root/include/asm-generic/div64.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. __arch_xprod_64

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef _ASM_GENERIC_DIV64_H
   3 #define _ASM_GENERIC_DIV64_H
   4 /*
   5  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
   6  * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
   7  *
   8  * Optimization for constant divisors on 32-bit machines:
   9  * Copyright (C) 2006-2015 Nicolas Pitre
  10  *
  11  * The semantics of do_div() are:
  12  *
  13  * uint32_t do_div(uint64_t *n, uint32_t base)
  14  * {
  15  *      uint32_t remainder = *n % base;
  16  *      *n = *n / base;
  17  *      return remainder;
  18  * }
  19  *
  20  * NOTE: macro parameter n is evaluated multiple times,
  21  *       beware of side effects!
  22  */
  23 
  24 #include <linux/types.h>
  25 #include <linux/compiler.h>
  26 
  27 #if BITS_PER_LONG == 64
  28 
  29 /**
  30  * do_div - returns 2 values: calculate remainder and update new dividend
  31  * @n: uint64_t dividend (will be updated)
  32  * @base: uint32_t divisor
  33  *
  34  * Summary:
  35  * ``uint32_t remainder = n % base;``
  36  * ``n = n / base;``
  37  *
  38  * Return: (uint32_t)remainder
  39  *
  40  * NOTE: macro parameter @n is evaluated multiple times,
  41  * beware of side effects!
  42  */
  43 # define do_div(n,base) ({                                      \
  44         uint32_t __base = (base);                               \
  45         uint32_t __rem;                                         \
  46         __rem = ((uint64_t)(n)) % __base;                       \
  47         (n) = ((uint64_t)(n)) / __base;                         \
  48         __rem;                                                  \
  49  })
  50 
  51 #elif BITS_PER_LONG == 32
  52 
  53 #include <linux/log2.h>
  54 
  55 /*
  56  * If the divisor happens to be constant, we determine the appropriate
  57  * inverse at compile time to turn the division into a few inline
  58  * multiplications which ought to be much faster. And yet only if compiling
  59  * with a sufficiently recent gcc version to perform proper 64-bit constant
  60  * propagation.
  61  *
  62  * (It is unfortunate that gcc doesn't perform all this internally.)
  63  */
  64 
  65 #ifndef __div64_const32_is_OK
  66 #define __div64_const32_is_OK (__GNUC__ >= 4)
  67 #endif
  68 
  69 #define __div64_const32(n, ___b)                                        \
  70 ({                                                                      \
  71         /*                                                              \
  72          * Multiplication by reciprocal of b: n / b = n * (p / b) / p   \
  73          *                                                              \
  74          * We rely on the fact that most of this code gets optimized    \
  75          * away at compile time due to constant propagation and only    \
  76          * a few multiplication instructions should remain.             \
  77          * Hence this monstrous macro (static inline doesn't always     \
  78          * do the trick here).                                          \
  79          */                                                             \
  80         uint64_t ___res, ___x, ___t, ___m, ___n = (n);                  \
  81         uint32_t ___p, ___bias;                                         \
  82                                                                         \
  83         /* determine MSB of b */                                        \
  84         ___p = 1 << ilog2(___b);                                        \
  85                                                                         \
  86         /* compute m = ((p << 64) + b - 1) / b */                       \
  87         ___m = (~0ULL / ___b) * ___p;                                   \
  88         ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;        \
  89                                                                         \
  90         /* one less than the dividend with highest result */            \
  91         ___x = ~0ULL / ___b * ___b - 1;                                 \
  92                                                                         \
  93         /* test our ___m with res = m * x / (p << 64) */                \
  94         ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;     \
  95         ___t = ___res += (___m & 0xffffffff) * (___x >> 32);            \
  96         ___res += (___x & 0xffffffff) * (___m >> 32);                   \
  97         ___t = (___res < ___t) ? (1ULL << 32) : 0;                      \
  98         ___res = (___res >> 32) + ___t;                                 \
  99         ___res += (___m >> 32) * (___x >> 32);                          \
 100         ___res /= ___p;                                                 \
 101                                                                         \
 102         /* Now sanitize and optimize what we've got. */                 \
 103         if (~0ULL % (___b / (___b & -___b)) == 0) {                     \
 104                 /* special case, can be simplified to ... */            \
 105                 ___n /= (___b & -___b);                                 \
 106                 ___m = ~0ULL / (___b / (___b & -___b));                 \
 107                 ___p = 1;                                               \
 108                 ___bias = 1;                                            \
 109         } else if (___res != ___x / ___b) {                             \
 110                 /*                                                      \
 111                  * We can't get away without a bias to compensate       \
 112                  * for bit truncation errors.  To avoid it we'd need an \
 113                  * additional bit to represent m which would overflow   \
 114                  * a 64-bit variable.                                   \
 115                  *                                                      \
 116                  * Instead we do m = p / b and n / b = (n * m + m) / p. \
 117                  */                                                     \
 118                 ___bias = 1;                                            \
 119                 /* Compute m = (p << 64) / b */                         \
 120                 ___m = (~0ULL / ___b) * ___p;                           \
 121                 ___m += ((~0ULL % ___b + 1) * ___p) / ___b;             \
 122         } else {                                                        \
 123                 /*                                                      \
 124                  * Reduce m / p, and try to clear bit 31 of m when      \
