root/arch/powerpc/kernel/eeh_pe.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. eeh_set_pe_aux_size
  2. eeh_pe_alloc
  3. eeh_phb_pe_create
  4. eeh_wait_state
  5. eeh_phb_pe_get
  6. eeh_pe_next
  7. eeh_pe_traverse
  8. eeh_pe_dev_traverse
  9. __eeh_pe_get
  10. eeh_pe_get
  11. eeh_pe_get_parent
  12. eeh_add_to_parent_pe
  13. eeh_rmv_from_parent_pe
  14. eeh_pe_update_time_stamp
  15. eeh_pe_state_mark
  16. eeh_pe_mark_isolated
  17. __eeh_pe_dev_mode_mark
  18. eeh_pe_dev_mode_mark
  19. eeh_pe_state_clear
  20. eeh_bridge_check_link
  21. eeh_restore_bridge_bars
  22. eeh_restore_device_bars
  23. eeh_restore_one_device_bars
  24. eeh_pe_restore_bars
  25. eeh_pe_loc_get
  26. eeh_pe_bus_get

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * The file intends to implement PE based on the information from
   4  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
   5  * All the PEs should be organized as hierarchy tree. The first level
   6  * of the tree will be associated to existing PHBs since the particular
   7  * PE is only meaningful in one PHB domain.
   8  *
   9  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
  10  */
  11 
  12 #include <linux/delay.h>
  13 #include <linux/export.h>
  14 #include <linux/gfp.h>
  15 #include <linux/kernel.h>
  16 #include <linux/pci.h>
  17 #include <linux/string.h>
  18 
  19 #include <asm/pci-bridge.h>
  20 #include <asm/ppc-pci.h>
  21 
  22 static int eeh_pe_aux_size = 0;
  23 static LIST_HEAD(eeh_phb_pe);
  24 
  25 /**
  26  * eeh_set_pe_aux_size - Set PE auxillary data size
  27  * @size: PE auxillary data size
  28  *
  29  * Set PE auxillary data size
  30  */
  31 void eeh_set_pe_aux_size(int size)
  32 {
  33         if (size < 0)
  34                 return;
  35 
  36         eeh_pe_aux_size = size;
  37 }
  38 
  39 /**
  40  * eeh_pe_alloc - Allocate PE
  41  * @phb: PCI controller
  42  * @type: PE type
  43  *
  44  * Allocate PE instance dynamically.
  45  */
  46 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
  47 {
  48         struct eeh_pe *pe;
  49         size_t alloc_size;
  50 
  51         alloc_size = sizeof(struct eeh_pe);
  52         if (eeh_pe_aux_size) {
  53                 alloc_size = ALIGN(alloc_size, cache_line_size());
  54                 alloc_size += eeh_pe_aux_size;
  55         }
  56 
  57         /* Allocate PHB PE */
  58         pe = kzalloc(alloc_size, GFP_KERNEL);
  59         if (!pe) return NULL;
  60 
  61         /* Initialize PHB PE */
  62         pe->type = type;
  63         pe->phb = phb;
  64         INIT_LIST_HEAD(&pe->child_list);
  65         INIT_LIST_HEAD(&pe->edevs);
  66 
  67         pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
  68                                       cache_line_size());
  69         return pe;
  70 }
  71 
  72 /**
  73  * eeh_phb_pe_create - Create PHB PE
  74  * @phb: PCI controller
  75  *
  76  * The function should be called while the PHB is detected during
  77  * system boot or PCI hotplug in order to create PHB PE.
