root/arch/powerpc/kernel/rtas-proc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. poweron_open
  2. progress_open
  3. clock_open
  4. tone_freq_open
  5. tone_volume_open
  6. proc_rtas_init
  7. parse_number
  8. ppc_rtas_poweron_write
  9. ppc_rtas_poweron_show
  10. ppc_rtas_progress_write
  11. ppc_rtas_progress_show
  12. ppc_rtas_clock_write
  13. ppc_rtas_clock_show
  14. ppc_rtas_sensors_show
  15. ppc_rtas_find_all_sensors
  16. ppc_rtas_process_error
  17. ppc_rtas_process_sensor
  18. check_location
  19. check_location_string
  20. get_location_code
  21. ppc_rtas_tone_freq_write
  22. ppc_rtas_tone_freq_show
  23. ppc_rtas_tone_volume_write
  24. ppc_rtas_tone_volume_show
  25. ppc_rtas_rmo_buf_show

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *   Copyright (C) 2000 Tilmann Bitterberg
   4  *   (tilmann@bitterberg.de)
   5  *
   6  *   RTAS (Runtime Abstraction Services) stuff
   7  *   Intention is to provide a clean user interface
   8  *   to use the RTAS.
   9  *
  10  *   TODO:
  11  *   Split off a header file and maybe move it to a different
  12  *   location. Write Documentation on what the /proc/rtas/ entries
  13  *   actually do.
  14  */
  15 
  16 #include <linux/errno.h>
  17 #include <linux/sched.h>
  18 #include <linux/proc_fs.h>
  19 #include <linux/stat.h>
  20 #include <linux/ctype.h>
  21 #include <linux/time.h>
  22 #include <linux/string.h>
  23 #include <linux/init.h>
  24 #include <linux/seq_file.h>
  25 #include <linux/bitops.h>
  26 #include <linux/rtc.h>
  27 
  28 #include <linux/uaccess.h>
  29 #include <asm/processor.h>
  30 #include <asm/io.h>
  31 #include <asm/prom.h>
  32 #include <asm/rtas.h>
  33 #include <asm/machdep.h> /* for ppc_md */
  34 #include <asm/time.h>
  35 
  36 /* Token for Sensors */
  37 #define KEY_SWITCH              0x0001
  38 #define ENCLOSURE_SWITCH        0x0002
  39 #define THERMAL_SENSOR          0x0003
  40 #define LID_STATUS              0x0004
  41 #define POWER_SOURCE            0x0005
  42 #define BATTERY_VOLTAGE         0x0006
  43 #define BATTERY_REMAINING       0x0007
  44 #define BATTERY_PERCENTAGE      0x0008
  45 #define EPOW_SENSOR             0x0009
  46 #define BATTERY_CYCLESTATE      0x000a
  47 #define BATTERY_CHARGING        0x000b
  48 
  49 /* IBM specific sensors */
  50 #define IBM_SURVEILLANCE        0x2328 /* 9000 */
  51 #define IBM_FANRPM              0x2329 /* 9001 */
  52 #define IBM_VOLTAGE             0x232a /* 9002 */
  53 #define IBM_DRCONNECTOR         0x232b /* 9003 */
  54 #define IBM_POWERSUPPLY         0x232c /* 9004 */
  55 
  56 /* Status return values */
  57 #define SENSOR_CRITICAL_HIGH    13
  58 #define SENSOR_WARNING_HIGH     12
  59 #define SENSOR_NORMAL           11
  60 #define SENSOR_WARNING_LOW      10
  61 #define SENSOR_CRITICAL_LOW      9
  62 #define SENSOR_SUCCESS           0
  63 #define SENSOR_HW_ERROR         -1
  64 #define SENSOR_BUSY             -2
  65 #define SENSOR_NOT_EXIST        -3
  66 #define SENSOR_DR_ENTITY        -9000
  67 
  68 /* Location Codes */
  69 #define LOC_SCSI_DEV_ADDR       'A'
  70 #define LOC_SCSI_DEV_LOC        'B'
  71 #define LOC_CPU                 'C'
  72 #define LOC_DISKETTE            'D'
  73 #define LOC_ETHERNET            'E'
  74 #define LOC_FAN                 'F'
  75 #define LOC_GRAPHICS            'G'
  76 /* reserved / not used          'H' */
  77 #define LOC_IO_ADAPTER          'I'
  78 /* reserved / not used          'J' */
  79 #define LOC_KEYBOARD            'K'
  80 #define LOC_LCD                 'L'
  81 #define LOC_MEMORY              'M'
  82 #define LOC_NV_MEMORY           'N'
  83 #define LOC_MOUSE               'O'
  84 #define LOC_PLANAR              'P'
  85 #define LOC_OTHER_IO            'Q'
  86 #define LOC_PARALLEL            'R'
  87 #define LOC_SERIAL              'S'
  88 #define LOC_DEAD_RING           'T'
  89 #define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
  90 #define LOC_VOLTAGE             'V'
  91 #define LOC_SWITCH_ADAPTER      'W'
  92 #define LOC_OTHER               'X'
  93 #define LOC_FIRMWARE            'Y'
  94 #define LOC_SCSI                'Z'
  95 
  96 /* Tokens for indicators */
  97 #define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
  98 #define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
  99 #define SYSTEM_POWER_STATE      0x0003 
 100 #define WARNING_LIGHT           0x0004
 101 #define DISK_ACTIVITY_LIGHT     0x0005
 102 #define HEX_DISPLAY_UNIT        0x0006
 103 #define BATTERY_WARNING_TIME    0x0007
 104 #define CONDITION_CYCLE_REQUEST 0x0008
 105 #define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
 106 #define DR_ACTION               0x2329 /* 9001 */
