root/include/linux/gfp.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. gfpflags_to_migratetype
  2. gfpflags_allow_blocking
  3. gfpflags_normal_context
  4. gfp_zone
  5. gfp_zonelist
  6. node_zonelist
  7. arch_free_page
  8. arch_alloc_page
  9. __alloc_pages
  10. __alloc_pages_node
  11. alloc_pages_node
  12. alloc_pages
  13. pm_suspended_storage

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef __LINUX_GFP_H
   3 #define __LINUX_GFP_H
   4 
   5 #include <linux/mmdebug.h>
   6 #include <linux/mmzone.h>
   7 #include <linux/stddef.h>
   8 #include <linux/linkage.h>
   9 #include <linux/topology.h>
  10 
  11 struct vm_area_struct;
  12 
  13 /*
  14  * In case of changes, please don't forget to update
  15  * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
  16  */
  17 
  18 /* Plain integer GFP bitmasks. Do not use this directly. */
  19 #define ___GFP_DMA              0x01u
  20 #define ___GFP_HIGHMEM          0x02u
  21 #define ___GFP_DMA32            0x04u
  22 #define ___GFP_MOVABLE          0x08u
  23 #define ___GFP_RECLAIMABLE      0x10u
  24 #define ___GFP_HIGH             0x20u
  25 #define ___GFP_IO               0x40u
  26 #define ___GFP_FS               0x80u
  27 #define ___GFP_ZERO             0x100u
  28 #define ___GFP_ATOMIC           0x200u
  29 #define ___GFP_DIRECT_RECLAIM   0x400u
  30 #define ___GFP_KSWAPD_RECLAIM   0x800u
  31 #define ___GFP_WRITE            0x1000u
  32 #define ___GFP_NOWARN           0x2000u
  33 #define ___GFP_RETRY_MAYFAIL    0x4000u
  34 #define ___GFP_NOFAIL           0x8000u
  35 #define ___GFP_NORETRY          0x10000u
  36 #define ___GFP_MEMALLOC         0x20000u
  37 #define ___GFP_COMP             0x40000u
  38 #define ___GFP_NOMEMALLOC       0x80000u
  39 #define ___GFP_HARDWALL         0x100000u
  40 #define ___GFP_THISNODE         0x200000u
  41 #define ___GFP_ACCOUNT          0x400000u
  42 #ifdef CONFIG_LOCKDEP
  43 #define ___GFP_NOLOCKDEP        0x800000u
  44 #else
  45 #define ___GFP_NOLOCKDEP        0
  46 #endif
  47 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
  48 
  49 /*
  50  * Physical address zone modifiers (see linux/mmzone.h - low four bits)
  51  *
  52  * Do not put any conditional on these. If necessary modify the definitions
  53  * without the underscores and use them consistently. The definitions here may
  54  * be used in bit comparisons.
  55  */
  56 #define __GFP_DMA       ((__force gfp_t)___GFP_DMA)
  57 #define __GFP_HIGHMEM   ((__force gfp_t)___GFP_HIGHMEM)
  58 #define __GFP_DMA32     ((__force gfp_t)___GFP_DMA32)
  59 #define __GFP_MOVABLE   ((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
  60 #define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
  61 
  62 /**
  63  * DOC: Page mobility and placement hints
  64  *
  65  * Page mobility and placement hints
  66  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  67  *
  68  * These flags provide hints about how mobile the page is. Pages with similar
  69  * mobility are placed within the same pageblocks to minimise problems due
  70  * to external fragmentation.
  71  *
  72  * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
  73  * moved by page migration during memory compaction or can be reclaimed.
  74  *
  75  * %__GFP_RECLAIMABLE is used for slab allocations that specify
  76  * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
  77  *
  78  * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
  79  * these pages will be spread between local zones to avoid all the dirty
  80  * pages being in one zone (fair zone allocation policy).
  81  *
  82  * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
  83  *
  84  * %__GFP_THISNODE forces the allocation to be satisfied from the requested
  85  * node with no fallbacks or placement policy enforcements.