  78  */
  79 int eeh_phb_pe_create(struct pci_controller *phb)
  80 {
  81         struct eeh_pe *pe;
  82 
  83         /* Allocate PHB PE */
  84         pe = eeh_pe_alloc(phb, EEH_PE_PHB);
  85         if (!pe) {
  86                 pr_err("%s: out of memory!\n", __func__);
  87                 return -ENOMEM;
  88         }
  89 
  90         /* Put it into the list */
  91         list_add_tail(&pe->child, &eeh_phb_pe);
  92 
  93         pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
  94 
  95         return 0;
  96 }
  97 
  98 /**
  99  * eeh_wait_state - Wait for PE state
 100  * @pe: EEH PE
 101  * @max_wait: maximal period in millisecond
 102  *
 103  * Wait for the state of associated PE. It might take some time
 104  * to retrieve the PE's state.
 105  */
 106 int eeh_wait_state(struct eeh_pe *pe, int max_wait)
 107 {
 108         int ret;
 109         int mwait;
 110 
 111         /*
 112          * According to PAPR, the state of PE might be temporarily
 113          * unavailable. Under the circumstance, we have to wait
 114          * for indicated time determined by firmware. The maximal
 115          * wait time is 5 minutes, which is acquired from the original
 116          * EEH implementation. Also, the original implementation
 117          * also defined the minimal wait time as 1 second.
 118          */
 119 #define EEH_STATE_MIN_WAIT_TIME (1000)
 120 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
 121 
 122         while (1) {
 123                 ret = eeh_ops->get_state(pe, &mwait);
 124 
 125                 if (ret != EEH_STATE_UNAVAILABLE)
 126                         return ret;
 127 
 128                 if (max_wait <= 0) {
 129                         pr_warn("%s: Timeout when getting PE's state (%d)\n",
 130                                 __func__, max_wait);
 131                         return EEH_STATE_NOT_SUPPORT;
 132                 }
 133 
 134                 if (mwait < EEH_STATE_MIN_WAIT_TIME) {
 135                         pr_warn("%s: Firmware returned bad wait value %d\n",
 136                                 __func__, mwait);
 137                         mwait = EEH_STATE_MIN_WAIT_TIME;
 138                 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
 139                         pr_warn("%s: Firmware returned too long wait value %d\n",
 140                                 __func__, mwait);
 141                         mwait = EEH_STATE_MAX_WAIT_TIME;
 142                 }
 143 
 144                 msleep(min(mwait, max_wait));
 145                 max_wait -= mwait;
 146         }
 147 }
 148 
 149 /**
 150  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
 151  * @phb: PCI controller
 152  *
 153  * The overall PEs form hierarchy tree. The first layer of the
 154  * hierarchy tree is composed of PHB PEs. The function is used
 155  * to retrieve the corresponding PHB PE according to the given PHB.
 156  */
 157 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
 158 {
 159         struct eeh_pe *pe;
 160 
 161         list_for_each_entry(pe, &eeh_phb_pe, child) {
 162                 /*
 163                  * Actually, we needn't check the type since
 164                  * the PE for PHB has been determined when that
 165                  * was created.
 166                  */
 167                 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
 168                         return pe;
 169         }
 170 
 171         return NULL;
 172 }
 173 
 174 /**
 175  * eeh_pe_next - Retrieve the next PE in the tree
 176  * @pe: current PE
 177  * @root: root PE
 178  *
 179  * The function is used to retrieve the next PE in the
 180  * hierarchy PE tree.
 181  */
 182 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
 183 {
 184         struct list_head *next = pe->child_list.next;
 185 
 186         if (next == &pe->child_list) {
 187                 while (1) {
 188                         if (pe == root)
 189                                 return NULL;
 190                         next = pe->child.next;
 191                         if (next != &pe->parent->child_list)
 192                                 break;
 193                         pe = pe->parent;
 194                 }
 195         }
 196 
 197         return list_entry(next, struct eeh_pe, child);
 198 }
 199 
 200 /**
 201  * eeh_pe_traverse - Traverse PEs in the specified PHB
 202  * @root: root PE
 203  * @fn: callback
 204  * @flag: extra parameter to callback
 205  *
 206  * The function is used to traverse the specified PE and its
 207  * child PEs. The traversing is to be terminated once the
 208  * callback returns something other than NULL, or no more PEs
 209  * to be traversed.
