root/crypto/sha3_generic.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. keccakf_round
  2. keccakf
  3. crypto_sha3_init
  4. crypto_sha3_update
  5. crypto_sha3_final
  6. sha3_generic_mod_init
  7. sha3_generic_mod_fini

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Cryptographic API.
   4  *
   5  * SHA-3, as specified in
   6  * http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
   7  *
   8  * SHA-3 code by Jeff Garzik <jeff@garzik.org>
   9  *               Ard Biesheuvel <ard.biesheuvel@linaro.org>
  10  */
  11 #include <crypto/internal/hash.h>
  12 #include <linux/init.h>
  13 #include <linux/module.h>
  14 #include <linux/types.h>
  15 #include <crypto/sha3.h>
  16 #include <asm/unaligned.h>
  17 
  18 /*
  19  * On some 32-bit architectures (h8300), GCC ends up using
  20  * over 1 KB of stack if we inline the round calculation into the loop
  21  * in keccakf(). On the other hand, on 64-bit architectures with plenty
  22  * of [64-bit wide] general purpose registers, not inlining it severely
  23  * hurts performance. So let's use 64-bitness as a heuristic to decide
  24  * whether to inline or not.
  25  */
  26 #ifdef CONFIG_64BIT
  27 #define SHA3_INLINE     inline
  28 #else
  29 #define SHA3_INLINE     noinline
  30 #endif
  31 
  32 #define KECCAK_ROUNDS 24
  33 
  34 static const u64 keccakf_rndc[24] = {
  35         0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
  36         0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
  37         0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
  38         0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
  39         0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
  40         0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
  41         0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
  42         0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
  43 };
  44 
  45 /* update the state with given number of rounds */
  46 
  47 static SHA3_INLINE void keccakf_round(u64 st[25])
  48 {
  49         u64 t[5], tt, bc[5];
  50 
  51         /* Theta */
  52         bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
  53         bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
  54         bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
  55         bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
  56         bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
  57 
  58         t[0] = bc[4] ^ rol64(bc[1], 1);
  59         t[1] = bc[0] ^ rol64(bc[2], 1);
  60         t[2] = bc[1] ^ rol64(bc[3], 1);
  61         t[3] = bc[2] ^ rol64(bc[4], 1);
  62         t[4] = bc[3] ^ rol64(bc[0], 1);
  63 
  64         st[0] ^= t[0];
  65 
  66         /* Rho Pi */
  67         tt = st[1];
  68         st[ 1] = rol64(st[ 6] ^ t[1], 44);
  69         st[ 6] = rol64(st[ 9] ^ t[4], 20);
  70         st[ 9] = rol64(st[22] ^ t[2], 61);
  71         st[22] = rol64(st[14] ^ t[4], 39);
  72         st[14] = rol64(st[20] ^ t[0], 18);
  73         st[20] = rol64(st[ 2] ^ t[2], 62);
  74         st[ 2] = rol64(st[12] ^ t[2], 43);
  75         st[12] = rol64(st[13] ^ t[3], 25);
  76         st[13] = rol64(st[19] ^ t[4],  8);
  77         st[19] = rol64(st[23] ^ t[3], 56);
  78         st[23] = rol64(st[15] ^ t[0], 41);
  79         st[15] = rol64(st[ 4] ^ t[4], 27);
  80         st[ 4] = rol64(st[24] ^ t[4], 14);
  81         st[24] = rol64(st[21] ^ t[1],  2);
  82         st[21] = rol64(st[ 8] ^ t[3], 55);
  83         st[ 8] = rol64(st[16] ^ t[1], 45);
  84         st[16] = rol64(st[ 5] ^ t[0], 36);
  85         st[ 5] = rol64(st[ 3] ^ t[3], 28);
  86         st[ 3] = rol64(st[18] ^ t[3], 21);
  87         st[18] = rol64(st[17] ^ t[2], 15);
  88         st[17] = rol64(st[11] ^ t[1], 10);
  89         st[11] = rol64(st[ 7] ^ t[2],  6);
  90         st[ 7] = rol64(st[10] ^ t[0],  3);
  91         st[10] = rol64(    tt ^ t[1],  1);
  92 
  93         /* Chi */
