root/include/uapi/drm/drm_fourcc.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


   1 /*
   2  * Copyright 2011 Intel Corporation
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice (including the next
  12  * paragraph) shall be included in all copies or substantial portions of the
  13  * Software.
  14  *
  15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21  * OTHER DEALINGS IN THE SOFTWARE.
  22  */
  23 
  24 #ifndef DRM_FOURCC_H
  25 #define DRM_FOURCC_H
  26 
  27 #include "drm.h"
  28 
  29 #if defined(__cplusplus)
  30 extern "C" {
  31 #endif
  32 
  33 /**
  34  * DOC: overview
  35  *
  36  * In the DRM subsystem, framebuffer pixel formats are described using the
  37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
  38  * fourcc code, a Format Modifier may optionally be provided, in order to
  39  * further describe the buffer's format - for example tiling or compression.
  40  *
  41  * Format Modifiers
  42  * ----------------
  43  *
  44  * Format modifiers are used in conjunction with a fourcc code, forming a
  45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
  46  * format and data layout of the buffer, and should be the only way to describe
  47  * that particular buffer.
  48  *
  49  * Having multiple fourcc:modifier pairs which describe the same layout should
  50  * be avoided, as such aliases run the risk of different drivers exposing
  51  * different names for the same data format, forcing userspace to understand
  52  * that they are aliases.
  53  *
  54  * Format modifiers may change any property of the buffer, including the number
  55  * of planes and/or the required allocation size. Format modifiers are
  56  * vendor-namespaced, and as such the relationship between a fourcc code and a
  57  * modifier is specific to the modifer being used. For example, some modifiers
  58  * may preserve meaning - such as number of planes - from the fourcc code,
  59  * whereas others may not.
  60  *
  61  * Vendors should document their modifier usage in as much detail as
  62  * possible, to ensure maximum compatibility across devices, drivers and
  63  * applications.
  64  *
  65  * The authoritative list of format modifier codes is found in
  66  * `include/uapi/drm/drm_fourcc.h`
  67  */
  68 
  69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
  70                                  ((__u32)(c) << 16) | ((__u32)(d) << 24))
  71 
  72 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */
  73 
  74 /* Reserve 0 for the invalid format specifier */
  75 #define DRM_FORMAT_INVALID      0
  76 
  77 /* color index */
  78 #define DRM_FORMAT_C8           fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
  79 
  80 /* 8 bpp Red */
  81 #define DRM_FORMAT_R8           fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
  82 
  83 /* 16 bpp Red */
  84 #define DRM_FORMAT_R16          fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
  85 
  86 /* 16 bpp RG */
  87 #define DRM_FORMAT_RG88         fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
  88 #define DRM_FORMAT_GR88         fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
  89 
  90 /* 32 bpp RG */
  91 #define DRM_FORMAT_RG1616       fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
  92 #define DRM_FORMAT_GR1616       fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
  93 
  94 /* 8 bpp RGB */
  95 #define DRM_FORMAT_RGB332       fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
  96 #define DRM_FORMAT_BGR233       fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
  97 
  98 /* 16 bpp RGB */
  99 #define DRM_FORMAT_XRGB4444     fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
 100 #define DRM_FORMAT_XBGR4444     fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
 101 #define DRM_FORMAT_RGBX4444     fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
 102 #define DRM_FORMAT_BGRX4444     fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
 103 
 104 #define DRM_FORMAT_ARGB4444     fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
 105 #define DRM_FORMAT_ABGR4444     fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
 106 #define DRM_FORMAT_RGBA4444     fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
 107 #define DRM_FORMAT_BGRA4444     fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
 108 
 109 #define DRM_FORMAT_XRGB1555     fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
 110 #define DRM_FORMAT_XBGR1555     fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
 111 #define DRM_FORMAT_RGBX5551     fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
 112 #define DRM_FORMAT_BGRX5551     fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
 113 
 114 #define DRM_FORMAT_ARGB1555     fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