 210  */
 211 void *eeh_pe_traverse(struct eeh_pe *root,
 212                       eeh_pe_traverse_func fn, void *flag)
 213 {
 214         struct eeh_pe *pe;
 215         void *ret;
 216 
 217         eeh_for_each_pe(root, pe) {
 218                 ret = fn(pe, flag);
 219                 if (ret) return ret;
 220         }
 221 
 222         return NULL;
 223 }
 224 
 225 /**
 226  * eeh_pe_dev_traverse - Traverse the devices from the PE
 227  * @root: EEH PE
 228  * @fn: function callback
 229  * @flag: extra parameter to callback
 230  *
 231  * The function is used to traverse the devices of the specified
 232  * PE and its child PEs.
 233  */
 234 void eeh_pe_dev_traverse(struct eeh_pe *root,
 235                           eeh_edev_traverse_func fn, void *flag)
 236 {
 237         struct eeh_pe *pe;
 238         struct eeh_dev *edev, *tmp;
 239 
 240         if (!root) {
 241                 pr_warn("%s: Invalid PE %p\n",
 242                         __func__, root);
 243                 return;
 244         }
 245 
 246         /* Traverse root PE */
 247         eeh_for_each_pe(root, pe)
 248                 eeh_pe_for_each_dev(pe, edev, tmp)
 249                         fn(edev, flag);
 250 }
 251 
 252 /**
 253  * __eeh_pe_get - Check the PE address
 254  * @data: EEH PE
 255  * @flag: EEH device
 256  *
 257  * For one particular PE, it can be identified by PE address
 258  * or tranditional BDF address. BDF address is composed of
 259  * Bus/Device/Function number. The extra data referred by flag
 260  * indicates which type of address should be used.
 261  */
 262 struct eeh_pe_get_flag {
 263         int pe_no;
 264         int config_addr;
 265 };
 266 
 267 static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
 268 {
 269         struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
 270 
 271         /* Unexpected PHB PE */
 272         if (pe->type & EEH_PE_PHB)
 273                 return NULL;
 274 
 275         /*
 276          * We prefer PE address. For most cases, we should
 277          * have non-zero PE address
 278          */
 279         if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
 280                 if (tmp->pe_no == pe->addr)
 281                         return pe;
 282         } else {
 283                 if (tmp->pe_no &&
 284                     (tmp->pe_no == pe->addr))
 285                         return pe;
 286         }
 287 
 288         /* Try BDF address */
 289         if (tmp->config_addr &&
 290            (tmp->config_addr == pe->config_addr))
 291                 return pe;
 292 
 293         return NULL;
 294 }
 295 
 296 /**
 297  * eeh_pe_get - Search PE based on the given address
 298  * @phb: PCI controller
 299  * @pe_no: PE number
 300  * @config_addr: Config address
 301  *
 302  * Search the corresponding PE based on the specified address which
 303  * is included in the eeh device. The function is used to check if
 304  * the associated PE has been created against the PE address. It's
 305  * notable that the PE address has 2 format: traditional PE address
 306  * which is composed of PCI bus/device/function number, or unified
 307  * PE address.
 308  */
 309 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
 310                 int pe_no, int config_addr)
 311 {
 312         struct eeh_pe *root = eeh_phb_pe_get(phb);
 313         struct eeh_pe_get_flag tmp = { pe_no, config_addr };
 314         struct eeh_pe *pe;
 315 
 316         pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
 317 
 318         return pe;
 319 }
 320 
 321 /**
 322  * eeh_pe_get_parent - Retrieve the parent PE
 323  * @edev: EEH device
 324  *
 325  * The whole PEs existing in the system are organized as hierarchy
 326  * tree. The function is used to retrieve the parent PE according
 327  * to the parent EEH device.
 328  */
 329 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
 330 {
 331         struct eeh_dev *parent;
 332         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 333 
 334         /*
 335          * It might have the case for the indirect parent
 336          * EEH device already having associated PE, but
 337          * the direct parent EEH device doesn't have yet.