  86  *
  87  * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
  88  */
  89 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
  90 #define __GFP_WRITE     ((__force gfp_t)___GFP_WRITE)
  91 #define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
  92 #define __GFP_THISNODE  ((__force gfp_t)___GFP_THISNODE)
  93 #define __GFP_ACCOUNT   ((__force gfp_t)___GFP_ACCOUNT)
  94 
  95 /**
  96  * DOC: Watermark modifiers
  97  *
  98  * Watermark modifiers -- controls access to emergency reserves
  99  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 100  *
 101  * %__GFP_HIGH indicates that the caller is high-priority and that granting
 102  * the request is necessary before the system can make forward progress.
 103  * For example, creating an IO context to clean pages.
 104  *
 105  * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
 106  * high priority. Users are typically interrupt handlers. This may be
 107  * used in conjunction with %__GFP_HIGH
 108  *
 109  * %__GFP_MEMALLOC allows access to all memory. This should only be used when
 110  * the caller guarantees the allocation will allow more memory to be freed
 111  * very shortly e.g. process exiting or swapping. Users either should
 112  * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
 113  *
 114  * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
 115  * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
 116  */
 117 #define __GFP_ATOMIC    ((__force gfp_t)___GFP_ATOMIC)
 118 #define __GFP_HIGH      ((__force gfp_t)___GFP_HIGH)
 119 #define __GFP_MEMALLOC  ((__force gfp_t)___GFP_MEMALLOC)
 120 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
 121 
 122 /**
 123  * DOC: Reclaim modifiers
 124  *
 125  * Reclaim modifiers
 126  * ~~~~~~~~~~~~~~~~~
 127  *
 128  * %__GFP_IO can start physical IO.
 129  *
 130  * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
 131  * allocator recursing into the filesystem which might already be holding
 132  * locks.
 133  *
 134  * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
 135  * This flag can be cleared to avoid unnecessary delays when a fallback
 136  * option is available.
 137  *
 138  * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
 139  * the low watermark is reached and have it reclaim pages until the high
 140  * watermark is reached. A caller may wish to clear this flag when fallback
 141  * options are available and the reclaim is likely to disrupt the system. The
 142  * canonical example is THP allocation where a fallback is cheap but
 143  * reclaim/compaction may cause indirect stalls.
 144  *
 145  * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
 146  *
 147  * The default allocator behavior depends on the request size. We have a concept
 148  * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
 149  * !costly allocations are too essential to fail so they are implicitly
 150  * non-failing by default (with some exceptions like OOM victims might fail so
 151  * the caller still has to check for failures) while costly requests try to be
 152  * not disruptive and back off even without invoking the OOM killer.
 153  * The following three modifiers might be used to override some of these
 154  * implicit rules
 155  *
 156  * %__GFP_NORETRY: The VM implementation will try only very lightweight
 157  * memory direct reclaim to get some memory under memory pressure (thus
 158  * it can sleep). It will avoid disruptive actions like OOM killer. The
 159  * caller must handle the failure which is quite likely to happen under
 160  * heavy memory pressure. The flag is suitable when failure can easily be
 161  * handled at small cost, such as reduced throughput
 162  *
 163  * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
 164  * procedures that have previously failed if there is some indication
 165  * that progress has been made else where.  It can wait for other
 166  * tasks to attempt high level approaches to freeing memory such as
 167  * compaction (which removes fragmentation) and page-out.
 168  * There is still a definite limit to the number of retries, but it is
 169  * a larger limit than with %__GFP_NORETRY.
 170  * Allocations with this flag may fail, but only when there is
 171  * genuinely little unused memory. While these allocations do not
 172  * directly trigger the OOM killer, their failure indicates that
 173  * the system is likely to need to use the OOM killer soon.  The
 174  * caller must handle failure, but can reasonably do so by failing
 175  * a higher-level request, or completing it only in a much less
 176  * efficient manner.
 177  * If the allocation does fail, and the caller is in a position to
 178  * free some non-essential memory, doing so could benefit the system
 179  * as a whole.