 115 #define DRM_FORMAT_ABGR1555     fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
 116 #define DRM_FORMAT_RGBA5551     fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
 117 #define DRM_FORMAT_BGRA5551     fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
 118 
 119 #define DRM_FORMAT_RGB565       fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
 120 #define DRM_FORMAT_BGR565       fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
 121 
 122 /* 24 bpp RGB */
 123 #define DRM_FORMAT_RGB888       fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
 124 #define DRM_FORMAT_BGR888       fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
 125 
 126 /* 32 bpp RGB */
 127 #define DRM_FORMAT_XRGB8888     fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
 128 #define DRM_FORMAT_XBGR8888     fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
 129 #define DRM_FORMAT_RGBX8888     fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
 130 #define DRM_FORMAT_BGRX8888     fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
 131 
 132 #define DRM_FORMAT_ARGB8888     fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
 133 #define DRM_FORMAT_ABGR8888     fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
 134 #define DRM_FORMAT_RGBA8888     fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
 135 #define DRM_FORMAT_BGRA8888     fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
 136 
 137 #define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
 138 #define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
 139 #define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
 140 #define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
 141 
 142 #define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
 143 #define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
 144 #define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
 145 #define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
 146 
 147 /*
 148  * Floating point 64bpp RGB
 149  * IEEE 754-2008 binary16 half-precision float
 150  * [15:0] sign:exponent:mantissa 1:5:10
 151  */
 152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 154 
 155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 157 
 158 /* packed YCbCr */
 159 #define DRM_FORMAT_YUYV         fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
 160 #define DRM_FORMAT_YVYU         fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
 161 #define DRM_FORMAT_UYVY         fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
 162 #define DRM_FORMAT_VYUY         fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
 163 
 164 #define DRM_FORMAT_AYUV         fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
 165 #define DRM_FORMAT_XYUV8888     fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
 166 #define DRM_FORMAT_VUY888       fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
 167 #define DRM_FORMAT_VUY101010    fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
 168 
 169 /*
 170  * packed Y2xx indicate for each component, xx valid data occupy msb
 171  * 16-xx padding occupy lsb
 172  */
 173 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
 174 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
 175 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
 176 
 177 /*
 178  * packed Y4xx indicate for each component, xx valid data occupy msb
 179  * 16-xx padding occupy lsb except Y410
 180  */
 181 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
 182 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 183 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
 184 
 185 #define DRM_FORMAT_XVYU2101010  fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
 186 #define DRM_FORMAT_XVYU12_16161616      fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 187 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
 188 
 189 /*
 190  * packed YCbCr420 2x2 tiled formats
 191  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
 192  */
 193 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 194 #define DRM_FORMAT_Y0L0         fourcc_code('Y', '0', 'L', '0')
 195 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 196 #define DRM_FORMAT_X0L0         fourcc_code('X', '0', 'L', '0')
 197 
 198 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 199 #define DRM_FORMAT_Y0L2         fourcc_code('Y', '0', 'L', '2')
 200 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 201 #define DRM_FORMAT_X0L2         fourcc_code('X', '0', 'L', '2')
 202 
 203 /*
 204  * 1-plane YUV 4:2:0
 205  * In these formats, the component ordering is specified (Y, followed by U
 206  * then V), but the exact Linear layout is undefined.
 207  * These formats can only be used with a non-Linear modifier.