 338          */
 339         if (edev->physfn)
 340                 pdn = pci_get_pdn(edev->physfn);
 341         else
 342                 pdn = pdn ? pdn->parent : NULL;
 343         while (pdn) {
 344                 /* We're poking out of PCI territory */
 345                 parent = pdn_to_eeh_dev(pdn);
 346                 if (!parent)
 347                         return NULL;
 348 
 349                 if (parent->pe)
 350                         return parent->pe;
 351 
 352                 pdn = pdn->parent;
 353         }
 354 
 355         return NULL;
 356 }
 357 
 358 /**
 359  * eeh_add_to_parent_pe - Add EEH device to parent PE
 360  * @edev: EEH device
 361  *
 362  * Add EEH device to the parent PE. If the parent PE already
 363  * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
 364  * we have to create new PE to hold the EEH device and the new
 365  * PE will be linked to its parent PE as well.
 366  */
 367 int eeh_add_to_parent_pe(struct eeh_dev *edev)
 368 {
 369         struct eeh_pe *pe, *parent;
 370         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 371         int config_addr = (pdn->busno << 8) | (pdn->devfn);
 372 
 373         /* Check if the PE number is valid */
 374         if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
 375                 eeh_edev_err(edev, "PE#0 is invalid for this PHB!\n");
 376                 return -EINVAL;
 377         }
 378 
 379         /*
 380          * Search the PE has been existing or not according
 381          * to the PE address. If that has been existing, the
 382          * PE should be composed of PCI bus and its subordinate
 383          * components.
 384          */
 385         pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
 386         if (pe) {
 387                 if (pe->type & EEH_PE_INVALID) {
 388                         list_add_tail(&edev->entry, &pe->edevs);
 389                         edev->pe = pe;
 390                         /*
 391                          * We're running to here because of PCI hotplug caused by
 392                          * EEH recovery. We need clear EEH_PE_INVALID until the top.
 393                          */
 394                         parent = pe;
 395                         while (parent) {
 396                                 if (!(parent->type & EEH_PE_INVALID))
 397                                         break;
 398                                 parent->type &= ~EEH_PE_INVALID;
 399                                 parent = parent->parent;
 400                         }
 401 
 402                         eeh_edev_dbg(edev,
 403                                      "Added to device PE (parent: PE#%x)\n",
 404                                      pe->parent->addr);
 405                 } else {
 406                         /* Mark the PE as type of PCI bus */
 407                         pe->type = EEH_PE_BUS;
 408                         edev->pe = pe;
 409 
 410                         /* Put the edev to PE */
 411                         list_add_tail(&edev->entry, &pe->edevs);
 412                         eeh_edev_dbg(edev, "Added to bus PE\n");
 413                 }
 414                 return 0;
 415         }
 416 
 417         /* Create a new EEH PE */
 418         if (edev->physfn)
 419                 pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
 420         else
 421                 pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
 422         if (!pe) {
 423                 pr_err("%s: out of memory!\n", __func__);
 424                 return -ENOMEM;
 425         }
 426         pe->addr        = edev->pe_config_addr;
 427         pe->config_addr = config_addr;
 428 
 429         /*
 430          * Put the new EEH PE into hierarchy tree. If the parent
 431          * can't be found, the newly created PE will be attached
 432          * to PHB directly. Otherwise, we have to associate the
 433          * PE with its parent.
 434          */
 435         parent = eeh_pe_get_parent(edev);
 436         if (!parent) {
 437                 parent = eeh_phb_pe_get(pdn->phb);
 438                 if (!parent) {
 439                         pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
 440                                 __func__, pdn->phb->global_number);
 441                         edev->pe = NULL;
 442                         kfree(pe);
 443                         return -EEXIST;
 444                 }
 445         }
 446         pe->parent = parent;
 447 
 448         /*
 449          * Put the newly created PE into the child list and
 450          * link the EEH device accordingly.