 107 #define DR_INDICATOR            0x232a /* 9002 */
 108 /* 9003 - 9004: Vendor specific */
 109 /* 9006 - 9999: Vendor specific */
 110 
 111 /* other */
 112 #define MAX_SENSORS              17  /* I only know of 17 sensors */    
 113 #define MAX_LINELENGTH          256
 114 #define SENSOR_PREFIX           "ibm,sensor-"
 115 #define cel_to_fahr(x)          ((x*9/5)+32)
 116 
 117 struct individual_sensor {
 118         unsigned int token;
 119         unsigned int quant;
 120 };
 121 
 122 struct rtas_sensors {
 123         struct individual_sensor sensor[MAX_SENSORS];
 124         unsigned int quant;
 125 };
 126 
 127 /* Globals */
 128 static struct rtas_sensors sensors;
 129 static struct device_node *rtas_node = NULL;
 130 static unsigned long power_on_time = 0; /* Save the time the user set */
 131 static char progress_led[MAX_LINELENGTH];
 132 
 133 static unsigned long rtas_tone_frequency = 1000;
 134 static unsigned long rtas_tone_volume = 0;
 135 
 136 /* ****************************************************************** */
 137 /* Declarations */
 138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
 139 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
 140 static ssize_t ppc_rtas_clock_write(struct file *file,
 141                 const char __user *buf, size_t count, loff_t *ppos);
 142 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
 143 static ssize_t ppc_rtas_progress_write(struct file *file,
 144                 const char __user *buf, size_t count, loff_t *ppos);
 145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
 146 static ssize_t ppc_rtas_poweron_write(struct file *file,
 147                 const char __user *buf, size_t count, loff_t *ppos);
 148 
 149 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 150                 const char __user *buf, size_t count, loff_t *ppos);
 151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
 152 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 153                 const char __user *buf, size_t count, loff_t *ppos);
 154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
 155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
 156 
 157 static int poweron_open(struct inode *inode, struct file *file)
 158 {
 159         return single_open(file, ppc_rtas_poweron_show, NULL);
 160 }
 161 
 162 static const struct file_operations ppc_rtas_poweron_operations = {
 163         .open           = poweron_open,
 164         .read           = seq_read,
 165         .llseek         = seq_lseek,
 166         .write          = ppc_rtas_poweron_write,
 167         .release        = single_release,
 168 };
 169 
 170 static int progress_open(struct inode *inode, struct file *file)
 171 {
 172         return single_open(file, ppc_rtas_progress_show, NULL);
 173 }
 174 
 175 static const struct file_operations ppc_rtas_progress_operations = {
 176         .open           = progress_open,
 177         .read           = seq_read,
 178         .llseek         = seq_lseek,
 179         .write          = ppc_rtas_progress_write,
 180         .release        = single_release,
 181 };
 182 
 183 static int clock_open(struct inode *inode, struct file *file)
 184 {
 185         return single_open(file, ppc_rtas_clock_show, NULL);
 186 }
 187 
 188 static const struct file_operations ppc_rtas_clock_operations = {
 189         .open           = clock_open,
 190         .read           = seq_read,
 191         .llseek         = seq_lseek,
 192         .write          = ppc_rtas_clock_write,
 193         .release        = single_release,
 194 };
 195 
 196 static int tone_freq_open(struct inode *inode, struct file *file)
 197 {
 198         return single_open(file, ppc_rtas_tone_freq_show, NULL);
 199 }
 200 
 201 static const struct file_operations ppc_rtas_tone_freq_operations = {
 202         .open           = tone_freq_open,
 203         .read           = seq_read,
 204         .llseek         = seq_lseek,
 205         .write          = ppc_rtas_tone_freq_write,
 206         .release        = single_release,
 207 };
 208 
 209 static int tone_volume_open(struct inode *inode, struct file *file)
 210 {
 211         return single_open(file, ppc_rtas_tone_volume_show, NULL);
 212 }
 213 
 214 static const struct file_operations ppc_rtas_tone_volume_operations = {
 215         .open           = tone_volume_open,
 216         .read           = seq_read,
 217         .llseek         = seq_lseek,
 218         .write          = ppc_rtas_tone_volume_write,
 219         .release        = single_release,
 220 };
 221 
 222 static int ppc_rtas_find_all_sensors(void);
 223 static void ppc_rtas_process_sensor(struct seq_file *m,
 224         struct individual_sensor *s, int state, int error, const char *loc);
