root/include/asm-generic/bitops-instrumented.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. set_bit
  2. __set_bit
  3. clear_bit
  4. __clear_bit
  5. clear_bit_unlock
  6. __clear_bit_unlock
  7. change_bit
  8. __change_bit
  9. test_and_set_bit
  10. __test_and_set_bit
  11. test_and_set_bit_lock
  12. test_and_clear_bit
  13. __test_and_clear_bit
  14. test_and_change_bit
  15. __test_and_change_bit
  16. test_bit
  17. clear_bit_unlock_is_negative_byte

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 
   3 /*
   4  * This file provides wrappers with sanitizer instrumentation for bit
   5  * operations.
   6  *
   7  * To use this functionality, an arch's bitops.h file needs to define each of
   8  * the below bit operations with an arch_ prefix (e.g. arch_set_bit(),
   9  * arch___set_bit(), etc.).
  10  */
  11 #ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_H
  12 #define _ASM_GENERIC_BITOPS_INSTRUMENTED_H
  13 
  14 #include <linux/kasan-checks.h>
  15 
  16 /**
  17  * set_bit - Atomically set a bit in memory
  18  * @nr: the bit to set
  19  * @addr: the address to start counting from
  20  *
  21  * This is a relaxed atomic operation (no implied memory barriers).
  22  *
  23  * Note that @nr may be almost arbitrarily large; this function is not
  24  * restricted to acting on a single-word quantity.
  25  */
  26 static inline void set_bit(long nr, volatile unsigned long *addr)
  27 {
  28         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
  29         arch_set_bit(nr, addr);
  30 }
  31 
  32 /**
  33  * __set_bit - Set a bit in memory
  34  * @nr: the bit to set
  35  * @addr: the address to start counting from
  36  *
  37  * Unlike set_bit(), this function is non-atomic. If it is called on the same
  38  * region of memory concurrently, the effect may be that only one operation
  39  * succeeds.
  40  */
  41 static inline void __set_bit(long nr, volatile unsigned long *addr)
  42 {
  43         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
  44         arch___set_bit(nr, addr);
  45 }
  46 
  47 /**
  48  * clear_bit - Clears a bit in memory
  49  * @nr: Bit to clear
  50  * @addr: Address to start counting from
  51  *
  52  * This is a relaxed atomic operation (no implied memory barriers).
  53  */
  54 static inline void clear_bit(long nr, volatile unsigned long *addr)
  55 {
  56         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
  57         arch_clear_bit(nr, addr);
  58 }
  59 
  60 /**
  61  * __clear_bit - Clears a bit in memory
  62  * @nr: the bit to clear
  63  * @addr: the address to start counting from
  64  *
  65  * Unlike clear_bit(), this function is non-atomic. If it is called on the same
  66  * region of memory concurrently, the effect may be that only one operation
  67  * succeeds.
  68  */
  69 static inline void __clear_bit(long nr, volatile unsigned long *addr)
  70 {
  71         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
  72         arch___clear_bit(nr, addr);
  73 }
  74 
  75 /**
  76  * clear_bit_unlock - Clear a bit in memory, for unlock
  77  * @nr: the bit to set
  78  * @addr: the address to start counting from
  79  *
  80  * This operation is atomic and provides release barrier semantics.
  81  */
  82 static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
  83 {
  84         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
  85         arch_clear_bit_unlock(nr, addr);
  86 }
  87 
  88 /**
  89  * __clear_bit_unlock - Clears a bit in memory
  90  * @nr: Bit to clear
  91  * @addr: Address to start counting from
  92  *
  93  * This is a non-atomic operation but implies a release barrier before the
  94  * memory operation. It can be used for an unlock if no other CPUs can
  95  * concurrently modify other bits in the word.
  96  */
  97 static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
  98 {
  99         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 100         arch___clear_bit_unlock(nr, addr);
 101 }
 102 
 103 /**
 104  * change_bit - Toggle a bit in memory
 105  * @nr: Bit to change
 106  * @addr: Address to start counting from
 107  *
 108  * This is a relaxed atomic operation (no implied memory barriers).
 109  *
 110  * Note that @nr may be almost arbitrarily large; this function is not
 111  * restricted to acting on a single-word quantity.
 112  */
 113 static inline void change_bit(long nr, volatile unsigned long *addr)
 114 {
 115         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 116         arch_change_bit(nr, addr);
 117 }
 118 
 119 /**
 120  * __change_bit - Toggle a bit in memory
 121  * @nr: the bit to change
 122  * @addr: the address to start counting from
 123  *
 124  * Unlike change_bit(), this function is non-atomic. If it is called on the same
 125  * region of memory concurrently, the effect may be that only one operation
 126  * succeeds.