 451          */
 452         list_add_tail(&pe->child, &parent->child_list);
 453         list_add_tail(&edev->entry, &pe->edevs);
 454         edev->pe = pe;
 455         eeh_edev_dbg(edev, "Added to device PE (parent: PE#%x)\n",
 456                      pe->parent->addr);
 457 
 458         return 0;
 459 }
 460 
 461 /**
 462  * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
 463  * @edev: EEH device
 464  *
 465  * The PE hierarchy tree might be changed when doing PCI hotplug.
 466  * Also, the PCI devices or buses could be removed from the system
 467  * during EEH recovery. So we have to call the function remove the
 468  * corresponding PE accordingly if necessary.
 469  */
 470 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
 471 {
 472         struct eeh_pe *pe, *parent, *child;
 473         bool keep, recover;
 474         int cnt;
 475 
 476         pe = eeh_dev_to_pe(edev);
 477         if (!pe) {
 478                 eeh_edev_dbg(edev, "No PE found for device.\n");
 479                 return -EEXIST;
 480         }
 481 
 482         /* Remove the EEH device */
 483         edev->pe = NULL;
 484         list_del(&edev->entry);
 485 
 486         /*
 487          * Check if the parent PE includes any EEH devices.
 488          * If not, we should delete that. Also, we should
 489          * delete the parent PE if it doesn't have associated
 490          * child PEs and EEH devices.
 491          */
 492         while (1) {
 493                 parent = pe->parent;
 494 
 495                 /* PHB PEs should never be removed */
 496                 if (pe->type & EEH_PE_PHB)
 497                         break;
 498 
 499                 /*
 500                  * XXX: KEEP is set while resetting a PE. I don't think it's
 501                  * ever set without RECOVERING also being set. I could
 502                  * be wrong though so catch that with a WARN.
 503                  */
 504                 keep = !!(pe->state & EEH_PE_KEEP);
 505                 recover = !!(pe->state & EEH_PE_RECOVERING);
 506                 WARN_ON(keep && !recover);
 507 
 508                 if (!keep && !recover) {
 509                         if (list_empty(&pe->edevs) &&
 510                             list_empty(&pe->child_list)) {
 511                                 list_del(&pe->child);
 512                                 kfree(pe);
 513                         } else {
 514                                 break;
 515                         }
 516                 } else {
 517                         /*
 518                          * Mark the PE as invalid. At the end of the recovery
 519                          * process any invalid PEs will be garbage collected.
 520                          *
 521                          * We need to delay the free()ing of them since we can
 522                          * remove edev's while traversing the PE tree which
 523                          * might trigger the removal of a PE and we can't
 524                          * deal with that (yet).
 525                          */
 526                         if (list_empty(&pe->edevs)) {
 527                                 cnt = 0;
 528                                 list_for_each_entry(child, &pe->child_list, child) {
 529                                         if (!(child->type & EEH_PE_INVALID)) {
 530                                                 cnt++;
 531                                                 break;
 532                                         }
 533                                 }
 534 
 535                                 if (!cnt)
 536                                         pe->type |= EEH_PE_INVALID;
 537                                 else
 538                                         break;
 539                         }
 540                 }
 541 
 542                 pe = parent;
 543         }
 544 
 545         return 0;
 546 }
 547 
 548 /**
 549  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
 550  * @pe: EEH PE
 551  *
 552  * We have time stamp for each PE to trace its time of getting
 553  * frozen in last hour. The function should be called to update
 554  * the time stamp on first error of the specific PE. On the other
 555  * handle, we needn't account for errors happened in last hour.