 208  */
 209 #define DRM_FORMAT_YUV420_8BIT  fourcc_code('Y', 'U', '0', '8')
 210 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
 211 
 212 /*
 213  * 2 plane RGB + A
 214  * index 0 = RGB plane, same format as the corresponding non _A8 format has
 215  * index 1 = A plane, [7:0] A
 216  */
 217 #define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
 218 #define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
 219 #define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
 220 #define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
 221 #define DRM_FORMAT_RGB888_A8    fourcc_code('R', '8', 'A', '8')
 222 #define DRM_FORMAT_BGR888_A8    fourcc_code('B', '8', 'A', '8')
 223 #define DRM_FORMAT_RGB565_A8    fourcc_code('R', '5', 'A', '8')
 224 #define DRM_FORMAT_BGR565_A8    fourcc_code('B', '5', 'A', '8')
 225 
 226 /*
 227  * 2 plane YCbCr
 228  * index 0 = Y plane, [7:0] Y
 229  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
 230  * or
 231  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
 232  */
 233 #define DRM_FORMAT_NV12         fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
 234 #define DRM_FORMAT_NV21         fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
 235 #define DRM_FORMAT_NV16         fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
 236 #define DRM_FORMAT_NV61         fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
 237 #define DRM_FORMAT_NV24         fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
 238 #define DRM_FORMAT_NV42         fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
 239 
 240 /*
 241  * 2 plane YCbCr MSB aligned
 242  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 243  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 244  */
 245 #define DRM_FORMAT_P210         fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
 246 
 247 /*
 248  * 2 plane YCbCr MSB aligned
 249  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 250  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 251  */
 252 #define DRM_FORMAT_P010         fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
 253 
 254 /*
 255  * 2 plane YCbCr MSB aligned
 256  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
 257  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
 258  */
 259 #define DRM_FORMAT_P012         fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
 260 
 261 /*
 262  * 2 plane YCbCr MSB aligned
 263  * index 0 = Y plane, [15:0] Y little endian
 264  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
 265  */
 266 #define DRM_FORMAT_P016         fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
 267 
 268 /*
 269  * 3 plane YCbCr
 270  * index 0: Y plane, [7:0] Y
 271  * index 1: Cb plane, [7:0] Cb
 272  * index 2: Cr plane, [7:0] Cr
 273  * or
 274  * index 1: Cr plane, [7:0] Cr
 275  * index 2: Cb plane, [7:0] Cb
 276  */
 277 #define DRM_FORMAT_YUV410       fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
 278 #define DRM_FORMAT_YVU410       fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
 279 #define DRM_FORMAT_YUV411       fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
 280 #define DRM_FORMAT_YVU411       fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
 281 #define DRM_FORMAT_YUV420       fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
 282 #define DRM_FORMAT_YVU420       fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
 283 #define DRM_FORMAT_YUV422       fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
 284 #define DRM_FORMAT_YVU422       fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
 285 #define DRM_FORMAT_YUV444       fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
 286 #define DRM_FORMAT_YVU444       fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
 287 
 288 
 289 /*
 290  * Format Modifiers:
 291  *
 292  * Format modifiers describe, typically, a re-ordering or modification
 293  * of the data in a plane of an FB.  This can be used to express tiled/
 294  * swizzled formats, or compression, or a combination of the two.
 295  *
 296  * The upper 8 bits of the format modifier are a vendor-id as assigned
 297  * below.  The lower 56 bits are assigned as vendor sees fit.
 298  */
 299 
 300 /* Vendor Ids: */
 301 #define DRM_FORMAT_MOD_NONE           0
 302 #define DRM_FORMAT_MOD_VENDOR_NONE    0
 303 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
 304 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
 305 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
 306 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
 307 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
 308 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
 309 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
 310 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
 311 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
 312 
 313 /* add more to the end as needed */
 314 
 315 #define DRM_FORMAT_RESERVED           ((1ULL << 56) - 1)
 316 
 317 #define fourcc_mod_code(vendor, val) \
 318         ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
 319 
 320 /*
 321  * Format Modifier tokens:
 322  *
 323  * When adding a new token please document the layout with a code comment,
 324  * similar to the fourcc codes above. drm_fourcc.h is considered the
 325  * authoritative source for all of these.
 326  */
 327 
 328 /*
 329  * Invalid Modifier
 330  *
 331  * This modifier can be used as a sentinel to terminate the format modifiers
 332  * list, or to initialize a variable with an invalid modifier. It might also be
 333  * used to report an error back to userspace for certain APIs.
 334  */
 335 #define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
 336 
 337 /*
 338  * Linear Layout
 339  *
 340  * Just plain linear layout. Note that this is different from no specifying any
 341  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
 342  * which tells the driver to also take driver-internal information into account
 343  * and so might actually result in a tiled framebuffer.
 344  */
 345 #define DRM_FORMAT_MOD_LINEAR   fourcc_mod_code(NONE, 0)
 346 
 347 /* Intel framebuffer modifiers */
 348 
 349 /*
 350  * Intel X-tiling layout
 351  *
 352  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 353  * in row-major layout. Within the tile bytes are laid out row-major, with
 354  * a platform-dependent stride. On top of that the memory can apply
 355  * platform-depending swizzling of some higher address bits into bit6.
 356  *
 357  * This format is highly platforms specific and not useful for cross-driver
 358  * sharing. It exists since on a given platform it does uniquely identify the
 359  * layout in a simple way for i915-specific userspace.
