1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 17 * Place - Suite 330, Boston, MA 02111-1307 USA. 18 * 19 * Authors: 20 * Haiyang Zhang <haiyangz@microsoft.com> 21 * Hank Janssen <hjanssen@microsoft.com> 22 * K. Y. Srinivasan <kys@microsoft.com> 23 * 24 */ 25 26 #ifndef _UAPI_HYPERV_H 27 #define _UAPI_HYPERV_H 28 29 #include <linux/uuid.h> 30 31 /* 32 * Framework version for util services. 33 */ 34 #define UTIL_FW_MINOR 0 35 36 #define UTIL_WS2K8_FW_MAJOR 1 37 #define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR) 38 39 #define UTIL_FW_MAJOR 3 40 #define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 41 42 43 /* 44 * Implementation of host controlled snapshot of the guest. 45 */ 46 47 #define VSS_OP_REGISTER 128 48 49 /* 50 Daemon code with full handshake support. 51 */ 52 #define VSS_OP_REGISTER1 129 53 54 enum hv_vss_op { 55 VSS_OP_CREATE = 0, 56 VSS_OP_DELETE, 57 VSS_OP_HOT_BACKUP, 58 VSS_OP_GET_DM_INFO, 59 VSS_OP_BU_COMPLETE, 60 /* 61 * Following operations are only supported with IC version >= 5.0 62 */ 63 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 64 VSS_OP_THAW, /* Unfreeze the file systems */ 65 VSS_OP_AUTO_RECOVER, 66 VSS_OP_COUNT /* Number of operations, must be last */ 67 }; 68 69 70 /* 71 * Header for all VSS messages. 72 */ 73 struct hv_vss_hdr { 74 __u8 operation; 75 __u8 reserved[7]; 76 } __attribute__((packed)); 77 78 79 /* 80 * Flag values for the hv_vss_check_feature. Linux supports only 81 * one value. 82 */ 83 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 84 85 struct hv_vss_check_feature { 86 __u32 flags; 87 } __attribute__((packed)); 88 89 struct hv_vss_check_dm_info { 90 __u32 flags; 91 } __attribute__((packed)); 92 93 struct hv_vss_msg { 94 union { 95 struct hv_vss_hdr vss_hdr; 96 int error; 97 }; 98 union { 99 struct hv_vss_check_feature vss_cf; 100 struct hv_vss_check_dm_info dm_info; 101 }; 102 } __attribute__((packed)); 103 104 /* 105 * Implementation of a host to guest copy facility. 106 */ 107 108 #define FCOPY_VERSION_0 0 109 #define FCOPY_VERSION_1 1 110 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1 111 #define W_MAX_PATH 260 112 113 enum hv_fcopy_op { 114 START_FILE_COPY = 0, 115 WRITE_TO_FILE, 116 COMPLETE_FCOPY, 117 CANCEL_FCOPY, 118 }; 119 120 struct hv_fcopy_hdr { 121 __u32 operation; 122 uuid_le service_id0; /* currently unused */ 123 uuid_le service_id1; /* currently unused */ 124 } __attribute__((packed)); 125 126 #define OVER_WRITE 0x1 127 #define CREATE_PATH 0x2 128 129 struct hv_start_fcopy { 130 struct hv_fcopy_hdr hdr; 131 __u16 file_name[W_MAX_PATH]; 132 __u16 path_name[W_MAX_PATH]; 133 __u32 copy_flags; 134 __u64 file_size; 135 } __attribute__((packed)); 136 137 /* 138 * The file is chunked into fragments. 139 */ 140 #define DATA_FRAGMENT (6 * 1024) 141 142 struct hv_do_fcopy { 143 struct hv_fcopy_hdr hdr; 144 __u32 pad; 145 __u64 offset; 146 __u32 size; 147 __u8 data[DATA_FRAGMENT]; 148 } __attribute__((packed)); 149 150 /* 151 * An implementation of HyperV key value pair (KVP) functionality for Linux. 152 * 153 * 154 * Copyright (C) 2010, Novell, Inc. 155 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 156 * 157 */ 158 159 /* 160 * Maximum value size - used for both key names and value data, and includes 161 * any applicable NULL terminators. 162 * 163 * Note: This limit is somewhat arbitrary, but falls easily within what is 164 * supported for all native guests (back to Win 2000) and what is reasonable 165 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 166 * limited to 255 character key names. 167 * 168 * MSDN recommends not storing data values larger than 2048 bytes in the 169 * registry. 