 556  */
 557 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
 558 {
 559         time64_t tstamp;
 560 
 561         if (!pe) return;
 562 
 563         if (pe->freeze_count <= 0) {
 564                 pe->freeze_count = 0;
 565                 pe->tstamp = ktime_get_seconds();
 566         } else {
 567                 tstamp = ktime_get_seconds();
 568                 if (tstamp - pe->tstamp > 3600) {
 569                         pe->tstamp = tstamp;
 570                         pe->freeze_count = 0;
 571                 }
 572         }
 573 }
 574 
 575 /**
 576  * eeh_pe_state_mark - Mark specified state for PE and its associated device
 577  * @pe: EEH PE
 578  *
 579  * EEH error affects the current PE and its child PEs. The function
 580  * is used to mark appropriate state for the affected PEs and the
 581  * associated devices.
 582  */
 583 void eeh_pe_state_mark(struct eeh_pe *root, int state)
 584 {
 585         struct eeh_pe *pe;
 586 
 587         eeh_for_each_pe(root, pe)
 588                 if (!(pe->state & EEH_PE_REMOVED))
 589                         pe->state |= state;
 590 }
 591 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
 592 
 593 /**
 594  * eeh_pe_mark_isolated
 595  * @pe: EEH PE
 596  *
 597  * Record that a PE has been isolated by marking the PE and it's children as
 598  * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
 599  * as pci_channel_io_frozen.
 600  */
 601 void eeh_pe_mark_isolated(struct eeh_pe *root)
 602 {
 603         struct eeh_pe *pe;
 604         struct eeh_dev *edev;
 605         struct pci_dev *pdev;
 606 
 607         eeh_pe_state_mark(root, EEH_PE_ISOLATED);
 608         eeh_for_each_pe(root, pe) {
 609                 list_for_each_entry(edev, &pe->edevs, entry) {
 610                         pdev = eeh_dev_to_pci_dev(edev);
 611                         if (pdev)
 612                                 pdev->error_state = pci_channel_io_frozen;
 613                 }
 614                 /* Block PCI config access if required */
 615                 if (pe->state & EEH_PE_CFG_RESTRICTED)
 616                         pe->state |= EEH_PE_CFG_BLOCKED;
 617         }
 618 }
 619 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
 620 
 621 static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
 622 {
 623         int mode = *((int *)flag);
 624 
 625         edev->mode |= mode;
 626 }
 627 
 628 /**
 629  * eeh_pe_dev_state_mark - Mark state for all device under the PE
 630  * @pe: EEH PE
 631  *
 632  * Mark specific state for all child devices of the PE.
 633  */
 634 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
 635 {
 636         eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
 637 }
 638 
 639 /**
 640  * eeh_pe_state_clear - Clear state for the PE
 641  * @data: EEH PE
 642  * @state: state
 643  * @include_passed: include passed-through devices?
 644  *
 645  * The function is used to clear the indicated state from the
 646  * given PE. Besides, we also clear the check count of the PE
 647  * as well.
 648  */
 649 void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
 650 {
 651         struct eeh_pe *pe;
 652         struct eeh_dev *edev, *tmp;
 653         struct pci_dev *pdev;
 654 
 655         eeh_for_each_pe(root, pe) {
 656                 /* Keep the state of permanently removed PE intact */
 657                 if (pe->state & EEH_PE_REMOVED)
 658                         continue;
 659 
 660                 if (!include_passed && eeh_pe_passed(pe))
 661                         continue;
 662 
 663                 pe->state &= ~state;
 664 
 665                 /*
 666                  * Special treatment on clearing isolated state. Clear
 667                  * check count since last isolation and put all affected
 668                  * devices to normal state.
 669                  */
 670                 if (!(state & EEH_PE_ISOLATED))
 671                         continue;
 672 
 673                 pe->check_count = 0;
 674                 eeh_pe_for_each_dev(pe, edev, tmp) {
 675                         pdev = eeh_dev_to_pci_dev(edev);
 676                         if (!pdev)
 677                                 continue;
 678 
 679                         pdev->error_state = pci_channel_io_normal;
 680                 }
 681 
 682                 /* Unblock PCI config access if required */
 683                 if (pe->state & EEH_PE_CFG_RESTRICTED)
 684                         pe->state &= ~EEH_PE_CFG_BLOCKED;
 685         }
 686 }
 687 
 688 /*
 689  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
 690  * buses assigned explicitly by firmware, and we probably have
 691  * lost that after reset. So we have to delay the check until
 692  * the PCI-CFG registers have been restored for the parent
 693  * bridge.