 180  *
 181  * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
 182  * cannot handle allocation failures. The allocation could block
 183  * indefinitely but will never return with failure. Testing for
 184  * failure is pointless.
 185  * New users should be evaluated carefully (and the flag should be
 186  * used only when there is no reasonable failure policy) but it is
 187  * definitely preferable to use the flag rather than opencode endless
 188  * loop around allocator.
 189  * Using this flag for costly allocations is _highly_ discouraged.
 190  */
 191 #define __GFP_IO        ((__force gfp_t)___GFP_IO)
 192 #define __GFP_FS        ((__force gfp_t)___GFP_FS)
 193 #define __GFP_DIRECT_RECLAIM    ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
 194 #define __GFP_KSWAPD_RECLAIM    ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
 195 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
 196 #define __GFP_RETRY_MAYFAIL     ((__force gfp_t)___GFP_RETRY_MAYFAIL)
 197 #define __GFP_NOFAIL    ((__force gfp_t)___GFP_NOFAIL)
 198 #define __GFP_NORETRY   ((__force gfp_t)___GFP_NORETRY)
 199 
 200 /**
 201  * DOC: Action modifiers
 202  *
 203  * Action modifiers
 204  * ~~~~~~~~~~~~~~~~
 205  *
 206  * %__GFP_NOWARN suppresses allocation failure reports.
 207  *
 208  * %__GFP_COMP address compound page metadata.
 209  *
 210  * %__GFP_ZERO returns a zeroed page on success.
 211  */
 212 #define __GFP_NOWARN    ((__force gfp_t)___GFP_NOWARN)
 213 #define __GFP_COMP      ((__force gfp_t)___GFP_COMP)
 214 #define __GFP_ZERO      ((__force gfp_t)___GFP_ZERO)
 215 
 216 /* Disable lockdep for GFP context tracking */
 217 #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
 218 
 219 /* Room for N __GFP_FOO bits */
 220 #define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP))
 221 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
 222 
 223 /**
 224  * DOC: Useful GFP flag combinations
 225  *
 226  * Useful GFP flag combinations
 227  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 228  *
 229  * Useful GFP flag combinations that are commonly used. It is recommended
 230  * that subsystems start with one of these combinations and then set/clear
 231  * %__GFP_FOO flags as necessary.
 232  *
 233  * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
 234  * watermark is applied to allow access to "atomic reserves"
 235  *
 236  * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
 237  * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
 238  *
 239  * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
 240  * accounted to kmemcg.
 241  *
 242  * %GFP_NOWAIT is for kernel allocations that should not stall for direct
 243  * reclaim, start physical IO or use any filesystem callback.
 244  *
 245  * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
 246  * that do not require the starting of any physical IO.
 247  * Please try to avoid using this flag directly and instead use
 248  * memalloc_noio_{save,restore} to mark the whole scope which cannot
 249  * perform any IO with a short explanation why. All allocation requests
 250  * will inherit GFP_NOIO implicitly.
 251  *
 252  * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
 253  * Please try to avoid using this flag directly and instead use
 254  * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
 255  * recurse into the FS layer with a short explanation why. All allocation
 256  * requests will inherit GFP_NOFS implicitly.
 257  *
 258  * %GFP_USER is for userspace allocations that also need to be directly
 259  * accessibly by the kernel or hardware. It is typically used by hardware
 260  * for buffers that are mapped to userspace (e.g. graphics) that hardware
 261  * still must DMA to. cpuset limits are enforced for these allocations.
 262  *
 263  * %GFP_DMA exists for historical reasons and should be avoided where possible.
 264  * The flags indicates that the caller requires that the lowest zone be
 265  * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
 266  * it would require careful auditing as some users really require it and
 267  * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
 268  * lowest zone as a type of emergency reserve.
 269  *
 270  * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
 271  * address.
 272  *
 273  * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
 274  * do not need to be directly accessible by the kernel but that cannot
 275  * move once in use. An example may be a hardware allocation that maps
 276  * data directly into userspace but has no addressing limitations.
