root/crypto/aegis128-neon-inner.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. aegis128_load_state_neon
  2. aegis128_save_state_neon
  3. aegis_aes_round
  4. aegis128_update_neon
  5. preload_sbox
  6. crypto_aegis128_update_neon
  7. crypto_aegis128_encrypt_chunk_neon
  8. crypto_aegis128_decrypt_chunk_neon

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org>
   4  */
   5 
   6 #ifdef CONFIG_ARM64
   7 #include <asm/neon-intrinsics.h>
   8 
   9 #define AES_ROUND       "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b"
  10 #else
  11 #include <arm_neon.h>
  12 
  13 #define AES_ROUND       "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0"
  14 #endif
  15 
  16 #define AEGIS_BLOCK_SIZE        16
  17 
  18 #include <stddef.h>
  19 
  20 extern int aegis128_have_aes_insn;
  21 
  22 void *memcpy(void *dest, const void *src, size_t n);
  23 void *memset(void *s, int c, size_t n);
  24 
  25 struct aegis128_state {
  26         uint8x16_t v[5];
  27 };
  28 
  29 extern const uint8_t crypto_aes_sbox[];
  30 
  31 static struct aegis128_state aegis128_load_state_neon(const void *state)
  32 {
  33         return (struct aegis128_state){ {
  34                 vld1q_u8(state),
  35                 vld1q_u8(state + 16),
  36                 vld1q_u8(state + 32),
  37                 vld1q_u8(state + 48),
  38                 vld1q_u8(state + 64)
  39         } };
  40 }
  41 
  42 static void aegis128_save_state_neon(struct aegis128_state st, void *state)
  43 {
  44         vst1q_u8(state, st.v[0]);
  45         vst1q_u8(state + 16, st.v[1]);
  46         vst1q_u8(state + 32, st.v[2]);
  47         vst1q_u8(state + 48, st.v[3]);
  48         vst1q_u8(state + 64, st.v[4]);
  49 }
  50 
  51 static inline __attribute__((always_inline))
  52 uint8x16_t aegis_aes_round(uint8x16_t w)
  53 {
  54         uint8x16_t z = {};
  55 
  56 #ifdef CONFIG_ARM64
  57         if (!__builtin_expect(aegis128_have_aes_insn, 1)) {
  58                 static const uint8_t shift_rows[] = {
  59                         0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
  60                         0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
  61                 };
  62                 static const uint8_t ror32by8[] = {
  63                         0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
  64                         0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
  65                 };
  66                 uint8x16_t v;
  67 
  68                 // shift rows
  69                 w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
  70 
  71                 // sub bytes
  72 #ifndef CONFIG_CC_IS_GCC
  73                 v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
  74                 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
  75                 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
  76                 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
  77 #else
  78                 asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w));
  79                 w -= 0x40;
  80                 asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w));
  81                 w -= 0x40;
  82                 asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w));
  83                 w -= 0x40;
  84                 asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w));
  85 #endif
  86 
  87                 // mix columns
  88                 w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b);
  89                 w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v);
  90                 w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
  91 
  92                 return w;
  93         }
  94 #endif
  95 
  96         /*
  97          * We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics
  98          * to force the compiler to issue the aese/aesmc instructions in pairs.
  99          * This is much faster on many cores, where the instruction pair can
 100          * execute in a single cycle.
 101          */
 102         asm(AES_ROUND : "+w"(w) : "w"(z));
 103         return w;
 104 }
 105 
 106 static inline __attribute__((always_inline))
 107 struct aegis128_state aegis128_update_neon(struct aegis128_state st,
 108                                            uint8x16_t m)
 109 {
 110         m       ^= aegis_aes_round(st.v[4]);
 111         st.v[4] ^= aegis_aes_round(st.v[3]);
 112         st.v[3] ^= aegis_aes_round(st.v[2]);
 113         st.v[2] ^= aegis_aes_round(st.v[1]);
 114         st.v[1] ^= aegis_aes_round(st.v[0]);
 115         st.v[0] ^= m;
 116 
 117         return st;
 118 }
 119 
 120 static inline __attribute__((always_inline))
 121 void preload_sbox(void)
 122 {
 123         if (!IS_ENABLED(CONFIG_ARM64) ||
 124             !IS_ENABLED(CONFIG_CC_IS_GCC) ||
 125             __builtin_expect(aegis128_have_aes_insn, 1))
 126                 return;
 127 
 128         asm("ld1        {v16.16b-v19.16b}, [%0], #64    \n\t"
 129             "ld1        {v20.16b-v23.16b}, [%0], #64    \n\t"
 130             "ld1        {v24.16b-v27.16b}, [%0], #64    \n\t"
 131             "ld1        {v28.16b-v31.16b}, [%0]         \n\t"
 132             :: "r"(crypto_aes_sbox));
 133 }
 134 
 135 void crypto_aegis128_update_neon(void *state, const void *msg)
 136 {
 137         struct aegis128_state st = aegis128_load_state_neon(state);
 138 
 139         preload_sbox();
 140 
 141         st = aegis128_update_neon(st, vld1q_u8(msg));
 142 
 143         aegis128_save_state_neon(st, state);
 144 }
 145 
 146 void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src,
 147                                         unsigned int size)
 148 {
 149         struct aegis128_state st = aegis128_load_state_neon(state);
 150         uint8x16_t msg;
 151 
 152         preload_sbox();
 153 
 154         while (size >= AEGIS_BLOCK_SIZE) {
 155                 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
 156 
 157                 msg = vld1q_u8(src);
 158                 st = aegis128_update_neon(st, msg);
 159                 vst1q_u8(dst, msg ^ s);
 160 
 161                 size -= AEGIS_BLOCK_SIZE;
 162                 src += AEGIS_BLOCK_SIZE;
 163                 dst += AEGIS_BLOCK_SIZE;
 164         }
 165 
 166         if (size > 0) {
 167                 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
 168                 uint8_t buf[AEGIS_BLOCK_SIZE] = {};
 169 
 170                 memcpy(buf, src, size);
 171                 msg = vld1q_u8(buf);
 172                 st = aegis128_update_neon(st, msg);
 173                 vst1q_u8(buf, msg ^ s);
 174                 memcpy(dst, buf, size);
 175         }
 176 
 177         aegis128_save_state_neon(st, state);
 178 }
 179 
 180 void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src,
 181                                         unsigned int size)
 182 {
 183         struct aegis128_state st = aegis128_load_state_neon(state);
 184         uint8x16_t msg;
 185 
 186         preload_sbox();
 187 
 188         while (size >= AEGIS_BLOCK_SIZE) {
 189                 msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
 190                 st = aegis128_update_neon(st, msg);
 191                 vst1q_u8(dst, msg);
 192 
 193                 size -= AEGIS_BLOCK_SIZE;
 194                 src += AEGIS_BLOCK_SIZE;
 195                 dst += AEGIS_BLOCK_SIZE;
 196         }
 197 
 198         if (size > 0) {
 199                 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
 200                 uint8_t buf[AEGIS_BLOCK_SIZE];
 201 
 202                 vst1q_u8(buf, s);
 203                 memcpy(buf, src, size);
 204                 msg = vld1q_u8(buf) ^ s;
 205                 vst1q_u8(buf, msg);
 206                 memcpy(dst, buf, size);
 207 
 208                 st = aegis128_update_neon(st, msg);
 209         }
 210 
 211         aegis128_save_state_neon(st, state);
 212 }

/* [<][>][^][v][top][bottom][index][help] */