 694  *
 695  * Don't use normal PCI-CFG accessors, which probably has been
 696  * blocked on normal path during the stage. So we need utilize
 697  * eeh operations, which is always permitted.
 698  */
 699 static void eeh_bridge_check_link(struct eeh_dev *edev)
 700 {
 701         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 702         int cap;
 703         uint32_t val;
 704         int timeout = 0;
 705 
 706         /*
 707          * We only check root port and downstream ports of
 708          * PCIe switches
 709          */
 710         if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
 711                 return;
 712 
 713         eeh_edev_dbg(edev, "Checking PCIe link...\n");
 714 
 715         /* Check slot status */
 716         cap = edev->pcie_cap;
 717         eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
 718         if (!(val & PCI_EXP_SLTSTA_PDS)) {
 719                 eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
 720                 return;
 721         }
 722 
 723         /* Check power status if we have the capability */
 724         eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
 725         if (val & PCI_EXP_SLTCAP_PCP) {
 726                 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
 727                 if (val & PCI_EXP_SLTCTL_PCC) {
 728                         eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
 729                         val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
 730                         val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
 731                         eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
 732                         msleep(2 * 1000);
 733                 }
 734         }
 735 
 736         /* Enable link */
 737         eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
 738         val &= ~PCI_EXP_LNKCTL_LD;
 739         eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
 740 
 741         /* Check link */
 742         eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
 743         if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
 744                 eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
 745                 msleep(1000);
 746                 return;
 747         }
 748 
 749         /* Wait the link is up until timeout (5s) */
 750         timeout = 0;
 751         while (timeout < 5000) {
 752                 msleep(20);
 753                 timeout += 20;
 754 
 755                 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
 756                 if (val & PCI_EXP_LNKSTA_DLLLA)
 757                         break;
 758         }
 759 
 760         if (val & PCI_EXP_LNKSTA_DLLLA)
 761                 eeh_edev_dbg(edev, "Link up (%s)\n",
 762                          (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
 763         else
 764                 eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
 765 }
 766 
 767 #define BYTE_SWAP(OFF)  (8*((OFF)/4)+3-(OFF))
 768 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
 769 
 770 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
 771 {
 772         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 773         int i;
 774 
 775         /*
 776          * Device BARs: 0x10 - 0x18
 777          * Bus numbers and windows: 0x18 - 0x30
 778          */
 779         for (i = 4; i < 13; i++)
 780                 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 781         /* Rom: 0x38 */
 782         eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
 783 
 784         /* Cache line & Latency timer: 0xC 0xD */
 785         eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 786                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 787         eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 788                 SAVED_BYTE(PCI_LATENCY_TIMER));
 789         /* Max latency, min grant, interrupt ping and line: 0x3C */
 790         eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 791 
 792         /* PCI Command: 0x4 */
 793         eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
 794                               PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
 795 
 796         /* Check the PCIe link is ready */
 797         eeh_bridge_check_link(edev);
 798 }
 799 
 800 static void eeh_restore_device_bars(struct eeh_dev *edev)
 801 {
 802         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 803         int i;
 804         u32 cmd;
 805 
 806         for (i = 4; i < 10; i++)
 807                 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 808         /* 12 == Expansion ROM Address */
 809         eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
 810 
 811         eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 812                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 813         eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 814                 SAVED_BYTE(PCI_LATENCY_TIMER));
 815 
 816         /* max latency, min grant, interrupt pin and line */
 817         eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 818 
 819         /*
 820          * Restore PERR & SERR bits, some devices require it,
 821          * don't touch the other command bits
 822          */
 823         eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
 824         if (edev->config_space[1] & PCI_COMMAND_PARITY)
 825                 cmd |= PCI_COMMAND_PARITY;
 826         else
 827                 cmd &= ~PCI_COMMAND_PARITY;
 828         if (edev->config_space[1] & PCI_COMMAND_SERR)
 829                 cmd |= PCI_COMMAND_SERR;
 830         else
 831                 cmd &= ~PCI_COMMAND_SERR;
 832         eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
 833 }
 834 
 835 /**
 836  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
 837  * @data: EEH device
 838  * @flag: Unused
 839  *
 840  * Loads the PCI configuration space base address registers,
 841  * the expansion ROM base address, the latency timer, and etc.