  94         bc[ 0] = ~st[ 1] & st[ 2];
  95         bc[ 1] = ~st[ 2] & st[ 3];
  96         bc[ 2] = ~st[ 3] & st[ 4];
  97         bc[ 3] = ~st[ 4] & st[ 0];
  98         bc[ 4] = ~st[ 0] & st[ 1];
  99         st[ 0] ^= bc[ 0];
 100         st[ 1] ^= bc[ 1];
 101         st[ 2] ^= bc[ 2];
 102         st[ 3] ^= bc[ 3];
 103         st[ 4] ^= bc[ 4];
 104 
 105         bc[ 0] = ~st[ 6] & st[ 7];
 106         bc[ 1] = ~st[ 7] & st[ 8];
 107         bc[ 2] = ~st[ 8] & st[ 9];
 108         bc[ 3] = ~st[ 9] & st[ 5];
 109         bc[ 4] = ~st[ 5] & st[ 6];
 110         st[ 5] ^= bc[ 0];
 111         st[ 6] ^= bc[ 1];
 112         st[ 7] ^= bc[ 2];
 113         st[ 8] ^= bc[ 3];
 114         st[ 9] ^= bc[ 4];
 115 
 116         bc[ 0] = ~st[11] & st[12];
 117         bc[ 1] = ~st[12] & st[13];
 118         bc[ 2] = ~st[13] & st[14];
 119         bc[ 3] = ~st[14] & st[10];
 120         bc[ 4] = ~st[10] & st[11];
 121         st[10] ^= bc[ 0];
 122         st[11] ^= bc[ 1];
 123         st[12] ^= bc[ 2];
 124         st[13] ^= bc[ 3];
 125         st[14] ^= bc[ 4];
 126 
 127         bc[ 0] = ~st[16] & st[17];
 128         bc[ 1] = ~st[17] & st[18];
 129         bc[ 2] = ~st[18] & st[19];
 130         bc[ 3] = ~st[19] & st[15];
 131         bc[ 4] = ~st[15] & st[16];
 132         st[15] ^= bc[ 0];
 133         st[16] ^= bc[ 1];
 134         st[17] ^= bc[ 2];
 135         st[18] ^= bc[ 3];
 136         st[19] ^= bc[ 4];
 137 
 138         bc[ 0] = ~st[21] & st[22];
 139         bc[ 1] = ~st[22] & st[23];
 140         bc[ 2] = ~st[23] & st[24];
 141         bc[ 3] = ~st[24] & st[20];
 142         bc[ 4] = ~st[20] & st[21];
 143         st[20] ^= bc[ 0];
 144         st[21] ^= bc[ 1];
 145         st[22] ^= bc[ 2];
 146         st[23] ^= bc[ 3];
 147         st[24] ^= bc[ 4];
 148 }
 149 
 150 static void keccakf(u64 st[25])
 151 {
 152         int round;
 153 
 154         for (round = 0; round < KECCAK_ROUNDS; round++) {
 155                 keccakf_round(st);
 156                 /* Iota */
 157                 st[0] ^= keccakf_rndc[round];
 158         }
 159 }
 160 
 161 int crypto_sha3_init(struct shash_desc *desc)
 162 {
 163         struct sha3_state *sctx = shash_desc_ctx(desc);
 164         unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
 165 
 166         sctx->rsiz = 200 - 2 * digest_size;
 167         sctx->rsizw = sctx->rsiz / 8;
 168         sctx->partial = 0;
 169 
 170         memset(sctx->st, 0, sizeof(sctx->st));
 171         return 0;
 172 }
 173 EXPORT_SYMBOL(crypto_sha3_init);
 174 
 175 int crypto_sha3_update(struct shash_desc *desc, const u8 *data,
 176                        unsigned int len)
 177 {
 178         struct sha3_state *sctx = shash_desc_ctx(desc);
 179         unsigned int done;
 180         const u8 *src;
 181 
 182         done = 0;
 183         src = data;
 184 
 185         if ((sctx->partial + len) > (sctx->rsiz - 1)) {
 186                 if (sctx->partial) {
 187                         done = -sctx->partial;
 188                         memcpy(sctx->buf + sctx->partial, data,
 189                                done + sctx->rsiz);
 190                         src = sctx->buf;
 191                 }
 192 
 193                 do {
 194                         unsigned int i;
 195 
 196                         for (i = 0; i < sctx->rsizw; i++)
 197                                 sctx->st[i] ^= get_unaligned_le64(src + 8 * i);
 198                         keccakf(sctx->st);
 199 
 200                         done += sctx->rsiz;
 201                         src = data + done;
 202                 } while (done + (sctx->rsiz - 1) < len);
 203 
 204                 sctx->partial = 0;
 205         }
 206         memcpy(sctx->buf + sctx->partial, src, len - done);
 207         sctx->partial += (len - done);
 208 
 209         return 0;
 210 }
 211 EXPORT_SYMBOL(crypto_sha3_update);
 212 
 213 int crypto_sha3_final(struct shash_desc *desc, u8 *out)
