1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * User-mode machine state access 4 * 5 * Copyright (C) 2007 Red Hat, Inc. All rights reserved. 6 * 7 * Red Hat Author: Roland McGrath. 8 */ 9 10 #ifndef _LINUX_REGSET_H 11 #define _LINUX_REGSET_H 1 12 13 #include <linux/compiler.h> 14 #include <linux/types.h> 15 #include <linux/bug.h> 16 #include <linux/uaccess.h> 17 struct task_struct; 18 struct user_regset; 19 20 21 /** 22 * user_regset_active_fn - type of @active function in &struct user_regset 23 * @target: thread being examined 24 * @regset: regset being examined 25 * 26 * Return -%ENODEV if not available on the hardware found. 27 * Return %0 if no interesting state in this thread. 28 * Return >%0 number of @size units of interesting state. 29 * Any get call fetching state beyond that number will 30 * see the default initialization state for this data, 31 * so a caller that knows what the default state is need 32 * not copy it all out. 33 * This call is optional; the pointer is %NULL if there 34 * is no inexpensive check to yield a value < @n. 35 */ 36 typedef int user_regset_active_fn(struct task_struct *target, 37 const struct user_regset *regset); 38 39 /** 40 * user_regset_get_fn - type of @get function in &struct user_regset 41 * @target: thread being examined 42 * @regset: regset being examined 43 * @pos: offset into the regset data to access, in bytes 44 * @count: amount of data to copy, in bytes 45 * @kbuf: if not %NULL, a kernel-space pointer to copy into 46 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy into 47 * 48 * Fetch register values. Return %0 on success; -%EIO or -%ENODEV 49 * are usual failure returns. The @pos and @count values are in 50 * bytes, but must be properly aligned. If @kbuf is non-null, that 51 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 52 * ubuf gives a userland pointer to access directly, and an -%EFAULT 53 * return value is possible. 54 */ 55 typedef int user_regset_get_fn(struct task_struct *target, 56 const struct user_regset *regset, 57 unsigned int pos, unsigned int count, 58 void *kbuf, void __user *ubuf); 59 60 /** 61 * user_regset_set_fn - type of @set function in &struct user_regset 62 * @target: thread being examined 63 * @regset: regset being examined 64 * @pos: offset into the regset data to access, in bytes 65 * @count: amount of data to copy, in bytes 66 * @kbuf: if not %NULL, a kernel-space pointer to copy from 67 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy from 68 * 69 * Store register values. Return %0 on success; -%EIO or -%ENODEV 70 * are usual failure returns. The @pos and @count values are in 71 * bytes, but must be properly aligned. If @kbuf is non-null, that 72 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 73 * ubuf gives a userland pointer to access directly, and an -%EFAULT 74 * return value is possible. 75 */ 76 typedef int user_regset_set_fn(struct task_struct *target, 77 const struct user_regset *regset, 78 unsigned int pos, unsigned int count, 79 const void *kbuf, const void __user *ubuf); 80 81 /** 82 * user_regset_writeback_fn - type of @writeback function in &struct user_regset 83 * @target: thread being examined 84 * @regset: regset being examined 85 * @immediate: zero if writeback at completion of next context switch is OK 86 * 87 * This call is optional; usually the pointer is %NULL. When 88 * provided, there is some user memory associated with this regset's 89 * hardware, such as memory backing cached register data on register 90 * window machines; the regset's data controls what user memory is 91 * used (e.g. via the stack pointer value). 92 * 93 * Write register data back to user memory. If the @immediate flag 94 * is nonzero, it must be written to the user memory so uaccess or 95 * access_process_vm() can see it when this call returns; if zero, 96 * then it must be written back by the time the task completes a 97 * context switch (as synchronized with wait_task_inactive()). 