170 * 171 * Note: This value is used in defining the KVP exchange message - this value 172 * cannot be modified without affecting the message size and compatibility. 173 */ 174 175 /* 176 * bytes, including any null terminators 177 */ 178 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 179 180 181 /* 182 * Maximum key size - the registry limit for the length of an entry name 183 * is 256 characters, including the null terminator 184 */ 185 186 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 187 188 /* 189 * In Linux, we implement the KVP functionality in two components: 190 * 1) The kernel component which is packaged as part of the hv_utils driver 191 * is responsible for communicating with the host and responsible for 192 * implementing the host/guest protocol. 2) A user level daemon that is 193 * responsible for data gathering. 194 * 195 * Host/Guest Protocol: The host iterates over an index and expects the guest 196 * to assign a key name to the index and also return the value corresponding to 197 * the key. The host will have atmost one KVP transaction outstanding at any 198 * given point in time. The host side iteration stops when the guest returns 199 * an error. Microsoft has specified the following mapping of key names to 200 * host specified index: 201 * 202 * Index Key Name 203 * 0 FullyQualifiedDomainName 204 * 1 IntegrationServicesVersion 205 * 2 NetworkAddressIPv4 206 * 3 NetworkAddressIPv6 207 * 4 OSBuildNumber 208 * 5 OSName 209 * 6 OSMajorVersion 210 * 7 OSMinorVersion 211 * 8 OSVersion 212 * 9 ProcessorArchitecture 213 * 214 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 215 * 216 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 217 * data gathering functionality in a user mode daemon. The user level daemon 218 * is also responsible for binding the key name to the index as well. The 219 * kernel and user-level daemon communicate using a connector channel. 220 * 221 * The user mode component first registers with the 222 * the kernel component. Subsequently, the kernel component requests, data 223 * for the specified keys. In response to this message the user mode component 224 * fills in the value corresponding to the specified key. We overload the 225 * sequence field in the cn_msg header to define our KVP message types. 226 * 227 * 228 * The kernel component simply acts as a conduit for communication between the 229 * Windows host and the user-level daemon. The kernel component passes up the 230 * index received from the Host to the user-level daemon. If the index is 231 * valid (supported), the corresponding key as well as its 232 * value (both are strings) is returned. If the index is invalid 233 * (not supported), a NULL key string is returned. 234 */ 235 236 237 /* 238 * Registry value types. 239 */ 240 241 #define REG_SZ 1 242 #define REG_U32 4 243 #define REG_U64 8 244 245 /* 246 * As we look at expanding the KVP functionality to include 247 * IP injection functionality, we need to maintain binary 248 * compatibility with older daemons. 249 * 250 * The KVP opcodes are defined by the host and it was unfortunate 251 * that I chose to treat the registration operation as part of the 252 * KVP operations defined by the host. 253 * Here is the level of compatibility 254 * (between the user level daemon and the kernel KVP driver) that we 255 * will implement: 256 * 257 * An older daemon will always be supported on a newer driver. 258 * A given user level daemon will require a minimal version of the 259 * kernel driver. 260 * If we cannot handle the version differences, we will fail gracefully 261 * (this can happen when we have a user level daemon that is more 262 * advanced than the KVP driver. 