 125                  * possible, otherwise that'll need extra overflow      \
 126                  * handling later.                                      \
 127                  */                                                     \
 128                 uint32_t ___bits = -(___m & -___m);                     \
 129                 ___bits |= ___m >> 32;                                  \
 130                 ___bits = (~___bits) << 1;                              \
 131                 /*                                                      \
 132                  * If ___bits == 0 then setting bit 31 is  unavoidable. \
 133                  * Simply apply the maximum possible reduction in that  \
 134                  * case. Otherwise the MSB of ___bits indicates the     \
 135                  * best reduction we should apply.                      \
 136                  */                                                     \
 137                 if (!___bits) {                                         \
 138                         ___p /= (___m & -___m);                         \
 139                         ___m /= (___m & -___m);                         \
 140                 } else {                                                \
 141                         ___p >>= ilog2(___bits);                        \
 142                         ___m >>= ilog2(___bits);                        \
 143                 }                                                       \
 144                 /* No bias needed. */                                   \
 145                 ___bias = 0;                                            \
 146         }                                                               \
 147                                                                         \
 148         /*                                                              \
 149          * Now we have a combination of 2 conditions:                   \
 150          *                                                              \
 151          * 1) whether or not we need to apply a bias, and               \
 152          *                                                              \
 153          * 2) whether or not there might be an overflow in the cross    \
 154          *    product determined by (___m & ((1 << 63) | (1 << 31))).   \
 155          *                                                              \
 156          * Select the best way to do (m_bias + m * n) / (1 << 64).      \
 157          * From now on there will be actual runtime code generated.     \
 158          */                                                             \
 159         ___res = __arch_xprod_64(___m, ___n, ___bias);                  \
 160                                                                         \
 161         ___res /= ___p;                                                 \
 162 })
 163 
 164 #ifndef __arch_xprod_64
 165 /*
 166  * Default C implementation for __arch_xprod_64()
 167  *
 168  * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 169  * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
 170  *
 171  * The product is a 128-bit value, scaled down to 64 bits.
 172  * Assuming constant propagation to optimize away unused conditional code.
 173  * Architectures may provide their own optimized assembly implementation.
 174  */
 175 static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 176 {
 177         uint32_t m_lo = m;
 178         uint32_t m_hi = m >> 32;
 179         uint32_t n_lo = n;
 180         uint32_t n_hi = n >> 32;
 181         uint64_t res;
 182         uint32_t res_lo, res_hi, tmp;
 183 
 184         if (!bias) {
 185                 res = ((uint64_t)m_lo * n_lo) >> 32;
 186         } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 187                 /* there can't be any overflow here */
 188                 res = (m + (uint64_t)m_lo * n_lo) >> 32;
 189         } else {
 190                 res = m + (uint64_t)m_lo * n_lo;
 191                 res_lo = res >> 32;
 192                 res_hi = (res_lo < m_hi);
 193                 res = res_lo | ((uint64_t)res_hi << 32);
 194         }
 195 
 196         if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 197                 /* there can't be any overflow here */
 198                 res += (uint64_t)m_lo * n_hi;
 199                 res += (uint64_t)m_hi * n_lo;
 200                 res >>= 32;
 201         } else {
 202                 res += (uint64_t)m_lo * n_hi;
 203                 tmp = res >> 32;
 204                 res += (uint64_t)m_hi * n_lo;
 205                 res_lo = res >> 32;
 206                 res_hi = (res_lo < tmp);
 207                 res = res_lo | ((uint64_t)res_hi << 32);
 208         }
 209 
 210         res += (uint64_t)m_hi * n_hi;
 211 
 212         return res;
 213 }
 214 #endif
 215 
 216 #ifndef __div64_32
 217 extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
 218 #endif
 219 
 220 /* The unnecessary pointer compare is there
 221  * to check for type safety (n must be 64bit)
 222  */
 223 # define do_div(n,base) ({                              \
 224         uint32_t __base = (base);                       \
 225         uint32_t __rem;                                 \
 226         (void)(((typeof((n)) *)0) == ((uint64_t *)0));  \
 227         if (__builtin_constant_p(__base) &&             \
 228             is_power_of_2(__base)) {                    \
 229                 __rem = (n) & (__base - 1);             \
 230                 (n) >>= ilog2(__base);                  \
 231         } else if (__div64_const32_is_OK &&             \
 232                    __builtin_constant_p(__base) &&      \
 233                    __base != 0) {                       \
 234                 uint32_t __res_lo, __n_lo = (n);        \
 235                 (n) = __div64_const32(n, __base);       \
 236                 /* the remainder can be computed with 32-bit regs */ \
 237                 __res_lo = (n);                         \
 238                 __rem = __n_lo - __res_lo * __base;     \
 239         } else if (likely(((n) >> 32) == 0)) {          \
 240                 __rem = (uint32_t)(n) % __base;         \
 241                 (n) = (uint32_t)(n) / __base;           \
 242         } else                                          \
 243                 __rem = __div64_32(&(n), __base);       \
 244         __rem;                                          \
 245  })
 246 
 247 #else /* BITS_PER_LONG == ?? */
 248 
 249 # error do_div() does not yet support the C64
 250 
 251 #endif /* BITS_PER_LONG */
 252 
 253 #endif /* _ASM_GENERIC_DIV64_H */

/* [<][>][^][v][top][bottom][index][help] */