98 * Return %0 on success or if there was nothing to do, -%EFAULT for 99 * a memory problem (bad stack pointer or whatever), or -%EIO for a 100 * hardware problem. 101 */ 102 typedef int user_regset_writeback_fn(struct task_struct *target, 103 const struct user_regset *regset, 104 int immediate); 105 106 /** 107 * user_regset_get_size_fn - type of @get_size function in &struct user_regset 108 * @target: thread being examined 109 * @regset: regset being examined 110 * 111 * This call is optional; usually the pointer is %NULL. 112 * 113 * When provided, this function must return the current size of regset 114 * data, as observed by the @get function in &struct user_regset. The 115 * value returned must be a multiple of @size. The returned size is 116 * required to be valid only until the next time (if any) @regset is 117 * modified for @target. 118 * 119 * This function is intended for dynamically sized regsets. A regset 120 * that is statically sized does not need to implement it. 121 * 122 * This function should not be called directly: instead, callers should 123 * call regset_size() to determine the current size of a regset. 124 */ 125 typedef unsigned int user_regset_get_size_fn(struct task_struct *target, 126 const struct user_regset *regset); 127 128 /** 129 * struct user_regset - accessible thread CPU state 130 * @n: Number of slots (registers). 131 * @size: Size in bytes of a slot (register). 132 * @align: Required alignment, in bytes. 133 * @bias: Bias from natural indexing. 134 * @core_note_type: ELF note @n_type value used in core dumps. 135 * @get: Function to fetch values. 136 * @set: Function to store values. 137 * @active: Function to report if regset is active, or %NULL. 138 * @writeback: Function to write data back to user memory, or %NULL. 139 * @get_size: Function to return the regset's size, or %NULL. 140 * 141 * This data structure describes a machine resource we call a register set. 142 * This is part of the state of an individual thread, not necessarily 143 * actual CPU registers per se. A register set consists of a number of 144 * similar slots, given by @n. Each slot is @size bytes, and aligned to 145 * @align bytes (which is at least @size). For dynamically-sized 146 * regsets, @n must contain the maximum possible number of slots for the 147 * regset, and @get_size must point to a function that returns the 148 * current regset size. 149 * 150 * Callers that need to know only the current size of the regset and do 151 * not care about its internal structure should call regset_size() 152 * instead of inspecting @n or calling @get_size. 153 * 154 * For backward compatibility, the @get and @set methods must pad to, or 155 * accept, @n * @size bytes, even if the current regset size is smaller. 156 * The precise semantics of these operations depend on the regset being 157 * accessed. 158 * 159 * The functions to which &struct user_regset members point must be 160 * called only on the current thread or on a thread that is in 161 * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not 162 * be woken up and return to user mode, and that we have called 163 * wait_task_inactive() on. (The target thread always might wake up for 164 * SIGKILL while these functions are working, in which case that 165 * thread's user_regset state might be scrambled.) 166 * 167 * The @pos argument must be aligned according to @align; the @count 168 * argument must be a multiple of @size. These functions are not 169 * responsible for checking for invalid arguments. 170 * 171 * When there is a natural value to use as an index, @bias gives the 172 * difference between the natural index and the slot index for the 173 * register set. For example, x86 GDT segment descriptors form a regset; 174 * the segment selector produces a natural index, but only a subset of 175 * that index space is available as a regset (the TLS slots); subtracting 176 * @bias from a segment selector index value computes the regset slot. 177 * 178 * If nonzero, @core_note_type gives the n_type field (NT_* value) 179 * of the core file note in which this regset's data appears. 