= 5825)
3840                 return 4;
3841 
3842         /* UNII-5 */
3843         if (freq > 5925 && freq <= 6425)
3844                 return 5;
3845 
3846         /* UNII-6 */
3847         if (freq > 6425 && freq <= 6525)
3848                 return 6;
3849 
3850         /* UNII-7 */
3851         if (freq > 6525 && freq <= 6875)
3852                 return 7;
3853 
3854         /* UNII-8 */
3855         if (freq > 6875 && freq <= 7125)
3856                 return 8;
3857 
3858         return -EINVAL;
3859 }
3860 
3861 bool regulatory_indoor_allowed(void)
3862 {
3863         return reg_is_indoor;
3864 }
3865 
3866 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3867 {
3868         const struct ieee80211_regdomain *regd = NULL;
3869         const struct ieee80211_regdomain *wiphy_regd = NULL;
3870         bool pre_cac_allowed = false;
3871 
3872         rcu_read_lock();
3873 
3874         regd = rcu_dereference(cfg80211_regdomain);
3875         wiphy_regd = rcu_dereference(wiphy->regd);
3876         if (!wiphy_regd) {
3877                 if (regd->dfs_region == NL80211_DFS_ETSI)
3878                         pre_cac_allowed = true;
3879 
3880                 rcu_read_unlock();
3881 
3882                 return pre_cac_allowed;
3883         }
3884 
3885         if (regd->dfs_region == wiphy_regd->dfs_region &&
3886             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3887                 pre_cac_allowed = true;
3888 
3889         rcu_read_unlock();
3890 
3891         return pre_cac_allowed;
3892 }
3893 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3894 
3895 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3896 {
3897         struct wireless_dev *wdev;
3898         /* If we finished CAC or received radar, we should end any
3899          * CAC running on the same channels.
3900          * the check !cfg80211_chandef_dfs_usable contain 2 options:
3901          * either all channels are available - those the CAC_FINISHED
3902          * event has effected another wdev state, or there is a channel
3903          * in unavailable state in wdev chandef - those the RADAR_DETECTED
3904          * event has effected another wdev state.
3905          * In both cases we should end the CAC on the wdev.
3906          */
3907         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3908                 if (wdev->cac_started &&
3909                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3910                         rdev_end_cac(rdev, wdev->netdev);
3911         }
3912 }
3913 
3914 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3915                                     struct cfg80211_chan_def *chandef,
3916                                     enum nl80211_dfs_state dfs_state,
3917                                     enum nl80211_radar_event event)
3918 {
3919         struct cfg80211_registered_device *rdev;
3920 
3921         ASSERT_RTNL();
3922 
3923         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3924                 return;
3925 
3926         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3927                 if (wiphy == &rdev->wiphy)
3928                         continue;
3929 
3930                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3931                         continue;
3932 
3933                 if (!ieee80211_get_channel(&rdev->wiphy,
3934                                            chandef->chan->center_freq))
3935                         continue;
3936 
3937                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3938 
3939                 if (event == NL80211_RADAR_DETECTED ||
3940                     event == NL80211_RADAR_CAC_FINISHED) {
3941                         cfg80211_sched_dfs_chan_update(rdev);
3942                         cfg80211_check_and_end_cac(rdev);
3943                 }
3944 
3945                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3946         }
3947 }
3948 
3949 static int __init regulatory_init_db(void)
3950 {
3951         int err;
3952 
3953         /*
3954          * It's possible that - due to other bugs/issues - cfg80211
3955          * never called regulatory_init() below, or that it failed;
3956          * in that case, don't try to do any further work here as
3957          * it's doomed to lead to crashes.
3958          */
3959         if (IS_ERR_OR_NULL(reg_pdev))
3960                 return -EINVAL;
3961 
3962         err = load_builtin_regdb_keys();
3963         if (err)
3964                 return err;
3965 
3966         /* We always try to get an update for the static regdomain */
3967         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3968         if (err) {
3969                 if (err == -ENOMEM) {
3970                         platform_device_unregister(reg_pdev);
3971                         return err;
3972                 }
3973                 /*
3974                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3975                  * memory which is handled and propagated appropriately above
3976                  * but it can also fail during a netlink_broadcast() or during
3977                  * early boot for call_usermodehelper(). For now treat these
3978                  * errors as non-fatal.
3979                  */
3980                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3981         }
3982 
3983         /*
3984          * Finally, if the user set the module parameter treat it
3985          * as a user hint.
3986          */
3987         if (!is_world_regdom(ieee80211_regdom))
3988                 regulatory_hint_user(ieee80211_regdom,
3989                                      NL80211_USER_REG_HINT_USER);
3990 
3991         return 0;
3992 }
3993 #ifndef MODULE
3994 late_initcall(regulatory_init_db);
3995 #endif
3996 
3997 int __init regulatory_init(void)
3998 {
3999         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4000         if (IS_ERR(reg_pdev))
4001                 return PTR_ERR(reg_pdev);
4002 
4003         spin_lock_init(&reg_requests_lock);
4004         spin_lock_init(&reg_pending_beacons_lock);
4005         spin_lock_init(&reg_indoor_lock);
4006 
4007         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4008 
4009         user_alpha2[0] = '9';
4010         user_alpha2[1] = '7';
4011 
4012 #ifdef MODULE
4013         return regulatory_init_db();
4014 #else
4015         return 0;
4016 #endif
4017 }
4018 
4019 void regulatory_exit(void)
4020 {
4021         struct regulatory_request *reg_request, *tmp;
4022         struct reg_beacon *reg_beacon, *btmp;
4023 
4024         cancel_work_sync(&reg_work);
4025         cancel_crda_timeout_sync();
4026         cancel_delayed_work_sync(&reg_check_chans);
4027 
4028         /* Lock to suppress warnings */
4029         rtnl_lock();
4030         reset_regdomains(true, NULL);
4031         rtnl_unlock();
4032 
4033         dev_set_uevent_suppress(&reg_pdev->dev, true);
4034 
4035         platform_device_unregister(reg_pdev);
4036 
4037         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4038                 list_del(&reg_beacon->list);
4039                 kfree(reg_beacon);
4040         }
4041 
4042         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4043                 list_del(&reg_beacon->list);
4044                 kfree(reg_beacon);
4045         }
4046 
4047         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4048                 list_del(&reg_request->list);
4049                 kfree(reg_request);
4050         }
4051 
4052         if (!IS_ERR_OR_NULL(regdb))
4053                 kfree(regdb);
4054         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4055                 kfree(cfg80211_user_regdom);
4056 
4057         free_regdb_keyring();
4058 }

/* [<][>][^][v][top][bottom][index][help] */