 360  */
 361 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
 362 
 363 /*
 364  * Intel Y-tiling layout
 365  *
 366  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 367  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
 368  * chunks column-major, with a platform-dependent height. On top of that the
 369  * memory can apply platform-depending swizzling of some higher address bits
 370  * into bit6.
 371  *
 372  * This format is highly platforms specific and not useful for cross-driver
 373  * sharing. It exists since on a given platform it does uniquely identify the
 374  * layout in a simple way for i915-specific userspace.
 375  */
 376 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
 377 
 378 /*
 379  * Intel Yf-tiling layout
 380  *
 381  * This is a tiled layout using 4Kb tiles in row-major layout.
 382  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
 383  * are arranged in four groups (two wide, two high) with column-major layout.
 384  * Each group therefore consits out of four 256 byte units, which are also laid
 385  * out as 2x2 column-major.
 386  * 256 byte units are made out of four 64 byte blocks of pixels, producing
 387  * either a square block or a 2:1 unit.
 388  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
 389  * in pixel depends on the pixel depth.
 390  */
 391 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
 392 
 393 /*
 394  * Intel color control surface (CCS) for render compression
 395  *
 396  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
 397  * The main surface will be plane index 0 and must be Y/Yf-tiled,
 398  * the CCS will be plane index 1.
 399  *
 400  * Each CCS tile matches a 1024x512 pixel area of the main surface.
 401  * To match certain aspects of the 3D hardware the CCS is
 402  * considered to be made up of normal 128Bx32 Y tiles, Thus
 403  * the CCS pitch must be specified in multiples of 128 bytes.
 404  *
 405  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
 406  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
 407  * But that fact is not relevant unless the memory is accessed
 408  * directly.
 409  */
 410 #define I915_FORMAT_MOD_Y_TILED_CCS     fourcc_mod_code(INTEL, 4)
 411 #define I915_FORMAT_MOD_Yf_TILED_CCS    fourcc_mod_code(INTEL, 5)
 412 
 413 /*
 414  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
 415  *
 416  * Macroblocks are laid in a Z-shape, and each pixel data is following the
 417  * standard NV12 style.
 418  * As for NV12, an image is the result of two frame buffers: one for Y,
 419  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
 420  * Alignment requirements are (for each buffer):
 421  * - multiple of 128 pixels for the width
 422  * - multiple of  32 pixels for the height
 423  *
 424  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
 425  */
 426 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE       fourcc_mod_code(SAMSUNG, 1)
 427 
 428 /*
 429  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
 430  *
 431  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
 432  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
 433  * they correspond to their 16x16 luma block.
 434  */
 435 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE       fourcc_mod_code(SAMSUNG, 2)
 436 
 437 /*
 438  * Qualcomm Compressed Format
 439  *
 440  * Refers to a compressed variant of the base format that is compressed.
 441  * Implementation may be platform and base-format specific.
 442  *
 443  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
 444  * Pixel data pitch/stride is aligned with macrotile width.
 445  * Pixel data height is aligned with macrotile height.
 446  * Entire pixel data buffer is aligned with 4k(bytes).
 447  */
 448 #define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
 449 
 450 /* Vivante framebuffer modifiers */
 451 
 452 /*
 453  * Vivante 4x4 tiling layout
 454  *
 455  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
 456  * layout.
 457  */
 458 #define DRM_FORMAT_MOD_VIVANTE_TILED            fourcc_mod_code(VIVANTE, 1)
 459 
 460 /*
 461  * Vivante 64x64 super-tiling layout
 462  *
 463  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
 464  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
 465  * major layout.
 466  *
 467  * For more information: see
 468  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
 469  */
 470 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED      fourcc_mod_code(VIVANTE, 2)
 471 
 472 /*
 473  * Vivante 4x4 tiling layout for dual-pipe
 474  *
 475  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
 476  * different base address. Offsets from the base addresses are therefore halved
 477  * compared to the non-split tiled layout.
 478  */
 479 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED      fourcc_mod_code(VIVANTE, 3)
 480 
 481 /*
 482  * Vivante 64x64 super-tiling layout for dual-pipe
 483  *
 484  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
 485  * starts at a different base address. Offsets from the base addresses are
 486  * therefore halved compared to the non-split super-tiled layout.