180 * NT_PRSTATUS is a special case in that the regset data starts at 181 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is 182 * part of the per-machine ELF formats userland knows about. In 183 * other cases, the core file note contains exactly the whole regset 184 * (@n * @size) and nothing else. The core file note is normally 185 * omitted when there is an @active function and it returns zero. 186 */ 187 struct user_regset { 188 user_regset_get_fn *get; 189 user_regset_set_fn *set; 190 user_regset_active_fn *active; 191 user_regset_writeback_fn *writeback; 192 user_regset_get_size_fn *get_size; 193 unsigned int n; 194 unsigned int size; 195 unsigned int align; 196 unsigned int bias; 197 unsigned int core_note_type; 198 }; 199 200 /** 201 * struct user_regset_view - available regsets 202 * @name: Identifier, e.g. UTS_MACHINE string. 203 * @regsets: Array of @n regsets available in this view. 204 * @n: Number of elements in @regsets. 205 * @e_machine: ELF header @e_machine %EM_* value written in core dumps. 206 * @e_flags: ELF header @e_flags value written in core dumps. 207 * @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps. 208 * 209 * A regset view is a collection of regsets (&struct user_regset, 210 * above). This describes all the state of a thread that can be seen 211 * from a given architecture/ABI environment. More than one view might 212 * refer to the same &struct user_regset, or more than one regset 213 * might refer to the same machine-specific state in the thread. For 214 * example, a 32-bit thread's state could be examined from the 32-bit 215 * view or from the 64-bit view. Either method reaches the same thread 216 * register state, doing appropriate widening or truncation. 217 */ 218 struct user_regset_view { 219 const char *name; 220 const struct user_regset *regsets; 221 unsigned int n; 222 u32 e_flags; 223 u16 e_machine; 224 u8 ei_osabi; 225 }; 226 227 /* 228 * This is documented here rather than at the definition sites because its 229 * implementation is machine-dependent but its interface is universal. 230 */ 231 /** 232 * task_user_regset_view - Return the process's native regset view. 233 * @tsk: a thread of the process in question 234 * 235 * Return the &struct user_regset_view that is native for the given process. 236 * For example, what it would access when it called ptrace(). 237 * Throughout the life of the process, this only changes at exec. 238 */ 239 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk); 240 241 242 /* 243 * These are helpers for writing regset get/set functions in arch code. 244 * Because @start_pos and @end_pos are always compile-time constants, 245 * these are inlined into very little code though they look large. 246 * 247 * Use one or more calls sequentially for each chunk of regset data stored 248 * contiguously in memory. Call with constants for @start_pos and @end_pos, 249 * giving the range of byte positions in the regset that data corresponds 250 * to; @end_pos can be -1 if this chunk is at the end of the regset layout. 251 * Each call updates the arguments to point past its chunk. 252 */ 253 254 static inline int user_regset_copyout(unsigned int *pos, unsigned int *count, 255 void **kbuf, 256 void __user **ubuf, const void *data, 257 const int start_pos, const int end_pos) 258 { 259 if (*count == 0) 260 return 0; 261 BUG_ON(*pos < start_pos); 262 if (end_pos < 0 || *pos < end_pos) { 263 unsigned int copy = (end_pos < 0 ? *count 264 : min(*count, end_pos - *pos)); 265 data += *pos - start_pos; 266 if (*kbuf) { 267 memcpy(*kbuf, data, copy); 268 *kbuf += copy; 269 } else if (__copy_to_user(*ubuf, data, copy)) 270 return -EFAULT; 271 else 272 *ubuf += copy; 273 *pos += copy; 274 *count -= copy; 275 } 276 return 0; 277 } 278 279 static inline int user_regset_copyin(unsigned int *pos, unsigned int *count, 280 const void **kbuf, 281 const void __user **ubuf, void *data, 282 const int