 225 static char *ppc_rtas_process_error(int error);
 226 static void get_location_code(struct seq_file *m,
 227         struct individual_sensor *s, const char *loc);
 228 static void check_location_string(struct seq_file *m, const char *c);
 229 static void check_location(struct seq_file *m, const char *c);
 230 
 231 static int __init proc_rtas_init(void)
 232 {
 233         if (!machine_is(pseries))
 234                 return -ENODEV;
 235 
 236         rtas_node = of_find_node_by_name(NULL, "rtas");
 237         if (rtas_node == NULL)
 238                 return -ENODEV;
 239 
 240         proc_create("powerpc/rtas/progress", 0644, NULL,
 241                     &ppc_rtas_progress_operations);
 242         proc_create("powerpc/rtas/clock", 0644, NULL,
 243                     &ppc_rtas_clock_operations);
 244         proc_create("powerpc/rtas/poweron", 0644, NULL,
 245                     &ppc_rtas_poweron_operations);
 246         proc_create_single("powerpc/rtas/sensors", 0444, NULL,
 247                         ppc_rtas_sensors_show);
 248         proc_create("powerpc/rtas/frequency", 0644, NULL,
 249                     &ppc_rtas_tone_freq_operations);
 250         proc_create("powerpc/rtas/volume", 0644, NULL,
 251                     &ppc_rtas_tone_volume_operations);
 252         proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
 253                         ppc_rtas_rmo_buf_show);
 254         return 0;
 255 }
 256 
 257 __initcall(proc_rtas_init);
 258 
 259 static int parse_number(const char __user *p, size_t count, u64 *val)
 260 {
 261         char buf[40];
 262         char *end;
 263 
 264         if (count > 39)
 265                 return -EINVAL;
 266 
 267         if (copy_from_user(buf, p, count))
 268                 return -EFAULT;
 269 
 270         buf[count] = 0;
 271 
 272         *val = simple_strtoull(buf, &end, 10);
 273         if (*end && *end != '\n')
 274                 return -EINVAL;
 275 
 276         return 0;
 277 }
 278 
 279 /* ****************************************************************** */
 280 /* POWER-ON-TIME                                                      */
 281 /* ****************************************************************** */
 282 static ssize_t ppc_rtas_poweron_write(struct file *file,
 283                 const char __user *buf, size_t count, loff_t *ppos)
 284 {
 285         struct rtc_time tm;
 286         time64_t nowtime;
 287         int error = parse_number(buf, count, &nowtime);
 288         if (error)
 289                 return error;
 290 
 291         power_on_time = nowtime; /* save the time */
 292 
 293         rtc_time64_to_tm(nowtime, &tm);
 294 
 295         error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
 296                         tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
 297                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
 298         if (error)
 299                 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
 300                                 ppc_rtas_process_error(error));
 301         return count;
 302 }
 303 /* ****************************************************************** */
 304 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
 305 {
 306         if (power_on_time == 0)
 307                 seq_printf(m, "Power on time not set\n");
 308         else
 309                 seq_printf(m, "%lu\n",power_on_time);
 310         return 0;
 311 }
 312 
 313 /* ****************************************************************** */
 314 /* PROGRESS                                                           */
 315 /* ****************************************************************** */
 316 static ssize_t ppc_rtas_progress_write(struct file *file,
 317                 const char __user *buf, size_t count, loff_t *ppos)
 318 {
 319         unsigned long hex;
 320 
 321         if (count >= MAX_LINELENGTH)
 322                 count = MAX_LINELENGTH -1;
 323         if (copy_from_user(progress_led, buf, count)) { /* save the string */
 324                 return -EFAULT;
 325         }
 326         progress_led[count] = 0;
 327 
 328         /* Lets see if the user passed hexdigits */
 329         hex = simple_strtoul(progress_led, NULL, 10);
 330 
 331         rtas_progress ((char *)progress_led, hex);
 332         return count;
 333 
 334         /* clear the line */
 335         /* rtas_progress("                   ", 0xffff);*/
 336 }
 337 /* ****************************************************************** */
 338 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
 339 {
 340         if (progress_led[0])
 341                 seq_printf(m, "%s\n", progress_led);