263 * 264 * We will use values used in this handshake for determining if we have 265 * workable user level daemon and the kernel driver. We begin by taking the 266 * registration opcode out of the KVP opcode namespace. We will however, 267 * maintain compatibility with the existing user-level daemon code. 268 */ 269 270 /* 271 * Daemon code not supporting IP injection (legacy daemon). 272 */ 273 274 #define KVP_OP_REGISTER 4 275 276 /* 277 * Daemon code supporting IP injection. 278 * The KVP opcode field is used to communicate the 279 * registration information; so define a namespace that 280 * will be distinct from the host defined KVP opcode. 281 */ 282 283 #define KVP_OP_REGISTER1 100 284 285 enum hv_kvp_exchg_op { 286 KVP_OP_GET = 0, 287 KVP_OP_SET, 288 KVP_OP_DELETE, 289 KVP_OP_ENUMERATE, 290 KVP_OP_GET_IP_INFO, 291 KVP_OP_SET_IP_INFO, 292 KVP_OP_COUNT /* Number of operations, must be last. */ 293 }; 294 295 enum hv_kvp_exchg_pool { 296 KVP_POOL_EXTERNAL = 0, 297 KVP_POOL_GUEST, 298 KVP_POOL_AUTO, 299 KVP_POOL_AUTO_EXTERNAL, 300 KVP_POOL_AUTO_INTERNAL, 301 KVP_POOL_COUNT /* Number of pools, must be last. */ 302 }; 303 304 /* 305 * Some Hyper-V status codes. 306 */ 307 308 #define HV_S_OK 0x00000000 309 #define HV_E_FAIL 0x80004005 310 #define HV_S_CONT 0x80070103 311 #define HV_ERROR_NOT_SUPPORTED 0x80070032 312 #define HV_ERROR_MACHINE_LOCKED 0x800704F7 313 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 314 #define HV_INVALIDARG 0x80070057 315 #define HV_GUID_NOTFOUND 0x80041002 316 #define HV_ERROR_ALREADY_EXISTS 0x80070050 317 #define HV_ERROR_DISK_FULL 0x80070070 318 319 #define ADDR_FAMILY_NONE 0x00 320 #define ADDR_FAMILY_IPV4 0x01 321 #define ADDR_FAMILY_IPV6 0x02 322 323 #define MAX_ADAPTER_ID_SIZE 128 324 #define MAX_IP_ADDR_SIZE 1024 325 #define MAX_GATEWAY_SIZE 512 326 327 328 struct hv_kvp_ipaddr_value { 329 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 330 __u8 addr_family; 331 __u8 dhcp_enabled; 332 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 333 __u16 sub_net[MAX_IP_ADDR_SIZE]; 334 __u16 gate_way[MAX_GATEWAY_SIZE]; 335 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 336 } __attribute__((packed)); 337 338 339 struct hv_kvp_hdr { 340 __u8 operation; 341 __u8 pool; 342 __u16 pad; 343 } __attribute__((packed)); 344 345 struct hv_kvp_exchg_msg_value { 346 __u32 value_type; 347 __u32 key_size; 348 __u32 value_size; 349 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 350 union { 351 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 352 __u32 value_u32; 353 __u64 value_u64; 354 }; 355 } __attribute__((packed)); 356 357 struct hv_kvp_msg_enumerate { 358 __u32 index; 359 struct hv_kvp_exchg_msg_value data; 360 } __attribute__((packed)); 361 362 struct hv_kvp_msg_get { 363 struct hv_kvp_exchg_msg_value data; 364 }; 365 366 struct hv_kvp_msg_set { 367 struct hv_kvp_exchg_msg_value data; 368 }; 369 370 struct hv_kvp_msg_delete { 371 __u32 key_size; 372 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 373 }; 374 375 struct hv_kvp_register { 376 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 377 }; 378 379 struct hv_kvp_msg { 380 union { 381 struct hv_kvp_hdr kvp_hdr; 382 int error; 383 }; 384 union { 385 struct hv_kvp_msg_get kvp_get; 386 struct hv_kvp_msg_set kvp_set; 387 struct hv_kvp_msg_delete kvp_delete; 388 struct hv_kvp_msg_enumerate kvp_enum_data; 389 struct hv_kvp_ipaddr_value kvp_ip_val; 390 struct hv_kvp_register kvp_register; 391 } body; 392 } __attribute__((packed)); 393 394 struct hv_kvp_ip_msg { 395 __u8 operation; 396 __u8 pool; 397 struct hv_kvp_ipaddr_value kvp_ip_val; 398 } __attribute__((packed)); 399 400 #endif /* _UAPI_HYPERV_H */