start_pos, const int end_pos) 283 { 284 if (*count == 0) 285 return 0; 286 BUG_ON(*pos < start_pos); 287 if (end_pos < 0 || *pos < end_pos) { 288 unsigned int copy = (end_pos < 0 ? *count 289 : min(*count, end_pos - *pos)); 290 data += *pos - start_pos; 291 if (*kbuf) { 292 memcpy(data, *kbuf, copy); 293 *kbuf += copy; 294 } else if (__copy_from_user(data, *ubuf, copy)) 295 return -EFAULT; 296 else 297 *ubuf += copy; 298 *pos += copy; 299 *count -= copy; 300 } 301 return 0; 302 } 303 304 /* 305 * These two parallel the two above, but for portions of a regset layout 306 * that always read as all-zero or for which writes are ignored. 307 */ 308 static inline int user_regset_copyout_zero(unsigned int *pos, 309 unsigned int *count, 310 void **kbuf, void __user **ubuf, 311 const int start_pos, 312 const int end_pos) 313 { 314 if (*count == 0) 315 return 0; 316 BUG_ON(*pos < start_pos); 317 if (end_pos < 0 || *pos < end_pos) { 318 unsigned int copy = (end_pos < 0 ? *count 319 : min(*count, end_pos - *pos)); 320 if (*kbuf) { 321 memset(*kbuf, 0, copy); 322 *kbuf += copy; 323 } else if (__clear_user(*ubuf, copy)) 324 return -EFAULT; 325 else 326 *ubuf += copy; 327 *pos += copy; 328 *count -= copy; 329 } 330 return 0; 331 } 332 333 static inline int user_regset_copyin_ignore(unsigned int *pos, 334 unsigned int *count, 335 const void **kbuf, 336 const void __user **ubuf, 337 const int start_pos, 338 const int end_pos) 339 { 340 if (*count == 0) 341 return 0; 342 BUG_ON(*pos < start_pos); 343 if (end_pos < 0 || *pos < end_pos) { 344 unsigned int copy = (end_pos < 0 ? *count 345 : min(*count, end_pos - *pos)); 346 if (*kbuf) 347 *kbuf += copy; 348 else 349 *ubuf += copy; 350 *pos += copy; 351 *count -= copy; 352 } 353 return 0; 354 } 355 356 /** 357 * copy_regset_to_user - fetch a thread's user_regset data into user memory 358 * @target: thread to be examined 359 * @view: &struct user_regset_view describing user thread machine state 360 * @setno: index in @view->regsets 361 * @offset: offset into the regset data, in bytes 362 * @size: amount of data to copy, in bytes 363 * @data: user-mode pointer to copy into 364 */ 365 static inline int copy_regset_to_user(struct task_struct *target, 366 const struct user_regset_view *view, 367 unsigned int setno, 368 unsigned int offset, unsigned int size, 369 void __user *data) 370 { 371 const struct user_regset *regset = &view->regsets[setno]; 372 373 if (!regset->get) 374 return -EOPNOTSUPP; 375 376 if (!access_ok(data, size)) 377 return -EFAULT; 378 379 return regset->get(target, regset, offset, size, NULL, data); 380 } 381 382 /** 383 * copy_regset_from_user - store into thread's user_regset data from user memory 384 * @target: thread to be examined 385 * @view: &struct user_regset_view describing user thread machine state 386 * @setno: index in @view->regsets 387 * @offset: offset into the regset data, in bytes 388 * @size: amount of data to copy, in bytes 389 * @data: user-mode pointer to copy from 390 */ 391 static inline int copy_regset_from_user(struct task_struct *target, 392 const struct user_regset_view *view, 393 unsigned int setno, 394 unsigned int offset, unsigned int size, 395 const void __user *data) 396 { 397 const struct user_regset *regset = &view->regsets[setno]; 398 399 if (!regset->set) 400 return -EOPNOTSUPP; 401 402 if (!access_ok(data, size)) 403 return -EFAULT; 404 405 return regset->set(target, regset, offset, size, NULL, data); 406 } 407 408 /** 409 * regset_size - determine the current size of a regset 410 * @target: thread to be examined 411 * @regset: regset to be examined 412 * 413 * Note that the returned size is valid only until the next time 414 * (if any) @regset is modified for @target. 415 */ 416 static inline unsigned int regset_size(struct task_struct *target, 417 const struct user_regset *regset) 418 { 419 if (!regset->get_size) 420 return regset->n * regset->size; 421 else 422 return regset->get_size(target, regset); 423 } 424 425 #endif /* <linux/regset.h> */