 277  *
 278  * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
 279  * need direct access to but can use kmap() when access is required. They
 280  * are expected to be movable via page reclaim or page migration. Typically,
 281  * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
 282  *
 283  * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
 284  * are compound allocations that will generally fail quickly if memory is not
 285  * available and will not wake kswapd/kcompactd on failure. The _LIGHT
 286  * version does not attempt reclaim/compaction at all and is by default used
 287  * in page fault path, while the non-light is used by khugepaged.
 288  */
 289 #define GFP_ATOMIC      (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
 290 #define GFP_KERNEL      (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
 291 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
 292 #define GFP_NOWAIT      (__GFP_KSWAPD_RECLAIM)
 293 #define GFP_NOIO        (__GFP_RECLAIM)
 294 #define GFP_NOFS        (__GFP_RECLAIM | __GFP_IO)
 295 #define GFP_USER        (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
 296 #define GFP_DMA         __GFP_DMA
 297 #define GFP_DMA32       __GFP_DMA32
 298 #define GFP_HIGHUSER    (GFP_USER | __GFP_HIGHMEM)
 299 #define GFP_HIGHUSER_MOVABLE    (GFP_HIGHUSER | __GFP_MOVABLE)
 300 #define GFP_TRANSHUGE_LIGHT     ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
 301                          __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
 302 #define GFP_TRANSHUGE   (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
 303 
 304 /* Convert GFP flags to their corresponding migrate type */
 305 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
 306 #define GFP_MOVABLE_SHIFT 3
 307 
 308 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
 309 {
 310         VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
 311         BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
 312         BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
 313 
 314         if (unlikely(page_group_by_mobility_disabled))
 315                 return MIGRATE_UNMOVABLE;
 316 
 317         /* Group based on mobility */
 318         return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
 319 }
 320 #undef GFP_MOVABLE_MASK
 321 #undef GFP_MOVABLE_SHIFT
 322 
 323 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
 324 {
 325         return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
 326 }
 327 
 328 /**
 329  * gfpflags_normal_context - is gfp_flags a normal sleepable context?
 330  * @gfp_flags: gfp_flags to test
 331  *
 332  * Test whether @gfp_flags indicates that the allocation is from the
 333  * %current context and allowed to sleep.
 334  *
 335  * An allocation being allowed to block doesn't mean it owns the %current
 336  * context.  When direct reclaim path tries to allocate memory, the
 337  * allocation context is nested inside whatever %current was doing at the
 338  * time of the original allocation.  The nested allocation may be allowed
 339  * to block but modifying anything %current owns can corrupt the outer
 340  * context's expectations.
 341  *
 342  * %true result from this function indicates that the allocation context
 343  * can sleep and use anything that's associated with %current.
 344  */
 345 static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
 346 {
 347         return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
 348                 __GFP_DIRECT_RECLAIM;
 349 }
 350 
 351 #ifdef CONFIG_HIGHMEM
 352 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
 353 #else
 354 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
 355 #endif
 356 
 357 #ifdef CONFIG_ZONE_DMA
 358 #define OPT_ZONE_DMA ZONE_DMA
 359 #else
 360 #define OPT_ZONE_DMA ZONE_NORMAL
 361 #endif
 362 
 363 #ifdef CONFIG_ZONE_DMA32
 364 #define OPT_ZONE_DMA32 ZONE_DMA32
 365 #else
 366 #define OPT_ZONE_DMA32 ZONE_NORMAL
 367 #endif
 368 
 369 /*
 370  * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
 371  * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
 372  * bits long and there are 16 of them to cover all possible combinations of
 373  * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
 374  *
 375  * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
 376  * But GFP_MOVABLE is not only a zone specifier but also an allocation
 377  * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
 378  * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
 379  *
 380  *       bit       result
 381  *       =================
 382  *       0x0    => NORMAL
 383  *       0x1    => DMA or NORMAL
 384  *       0x2    => HIGHMEM or NORMAL
 385  *       0x3    => BAD (DMA+HIGHMEM)
 386  *       0x4    => DMA32 or NORMAL
 387  *       0x5    => BAD (DMA+DMA32)
 388  *       0x6    => BAD (HIGHMEM+DMA32)
 389  *       0x7    => BAD (HIGHMEM+DMA32+DMA)
 390  *       0x8    => NORMAL (MOVABLE+0)
 391  *       0x9    => DMA or NORMAL (MOVABLE+DMA)
 392  *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
 393  *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