 342         return 0;
 343 }
 344 
 345 /* ****************************************************************** */
 346 /* CLOCK                                                              */
 347 /* ****************************************************************** */
 348 static ssize_t ppc_rtas_clock_write(struct file *file,
 349                 const char __user *buf, size_t count, loff_t *ppos)
 350 {
 351         struct rtc_time tm;
 352         time64_t nowtime;
 353         int error = parse_number(buf, count, &nowtime);
 354         if (error)
 355                 return error;
 356 
 357         rtc_time64_to_tm(nowtime, &tm);
 358         error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
 359                         tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
 360                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
 361         if (error)
 362                 printk(KERN_WARNING "error: setting the clock returned: %s\n", 
 363                                 ppc_rtas_process_error(error));
 364         return count;
 365 }
 366 /* ****************************************************************** */
 367 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
 368 {
 369         int ret[8];
 370         int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
 371 
 372         if (error) {
 373                 printk(KERN_WARNING "error: reading the clock returned: %s\n", 
 374                                 ppc_rtas_process_error(error));
 375                 seq_printf(m, "0");
 376         } else { 
 377                 unsigned int year, mon, day, hour, min, sec;
 378                 year = ret[0]; mon  = ret[1]; day  = ret[2];
 379                 hour = ret[3]; min  = ret[4]; sec  = ret[5];
 380                 seq_printf(m, "%lld\n",
 381                                 mktime64(year, mon, day, hour, min, sec));
 382         }
 383         return 0;
 384 }
 385 
 386 /* ****************************************************************** */
 387 /* SENSOR STUFF                                                       */
 388 /* ****************************************************************** */
 389 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
 390 {
 391         int i,j;
 392         int state, error;
 393         int get_sensor_state = rtas_token("get-sensor-state");
 394 
 395         seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
 396         seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
 397         seq_printf(m, "********************************************************\n");
 398 
 399         if (ppc_rtas_find_all_sensors() != 0) {
 400                 seq_printf(m, "\nNo sensors are available\n");
 401                 return 0;
 402         }
 403 
 404         for (i=0; i<sensors.quant; i++) {
 405                 struct individual_sensor *p = &sensors.sensor[i];
 406                 char rstr[64];
 407                 const char *loc;
 408                 int llen, offs;
 409 
 410                 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
 411                 loc = of_get_property(rtas_node, rstr, &llen);
 412 
 413                 /* A sensor may have multiple instances */
 414                 for (j = 0, offs = 0; j <= p->quant; j++) {
 415                         error = rtas_call(get_sensor_state, 2, 2, &state, 
 416                                           p->token, j);
 417 
 418                         ppc_rtas_process_sensor(m, p, state, error, loc);
 419                         seq_putc(m, '\n');
 420                         if (loc) {
 421                                 offs += strlen(loc) + 1;
 422                                 loc += strlen(loc) + 1;
 423                                 if (offs >= llen)
 424                                         loc = NULL;
 425                         }
 426                 }
 427         }
 428         return 0;
 429 }
 430 
 431 /* ****************************************************************** */
 432 
 433 static int ppc_rtas_find_all_sensors(void)
 434 {
 435         const unsigned int *utmp;
 436         int len, i;
 437 
 438         utmp = of_get_property(rtas_node, "rtas-sensors", &len);
 439         if (utmp == NULL) {
 440                 printk (KERN_ERR "error: could not get rtas-sensors\n");
 441                 return 1;
 442         }
 443 
 444         sensors.quant = len / 8;      /* int + int */
 445 
 446         for (i=0; i<sensors.quant; i++) {
 447                 sensors.sensor[i].token = *utmp++;
 448                 sensors.sensor[i].quant = *utmp++;
 449         }
 450         return 0;
 451 }
 452 
 453 /* ****************************************************************** */