 842  * from the saved values in the device node.
 843  */
 844 static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
 845 {
 846         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 847 
 848         /* Do special restore for bridges */
 849         if (edev->mode & EEH_DEV_BRIDGE)
 850                 eeh_restore_bridge_bars(edev);
 851         else
 852                 eeh_restore_device_bars(edev);
 853 
 854         if (eeh_ops->restore_config && pdn)
 855                 eeh_ops->restore_config(pdn);
 856 }
 857 
 858 /**
 859  * eeh_pe_restore_bars - Restore the PCI config space info
 860  * @pe: EEH PE
 861  *
 862  * This routine performs a recursive walk to the children
 863  * of this device as well.
 864  */
 865 void eeh_pe_restore_bars(struct eeh_pe *pe)
 866 {
 867         /*
 868          * We needn't take the EEH lock since eeh_pe_dev_traverse()
 869          * will take that.
 870          */
 871         eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
 872 }
 873 
 874 /**
 875  * eeh_pe_loc_get - Retrieve location code binding to the given PE
 876  * @pe: EEH PE
 877  *
 878  * Retrieve the location code of the given PE. If the primary PE bus
 879  * is root bus, we will grab location code from PHB device tree node
 880  * or root port. Otherwise, the upstream bridge's device tree node
 881  * of the primary PE bus will be checked for the location code.
 882  */
 883 const char *eeh_pe_loc_get(struct eeh_pe *pe)
 884 {
 885         struct pci_bus *bus = eeh_pe_bus_get(pe);
 886         struct device_node *dn;
 887         const char *loc = NULL;
 888 
 889         while (bus) {
 890                 dn = pci_bus_to_OF_node(bus);
 891                 if (!dn) {
 892                         bus = bus->parent;
 893                         continue;
 894                 }
 895 
 896                 if (pci_is_root_bus(bus))
 897                         loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
 898                 else
 899                         loc = of_get_property(dn, "ibm,slot-location-code",
 900                                               NULL);
 901 
 902                 if (loc)
 903                         return loc;
 904 
 905                 bus = bus->parent;
 906         }
 907 
 908         return "N/A";
 909 }
 910 
 911 /**
 912  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
 913  * @pe: EEH PE
 914  *
 915  * Retrieve the PCI bus according to the given PE. Basically,
 916  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
 917  * primary PCI bus will be retrieved. The parent bus will be
 918  * returned for BUS PE. However, we don't have associated PCI
 919  * bus for DEVICE PE.
 920  */
 921 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
 922 {
 923         struct eeh_dev *edev;
 924         struct pci_dev *pdev;
 925 
 926         if (pe->type & EEH_PE_PHB)
 927                 return pe->phb->bus;
 928 
 929         /* The primary bus might be cached during probe time */
 930         if (pe->state & EEH_PE_PRI_BUS)
 931                 return pe->bus;
 932 
 933         /* Retrieve the parent PCI bus of first (top) PCI device */
 934         edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
 935         pdev = eeh_dev_to_pci_dev(edev);
 936         if (pdev)
 937                 return pdev->bus;
 938 
 939         return NULL;
 940 }

/* [<][>][^][v][top][bottom][index][help] */