 394  *       0xc    => DMA32 or NORMAL (MOVABLE+DMA32)
 395  *       0xd    => BAD (MOVABLE+DMA32+DMA)
 396  *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
 397  *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
 398  *
 399  * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
 400  */
 401 
 402 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
 403 /* ZONE_DEVICE is not a valid GFP zone specifier */
 404 #define GFP_ZONES_SHIFT 2
 405 #else
 406 #define GFP_ZONES_SHIFT ZONES_SHIFT
 407 #endif
 408 
 409 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
 410 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
 411 #endif
 412 
 413 #define GFP_ZONE_TABLE ( \
 414         (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)                                   \
 415         | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)                       \
 416         | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)               \
 417         | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)                   \
 418         | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)                    \
 419         | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
 420         | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
 421         | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
 422 )
 423 
 424 /*
 425  * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
 426  * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
 427  * entry starting with bit 0. Bit is set if the combination is not
 428  * allowed.
 429  */
 430 #define GFP_ZONE_BAD ( \
 431         1 << (___GFP_DMA | ___GFP_HIGHMEM)                                    \
 432         | 1 << (___GFP_DMA | ___GFP_DMA32)                                    \
 433         | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)                                \
 434         | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)                   \
 435         | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)                 \
 436         | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)                   \
 437         | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)               \
 438         | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
 439 )
 440 
 441 static inline enum zone_type gfp_zone(gfp_t flags)
 442 {
 443         enum zone_type z;
 444         int bit = (__force int) (flags & GFP_ZONEMASK);
 445 
 446         z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
 447                                          ((1 << GFP_ZONES_SHIFT) - 1);
 448         VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
 449         return z;
 450 }
 451 
 452 /*
 453  * There is only one page-allocator function, and two main namespaces to
 454  * it. The alloc_page*() variants return 'struct page *' and as such
 455  * can allocate highmem pages, the *get*page*() variants return
 456  * virtual kernel addresses to the allocated page(s).
 457  */
 458 
 459 static inline int gfp_zonelist(gfp_t flags)
 460 {
 461 #ifdef CONFIG_NUMA
 462         if (unlikely(flags & __GFP_THISNODE))
 463                 return ZONELIST_NOFALLBACK;
 464 #endif
 465         return ZONELIST_FALLBACK;
 466 }
 467 
 468 /*
 469  * We get the zone list from the current node and the gfp_mask.
 470  * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
 471  * There are two zonelists per node, one for all zones with memory and
 472  * one containing just zones from the node the zonelist belongs to.
 473  *
 474  * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
 475  * optimized to &contig_page_data at compile-time.
 476  */
 477 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
 478 {
 479         return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
 480 }
 481 
 482 #ifndef HAVE_ARCH_FREE_PAGE
 483 static inline void arch_free_page(struct page *page, int order) { }
 484 #endif
 485 #ifndef HAVE_ARCH_ALLOC_PAGE
 486 static inline void arch_alloc_page(struct page *page, int order) { }
 487 #endif
 488 
 489 struct page *
 490 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
 491                                                         nodemask_t *nodemask);
 492 
 493 static inline struct page *
 494 __alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid)
 495 {
 496         return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL);
 497 }
 498 
 499 /*
 500  * Allocate pages, preferring the node given as nid. The node must be valid and
 501  * online. For more general interface, see alloc_pages_node().
 502  */
 503 static inline struct page *
 504 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
 505 {
 506         VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
 507         VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
 508 
 509         return __alloc_pages(gfp_mask, order, nid);
 510 }
 511 
 512 /*
 513  * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
 514  * prefer the current CPU's closest node. Otherwise node must be valid and
 515  * online.