 454 /*
 455  * Builds a string of what rtas returned
 456  */
 457 static char *ppc_rtas_process_error(int error)
 458 {
 459         switch (error) {
 460                 case SENSOR_CRITICAL_HIGH:
 461                         return "(critical high)";
 462                 case SENSOR_WARNING_HIGH:
 463                         return "(warning high)";
 464                 case SENSOR_NORMAL:
 465                         return "(normal)";
 466                 case SENSOR_WARNING_LOW:
 467                         return "(warning low)";
 468                 case SENSOR_CRITICAL_LOW:
 469                         return "(critical low)";
 470                 case SENSOR_SUCCESS:
 471                         return "(read ok)";
 472                 case SENSOR_HW_ERROR:
 473                         return "(hardware error)";
 474                 case SENSOR_BUSY:
 475                         return "(busy)";
 476                 case SENSOR_NOT_EXIST:
 477                         return "(non existent)";
 478                 case SENSOR_DR_ENTITY:
 479                         return "(dr entity removed)";
 480                 default:
 481                         return "(UNKNOWN)";
 482         }
 483 }
 484 
 485 /* ****************************************************************** */
 486 /*
 487  * Builds a string out of what the sensor said
 488  */
 489 
 490 static void ppc_rtas_process_sensor(struct seq_file *m,
 491         struct individual_sensor *s, int state, int error, const char *loc)
 492 {
 493         /* Defined return vales */
 494         const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
 495                                                 "Maintenance" };
 496         const char * enclosure_switch[]  = { "Closed", "Open" };
 497         const char * lid_status[]        = { " ", "Open", "Closed" };
 498         const char * power_source[]      = { "AC\t", "Battery", 
 499                                                 "AC & Battery" };
 500         const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
 501         const char * epow_sensor[]       = { 
 502                 "EPOW Reset", "Cooling warning", "Power warning",
 503                 "System shutdown", "System halt", "EPOW main enclosure",
 504                 "EPOW power off" };
 505         const char * battery_cyclestate[]  = { "None", "In progress", 
 506                                                 "Requested" };
 507         const char * battery_charging[]    = { "Charging", "Discharging",
 508                                                 "No current flow" };
 509         const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
 510                                                 "Exchange" };
 511 
 512         int have_strings = 0;
 513         int num_states = 0;
 514         int temperature = 0;
 515         int unknown = 0;
 516 
 517         /* What kind of sensor do we have here? */
 518         
 519         switch (s->token) {
 520                 case KEY_SWITCH:
 521                         seq_printf(m, "Key switch:\t");
 522                         num_states = sizeof(key_switch) / sizeof(char *);
 523                         if (state < num_states) {
 524                                 seq_printf(m, "%s\t", key_switch[state]);
 525                                 have_strings = 1;
 526                         }
 527                         break;
 528                 case ENCLOSURE_SWITCH:
 529                         seq_printf(m, "Enclosure switch:\t");
 530                         num_states = sizeof(enclosure_switch) / sizeof(char *);
 531                         if (state < num_states) {
 532                                 seq_printf(m, "%s\t", 
 533                                                 enclosure_switch[state]);
 534                                 have_strings = 1;
 535                         }
 536                         break;
 537                 case THERMAL_SENSOR:
 538                         seq_printf(m, "Temp. (C/F):\t");
 539                         temperature = 1;
 540                         break;
 541                 case LID_STATUS:
 542                         seq_printf(m, "Lid status:\t");
 543                         num_states = sizeof(lid_status) / sizeof(char *);
 544                         if (state < num_states) {
 545                                 seq_printf(m, "%s\t", lid_status[state]);
 546                                 have_strings = 1;
 547                         }
 548                         break;
 549                 case POWER_SOURCE:
 550                         seq_printf(m, "Power source:\t");
 551                         num_states = sizeof(power_source) / sizeof(char *);