 487  */
 488 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
 489 
 490 /* NVIDIA frame buffer modifiers */
 491 
 492 /*
 493  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
 494  *
 495  * Pixels are arranged in simple tiles of 16 x 16 bytes.
 496  */
 497 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
 498 
 499 /*
 500  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
 501  *
 502  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
 503  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
 504  *
 505  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
 506  *
 507  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
 508  * Valid values are:
 509  *
 510  * 0 == ONE_GOB
 511  * 1 == TWO_GOBS
 512  * 2 == FOUR_GOBS
 513  * 3 == EIGHT_GOBS
 514  * 4 == SIXTEEN_GOBS
 515  * 5 == THIRTYTWO_GOBS
 516  *
 517  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 518  * in full detail.
 519  */
 520 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
 521         fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
 522 
 523 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
 524         fourcc_mod_code(NVIDIA, 0x10)
 525 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
 526         fourcc_mod_code(NVIDIA, 0x11)
 527 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
 528         fourcc_mod_code(NVIDIA, 0x12)
 529 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
 530         fourcc_mod_code(NVIDIA, 0x13)
 531 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
 532         fourcc_mod_code(NVIDIA, 0x14)
 533 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
 534         fourcc_mod_code(NVIDIA, 0x15)
 535 
 536 /*
 537  * Some Broadcom modifiers take parameters, for example the number of
 538  * vertical lines in the image. Reserve the lower 32 bits for modifier
 539  * type, and the next 24 bits for parameters. Top 8 bits are the
 540  * vendor code.
 541  */
 542 #define __fourcc_mod_broadcom_param_shift 8
 543 #define __fourcc_mod_broadcom_param_bits 48
 544 #define fourcc_mod_broadcom_code(val, params) \
 545         fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
 546 #define fourcc_mod_broadcom_param(m) \
 547         ((int)(((m) >> __fourcc_mod_broadcom_param_shift) &     \
 548                ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
 549 #define fourcc_mod_broadcom_mod(m) \
 550         ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<    \
 551                  __fourcc_mod_broadcom_param_shift))
 552 
 553 /*
 554  * Broadcom VC4 "T" format
 555  *
 556  * This is the primary layout that the V3D GPU can texture from (it
 557  * can't do linear).  The T format has:
 558  *
 559  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
 560  *   pixels at 32 bit depth.
 561  *
 562  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
 563  *   16x16 pixels).
 564  *
 565  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
 566  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
 567  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
 568  *
 569  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
 570  *   tiles) or right-to-left (odd rows of 4k tiles).
 571  */
 572 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
 573 
 574 /*
 575  * Broadcom SAND format
 576  *
 577  * This is the native format that the H.264 codec block uses.  For VC4
 578  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
 579  *
 580  * The image can be considered to be split into columns, and the
 581  * columns are placed consecutively into memory.  The width of those
 582  * columns can be either 32, 64, 128, or 256 pixels, but in practice
 583  * only 128 pixel columns are used.
 584  *
 585  * The pitch between the start of each column is set to optimally
 586  * switch between SDRAM banks. This is passed as the number of lines
 587  * of column width in the modifier (we can't use the stride value due
 588  * to various core checks that look at it , so you should set the
 589  * stride to width*cpp).
 590  *
 591  * Note that the column height for this format modifier is the same
 592  * for all of the planes, assuming that each column contains both Y
 593  * and UV.  Some SAND-using hardware stores UV in a separate tiled
 594  * image from Y to reduce the column height, which is not supported
 595  * with these modifiers.
 596  */
 597 
 598 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
 599         fourcc_mod_broadcom_code(2, v)
 600 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
 601         fourcc_mod_broadcom_code(3, v)
 602 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
 603         fourcc_mod_broadcom_code(4, v)
 604 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
 605         fourcc_mod_broadcom_code(5, v)
 606 
 607 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
 608         DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
 609 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
 610         DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
 611 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
 612         DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
 613 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
 614         DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
 615 
 616 /* Broadcom UIF format
 617  *
 618  * This is the common format for the current Broadcom multimedia
 619  * blocks, including V3D 3.x and newer, newer video codecs, and
 620  * displays.