 516  */
 517 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
 518                                                 unsigned int order)
 519 {
 520         if (nid == NUMA_NO_NODE)
 521                 nid = numa_mem_id();
 522 
 523         return __alloc_pages_node(nid, gfp_mask, order);
 524 }
 525 
 526 #ifdef CONFIG_NUMA
 527 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
 528 
 529 static inline struct page *
 530 alloc_pages(gfp_t gfp_mask, unsigned int order)
 531 {
 532         return alloc_pages_current(gfp_mask, order);
 533 }
 534 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
 535                         struct vm_area_struct *vma, unsigned long addr,
 536                         int node, bool hugepage);
 537 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
 538         alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
 539 #else
 540 #define alloc_pages(gfp_mask, order) \
 541                 alloc_pages_node(numa_node_id(), gfp_mask, order)
 542 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
 543         alloc_pages(gfp_mask, order)
 544 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
 545         alloc_pages(gfp_mask, order)
 546 #endif
 547 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
 548 #define alloc_page_vma(gfp_mask, vma, addr)                     \
 549         alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
 550 #define alloc_page_vma_node(gfp_mask, vma, addr, node)          \
 551         alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
 552 
 553 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
 554 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
 555 
 556 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
 557 void free_pages_exact(void *virt, size_t size);
 558 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
 559 
 560 #define __get_free_page(gfp_mask) \
 561                 __get_free_pages((gfp_mask), 0)
 562 
 563 #define __get_dma_pages(gfp_mask, order) \
 564                 __get_free_pages((gfp_mask) | GFP_DMA, (order))
 565 
 566 extern void __free_pages(struct page *page, unsigned int order);
 567 extern void free_pages(unsigned long addr, unsigned int order);
 568 extern void free_unref_page(struct page *page);
 569 extern void free_unref_page_list(struct list_head *list);
 570 
 571 struct page_frag_cache;
 572 extern void __page_frag_cache_drain(struct page *page, unsigned int count);
 573 extern void *page_frag_alloc(struct page_frag_cache *nc,
 574                              unsigned int fragsz, gfp_t gfp_mask);
 575 extern void page_frag_free(void *addr);
 576 
 577 #define __free_page(page) __free_pages((page), 0)
 578 #define free_page(addr) free_pages((addr), 0)
 579 
 580 void page_alloc_init(void);
 581 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
 582 void drain_all_pages(struct zone *zone);
 583 void drain_local_pages(struct zone *zone);
 584 
 585 void page_alloc_init_late(void);
 586 
 587 /*
 588  * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
 589  * GFP flags are used before interrupts are enabled. Once interrupts are
 590  * enabled, it is set to __GFP_BITS_MASK while the system is running. During
 591  * hibernation, it is used by PM to avoid I/O during memory allocation while
 592  * devices are suspended.
 593  */
 594 extern gfp_t gfp_allowed_mask;
 595 
 596 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
 597 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
 598 
 599 extern void pm_restrict_gfp_mask(void);
 600 extern void pm_restore_gfp_mask(void);
 601 
 602 #ifdef CONFIG_PM_SLEEP
 603 extern bool pm_suspended_storage(void);
 604 #else
 605 static inline bool pm_suspended_storage(void)
 606 {
 607         return false;
 608 }
 609 #endif /* CONFIG_PM_SLEEP */
 610 
 611 #ifdef CONFIG_CONTIG_ALLOC
 612 /* The below functions must be run on a range from a single zone. */
 613 extern int alloc_contig_range(unsigned long start, unsigned long end,
 614                               unsigned migratetype, gfp_t gfp_mask);
 615 #endif
 616 void free_contig_range(unsigned long pfn, unsigned int nr_pages);
 617 
 618 #ifdef CONFIG_CMA
 619 /* CMA stuff */
 620 extern void init_cma_reserved_pageblock(struct page *page);
 621 #endif
 622 
 623 #endif /* __LINUX_GFP_H */

/* [<][>][^][v][top][bottom][index][help] */