 127  */
 128 static inline void __change_bit(long nr, volatile unsigned long *addr)
 129 {
 130         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 131         arch___change_bit(nr, addr);
 132 }
 133 
 134 /**
 135  * test_and_set_bit - Set a bit and return its old value
 136  * @nr: Bit to set
 137  * @addr: Address to count from
 138  *
 139  * This is an atomic fully-ordered operation (implied full memory barrier).
 140  */
 141 static inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
 142 {
 143         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 144         return arch_test_and_set_bit(nr, addr);
 145 }
 146 
 147 /**
 148  * __test_and_set_bit - Set a bit and return its old value
 149  * @nr: Bit to set
 150  * @addr: Address to count from
 151  *
 152  * This operation is non-atomic. If two instances of this operation race, one
 153  * can appear to succeed but actually fail.
 154  */
 155 static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
 156 {
 157         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 158         return arch___test_and_set_bit(nr, addr);
 159 }
 160 
 161 /**
 162  * test_and_set_bit_lock - Set a bit and return its old value, for lock
 163  * @nr: Bit to set
 164  * @addr: Address to count from
 165  *
 166  * This operation is atomic and provides acquire barrier semantics if
 167  * the returned value is 0.
 168  * It can be used to implement bit locks.
 169  */
 170 static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr)
 171 {
 172         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 173         return arch_test_and_set_bit_lock(nr, addr);
 174 }
 175 
 176 /**
 177  * test_and_clear_bit - Clear a bit and return its old value
 178  * @nr: Bit to clear
 179  * @addr: Address to count from
 180  *
 181  * This is an atomic fully-ordered operation (implied full memory barrier).
 182  */
 183 static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
 184 {
 185         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 186         return arch_test_and_clear_bit(nr, addr);
 187 }
 188 
 189 /**
 190  * __test_and_clear_bit - Clear a bit and return its old value
 191  * @nr: Bit to clear
 192  * @addr: Address to count from
 193  *
 194  * This operation is non-atomic. If two instances of this operation race, one
 195  * can appear to succeed but actually fail.
 196  */
 197 static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
 198 {
 199         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 200         return arch___test_and_clear_bit(nr, addr);
 201 }
 202 
 203 /**
 204  * test_and_change_bit - Change a bit and return its old value
 205  * @nr: Bit to change
 206  * @addr: Address to count from
 207  *
 208  * This is an atomic fully-ordered operation (implied full memory barrier).
 209  */
 210 static inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
 211 {
 212         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 213         return arch_test_and_change_bit(nr, addr);
 214 }
 215 
 216 /**
 217  * __test_and_change_bit - Change a bit and return its old value
 218  * @nr: Bit to change
 219  * @addr: Address to count from
 220  *
 221  * This operation is non-atomic. If two instances of this operation race, one
 222  * can appear to succeed but actually fail.
 223  */
 224 static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
 225 {
 226         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 227         return arch___test_and_change_bit(nr, addr);
 228 }
 229 
 230 /**
 231  * test_bit - Determine whether a bit is set
 232  * @nr: bit number to test
 233  * @addr: Address to start counting from
 234  */
 235 static inline bool test_bit(long nr, const volatile unsigned long *addr)
 236 {
 237         kasan_check_read(addr + BIT_WORD(nr), sizeof(long));
 238         return arch_test_bit(nr, addr);
 239 }
 240 
 241 #if defined(arch_clear_bit_unlock_is_negative_byte)
 242 /**
 243  * clear_bit_unlock_is_negative_byte - Clear a bit in memory and test if bottom
 244  *                                     byte is negative, for unlock.
 245  * @nr: the bit to clear
 246  * @addr: the address to start counting from
 247  *
 248  * This operation is atomic and provides release barrier semantics.
 249  *
 250  * This is a bit of a one-trick-pony for the filemap code, which clears
 251  * PG_locked and tests PG_waiters,
 252  */
 253 static inline bool
 254 clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
 255 {
 256         kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 257         return arch_clear_bit_unlock_is_negative_byte(nr, addr);
 258 }
 259 /* Let everybody know we have it. */
 260 #define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
 261 #endif
 262 
 263 #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_H */

/* [<][>][^][v][top][bottom][index][help] */