 214 {
 215         struct sha3_state *sctx = shash_desc_ctx(desc);
 216         unsigned int i, inlen = sctx->partial;
 217         unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
 218         __le64 *digest = (__le64 *)out;
 219 
 220         sctx->buf[inlen++] = 0x06;
 221         memset(sctx->buf + inlen, 0, sctx->rsiz - inlen);
 222         sctx->buf[sctx->rsiz - 1] |= 0x80;
 223 
 224         for (i = 0; i < sctx->rsizw; i++)
 225                 sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i);
 226 
 227         keccakf(sctx->st);
 228 
 229         for (i = 0; i < digest_size / 8; i++)
 230                 put_unaligned_le64(sctx->st[i], digest++);
 231 
 232         if (digest_size & 4)
 233                 put_unaligned_le32(sctx->st[i], (__le32 *)digest);
 234 
 235         memset(sctx, 0, sizeof(*sctx));
 236         return 0;
 237 }
 238 EXPORT_SYMBOL(crypto_sha3_final);
 239 
 240 static struct shash_alg algs[] = { {
 241         .digestsize             = SHA3_224_DIGEST_SIZE,
 242         .init                   = crypto_sha3_init,
 243         .update                 = crypto_sha3_update,
 244         .final                  = crypto_sha3_final,
 245         .descsize               = sizeof(struct sha3_state),
 246         .base.cra_name          = "sha3-224",
 247         .base.cra_driver_name   = "sha3-224-generic",
 248         .base.cra_blocksize     = SHA3_224_BLOCK_SIZE,
 249         .base.cra_module        = THIS_MODULE,
 250 }, {
 251         .digestsize             = SHA3_256_DIGEST_SIZE,
 252         .init                   = crypto_sha3_init,
 253         .update                 = crypto_sha3_update,
 254         .final                  = crypto_sha3_final,
 255         .descsize               = sizeof(struct sha3_state),
 256         .base.cra_name          = "sha3-256",
 257         .base.cra_driver_name   = "sha3-256-generic",
 258         .base.cra_blocksize     = SHA3_256_BLOCK_SIZE,
 259         .base.cra_module        = THIS_MODULE,
 260 }, {
 261         .digestsize             = SHA3_384_DIGEST_SIZE,
 262         .init                   = crypto_sha3_init,
 263         .update                 = crypto_sha3_update,
 264         .final                  = crypto_sha3_final,
 265         .descsize               = sizeof(struct sha3_state),
 266         .base.cra_name          = "sha3-384",
 267         .base.cra_driver_name   = "sha3-384-generic",
 268         .base.cra_blocksize     = SHA3_384_BLOCK_SIZE,
 269         .base.cra_module        = THIS_MODULE,
 270 }, {
 271         .digestsize             = SHA3_512_DIGEST_SIZE,
 272         .init                   = crypto_sha3_init,
 273         .update                 = crypto_sha3_update,
 274         .final                  = crypto_sha3_final,
 275         .descsize               = sizeof(struct sha3_state),
 276         .base.cra_name          = "sha3-512",
 277         .base.cra_driver_name   = "sha3-512-generic",
 278         .base.cra_blocksize     = SHA3_512_BLOCK_SIZE,
 279         .base.cra_module        = THIS_MODULE,
 280 } };
 281 
 282 static int __init sha3_generic_mod_init(void)
 283 {
 284         return crypto_register_shashes(algs, ARRAY_SIZE(algs));
 285 }
 286 
 287 static void __exit sha3_generic_mod_fini(void)
 288 {
 289         crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
 290 }
 291 
 292 subsys_initcall(sha3_generic_mod_init);
 293 module_exit(sha3_generic_mod_fini);
 294 
 295 MODULE_LICENSE("GPL");
 296 MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm");
 297 
 298 MODULE_ALIAS_CRYPTO("sha3-224");
 299 MODULE_ALIAS_CRYPTO("sha3-224-generic");
 300 MODULE_ALIAS_CRYPTO("sha3-256");
 301 MODULE_ALIAS_CRYPTO("sha3-256-generic");
 302 MODULE_ALIAS_CRYPTO("sha3-384");
 303 MODULE_ALIAS_CRYPTO("sha3-384-generic");
 304 MODULE_ALIAS_CRYPTO("sha3-512");
 305 MODULE_ALIAS_CRYPTO("sha3-512-generic");

/* [<][>][^][v][top][bottom][index][help] */