 621  *
 622  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
 623  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
 624  * stored in columns, with padding between the columns to ensure that
 625  * moving from one column to the next doesn't hit the same SDRAM page
 626  * bank.
 627  *
 628  * To calculate the padding, it is assumed that each hardware block
 629  * and the software driving it knows the platform's SDRAM page size,
 630  * number of banks, and XOR address, and that it's identical between
 631  * all blocks using the format.  This tiling modifier will use XOR as
 632  * necessary to reduce the padding.  If a hardware block can't do XOR,
 633  * the assumption is that a no-XOR tiling modifier will be created.
 634  */
 635 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
 636 
 637 /*
 638  * Arm Framebuffer Compression (AFBC) modifiers
 639  *
 640  * AFBC is a proprietary lossless image compression protocol and format.
 641  * It provides fine-grained random access and minimizes the amount of data
 642  * transferred between IP blocks.
 643  *
 644  * AFBC has several features which may be supported and/or used, which are
 645  * represented using bits in the modifier. Not all combinations are valid,
 646  * and different devices or use-cases may support different combinations.
 647  *
 648  * Further information on the use of AFBC modifiers can be found in
 649  * Documentation/gpu/afbc.rst
 650  */
 651 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode)    fourcc_mod_code(ARM, __afbc_mode)
 652 
 653 /*
 654  * AFBC superblock size
 655  *
 656  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
 657  * size (in pixels) must be aligned to a multiple of the superblock size.
 658  * Four lowest significant bits(LSBs) are reserved for block size.
 659  *
 660  * Where one superblock size is specified, it applies to all planes of the
 661  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
 662  * the first applies to the Luma plane and the second applies to the Chroma
 663  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
 664  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
 665  */
 666 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
 667 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
 668 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
 669 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
 670 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
 671 
 672 /*
 673  * AFBC lossless colorspace transform
 674  *
 675  * Indicates that the buffer makes use of the AFBC lossless colorspace
 676  * transform.
 677  */
 678 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
 679 
 680 /*
 681  * AFBC block-split
 682  *
 683  * Indicates that the payload of each superblock is split. The second
 684  * half of the payload is positioned at a predefined offset from the start
 685  * of the superblock payload.
 686  */
 687 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
 688 
 689 /*
 690  * AFBC sparse layout
 691  *
 692  * This flag indicates that the payload of each superblock must be stored at a
 693  * predefined position relative to the other superblocks in the same AFBC
 694  * buffer. This order is the same order used by the header buffer. In this mode
 695  * each superblock is given the same amount of space as an uncompressed
 696  * superblock of the particular format would require, rounding up to the next
 697  * multiple of 128 bytes in size.
 698  */
 699 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
 700 
 701 /*
 702  * AFBC copy-block restrict
 703  *
 704  * Buffers with this flag must obey the copy-block restriction. The restriction
 705  * is such that there are no copy-blocks referring across the border of 8x8
 706  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
 707  */
 708 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
 709 
 710 /*
 711  * AFBC tiled layout
 712  *
 713  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
 714  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
 715  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
 716  * larger bpp formats. The order between the tiles is scan line.
 717  * When the tiled layout is used, the buffer size (in pixels) must be aligned
 718  * to the tile size.
 719  */
 720 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
 721 
 722 /*
 723  * AFBC solid color blocks
 724  *
 725  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
 726  * can be reduced if a whole superblock is a single color.
 727  */
 728 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
 729 
 730 /*
 731  * AFBC double-buffer
 732  *
 733  * Indicates that the buffer is allocated in a layout safe for front-buffer
 734  * rendering.
 735  */
 736 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
 737 
 738 /*
 739  * AFBC buffer content hints
 740  *
 741  * Indicates that the buffer includes per-superblock content hints.
 742  */
 743 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
 744 
 745 /*
 746  * Allwinner tiled modifier
 747  *
 748  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
 749  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
 750  * planes.
 751  *
 752  * With this tiling, the luminance samples are disposed in tiles representing
 753  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
 754  * The pixel order in each tile is linear and the tiles are disposed linearly,
 755  * both in row-major order.
 756  */
 757 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
 758 
 759 #if defined(__cplusplus)
 760 }
 761 #endif
 762 
 763 #endif /* DRM_FOURCC_H */

/* [<][>][^][v][top][bottom][index][help] */