 552                         if (state < num_states) {
 553                                 seq_printf(m, "%s\t", 
 554                                                 power_source[state]);
 555                                 have_strings = 1;
 556                         }
 557                         break;
 558                 case BATTERY_VOLTAGE:
 559                         seq_printf(m, "Battery voltage:\t");
 560                         break;
 561                 case BATTERY_REMAINING:
 562                         seq_printf(m, "Battery remaining:\t");
 563                         num_states = sizeof(battery_remaining) / sizeof(char *);
 564                         if (state < num_states)
 565                         {
 566                                 seq_printf(m, "%s\t", 
 567                                                 battery_remaining[state]);
 568                                 have_strings = 1;
 569                         }
 570                         break;
 571                 case BATTERY_PERCENTAGE:
 572                         seq_printf(m, "Battery percentage:\t");
 573                         break;
 574                 case EPOW_SENSOR:
 575                         seq_printf(m, "EPOW Sensor:\t");
 576                         num_states = sizeof(epow_sensor) / sizeof(char *);
 577                         if (state < num_states) {
 578                                 seq_printf(m, "%s\t", epow_sensor[state]);
 579                                 have_strings = 1;
 580                         }
 581                         break;
 582                 case BATTERY_CYCLESTATE:
 583                         seq_printf(m, "Battery cyclestate:\t");
 584                         num_states = sizeof(battery_cyclestate) / 
 585                                         sizeof(char *);
 586                         if (state < num_states) {
 587                                 seq_printf(m, "%s\t", 
 588                                                 battery_cyclestate[state]);
 589                                 have_strings = 1;
 590                         }
 591                         break;
 592                 case BATTERY_CHARGING:
 593                         seq_printf(m, "Battery Charging:\t");
 594                         num_states = sizeof(battery_charging) / sizeof(char *);
 595                         if (state < num_states) {
 596                                 seq_printf(m, "%s\t", 
 597                                                 battery_charging[state]);
 598                                 have_strings = 1;
 599                         }
 600                         break;
 601                 case IBM_SURVEILLANCE:
 602                         seq_printf(m, "Surveillance:\t");
 603                         break;
 604                 case IBM_FANRPM:
 605                         seq_printf(m, "Fan (rpm):\t");
 606                         break;
 607                 case IBM_VOLTAGE:
 608                         seq_printf(m, "Voltage (mv):\t");
 609                         break;
 610                 case IBM_DRCONNECTOR:
 611                         seq_printf(m, "DR connector:\t");
 612                         num_states = sizeof(ibm_drconnector) / sizeof(char *);
 613                         if (state < num_states) {
 614                                 seq_printf(m, "%s\t", 
 615                                                 ibm_drconnector[state]);
 616                                 have_strings = 1;
 617                         }
 618                         break;
 619                 case IBM_POWERSUPPLY:
 620                         seq_printf(m, "Powersupply:\t");
 621                         break;
 622                 default:
 623                         seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
 624                                         s->token);
 625                         unknown = 1;
 626                         have_strings = 1;
 627                         break;
 628         }
 629         if (have_strings == 0) {
 630                 if (temperature) {
 631                         seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
 632                 } else
 633                         seq_printf(m, "%10d\t", state);
 634         }
 635         if (unknown == 0) {
 636                 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
 637                 get_location_code(m, s, loc);
 638         }
 639 }
 640 
 641 /* ****************************************************************** */
 642 
 643 static void check_location(struct seq_file *m, const char *c)
 644 {
 645         switch (c[0]) {
 646                 case LOC_PLANAR:
 647                         seq_printf(m, "Planar #%c", c[1]);
 648                         break;
 649                 case LOC_CPU:
 650                         seq_printf(m, "CPU #%c", c[1]);
 651                         break;
 652                 case LOC_FAN:
 653                         seq_printf(m, "Fan #%c", c[1]);
 654                         break;
 655                 case LOC_RACKMOUNTED:
 656                         seq_printf(m, "Rack #%c", c[1]);
 657                         break;
 658                 case LOC_VOLTAGE:
 659                         seq_printf(m, "Voltage #%c", c[1]);
 660                         break;
 661                 case LOC_LCD:
 662                         seq_printf(m, "LCD #%c", c[1]);
 663                         break;
 664                 case '.':
 665                         seq_printf(m, "- %c", c[1]);
 666                         break;
 667                 default:
 668                         seq_printf(m, "Unknown location");
 669                         break;
 670         }
 671 }
 672 
 673 
 674 /* ****************************************************************** */
 675 /* 
 676  * Format: 
 677  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
 678  * the '.' may be an abbreviation
 679  */
 680 static void check_location_string(struct seq_file *m, const char *c)
 681 {
 682         while (*c) {
 683                 if (isalpha(*c) || *c == '.')
 684                         check_location(m, c);
 685                 else if (*c == '/' || *c == '-')
 686                         seq_printf(m, " at ");
 687                 c++;
 688         }
 689 }
 690 
 691 
 692 /* ****************************************************************** */
 693 
 694 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
 695                 const char *loc)
 696 {
 697         if (!loc || !*loc) {
 698                 seq_printf(m, "---");/* does not have a location */
 699         } else {
 700                 check_location_string(m, loc);
 701         }
 702         seq_putc(m, ' ');
 703 }
 704 /* ****************************************************************** */
 705 /* INDICATORS - Tone Frequency                                        */
 706 /* ****************************************************************** */
 707 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 708                 const char __user *buf, size_t count, loff_t *ppos)
 709 {
 710         u64 freq;
 711         int error = parse_number(buf, count, &freq);
 712         if (error)
 713                 return error;
 714 
 715         rtas_tone_frequency = freq; /* save it for later */
 716         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 717                         TONE_FREQUENCY, 0, freq);
 718         if (error)
 719                 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
 720                                 ppc_rtas_process_error(error));
 721         return count;
 722 }
 723 /* ****************************************************************** */
 724 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
 725 {
 726         seq_printf(m, "%lu\n", rtas_tone_frequency);
 727         return 0;
 728 }
 729 /* ****************************************************************** */
 730 /* INDICATORS - Tone Volume                                           */
 731 /* ****************************************************************** */
 732 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 733                 const char __user *buf, size_t count, loff_t *ppos)
 734 {
 735         u64 volume;
 736         int error = parse_number(buf, count, &volume);
 737         if (error)
 738                 return error;
 739 
 740         if (volume > 100)
 741                 volume = 100;
 742         
 743         rtas_tone_volume = volume; /* save it for later */
 744         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 745                         TONE_VOLUME, 0, volume);
 746         if (error)
 747                 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
 748                                 ppc_rtas_process_error(error));
 749         return count;
 750 }
 751 /* ****************************************************************** */
 752 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
 753 {
 754         seq_printf(m, "%lu\n", rtas_tone_volume);
 755         return 0;
 756 }
 757 
 758 #define RMO_READ_BUF_MAX 30
 759 
 760 /* RTAS Userspace access */
 761 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
 762 {
 763         seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
 764         return 0;
 765 }

/* [<][>][^][v][top][bottom][index][help] */