root/include/linux/jiffies.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. get_jiffies_64
  2. jiffies_to_nsecs
  3. _msecs_to_jiffies
  4. _msecs_to_jiffies
  5. _msecs_to_jiffies
  6. msecs_to_jiffies
  7. _usecs_to_jiffies
  8. _usecs_to_jiffies
  9. usecs_to_jiffies
  10. timespec_to_jiffies
  11. jiffies_to_timespec
  12. jiffies_delta_to_clock_t
  13. jiffies_delta_to_msecs

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef _LINUX_JIFFIES_H
   3 #define _LINUX_JIFFIES_H
   4 
   5 #include <linux/cache.h>
   6 #include <linux/math64.h>
   7 #include <linux/kernel.h>
   8 #include <linux/types.h>
   9 #include <linux/time.h>
  10 #include <linux/timex.h>
  11 #include <asm/param.h>                  /* for HZ */
  12 #include <generated/timeconst.h>
  13 
  14 /*
  15  * The following defines establish the engineering parameters of the PLL
  16  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  17  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  18  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  19  * nearest power of two in order to avoid hardware multiply operations.
  20  */
  21 #if HZ >= 12 && HZ < 24
  22 # define SHIFT_HZ       4
  23 #elif HZ >= 24 && HZ < 48
  24 # define SHIFT_HZ       5
  25 #elif HZ >= 48 && HZ < 96
  26 # define SHIFT_HZ       6
  27 #elif HZ >= 96 && HZ < 192
  28 # define SHIFT_HZ       7
  29 #elif HZ >= 192 && HZ < 384
  30 # define SHIFT_HZ       8
  31 #elif HZ >= 384 && HZ < 768
  32 # define SHIFT_HZ       9
  33 #elif HZ >= 768 && HZ < 1536
  34 # define SHIFT_HZ       10
  35 #elif HZ >= 1536 && HZ < 3072
  36 # define SHIFT_HZ       11
  37 #elif HZ >= 3072 && HZ < 6144
  38 # define SHIFT_HZ       12
  39 #elif HZ >= 6144 && HZ < 12288
  40 # define SHIFT_HZ       13
  41 #else
  42 # error Invalid value of HZ.
  43 #endif
  44 
  45 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  46  * improve accuracy by shifting LSH bits, hence calculating:
  47  *     (NOM << LSH) / DEN
  48  * This however means trouble for large NOM, because (NOM << LSH) may no
  49  * longer fit in 32 bits. The following way of calculating this gives us
  50  * some slack, under the following conditions:
  51  *   - (NOM / DEN) fits in (32 - LSH) bits.
  52  *   - (NOM % DEN) fits in (32 - LSH) bits.
  53  */
  54 #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  55                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  56 
  57 /* LATCH is used in the interval timer and ftape setup. */
  58 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
  59 
  60 extern int register_refined_jiffies(long clock_tick_rate);
  61 
  62 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  63 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
  64 
  65 /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
  66 #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
  67 
  68 /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  69 #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  70 
  71 #ifndef __jiffy_arch_data
  72 #define __jiffy_arch_data
  73 #endif
  74 
  75 /*
  76  * The 64-bit value is not atomic - you MUST NOT read it
  77  * without sampling the sequence number in jiffies_lock.
  78  * get_jiffies_64() will do this for you as appropriate.
  79  */
  80 extern u64 __cacheline_aligned_in_smp jiffies_64;
  81 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
  82 
  83 #if (BITS_PER_LONG < 64)
  84 u64 get_jiffies_64(void);
  85 #else
  86 static inline u64 get_jiffies_64(void)
  87 {
  88         return (u64)jiffies;
  89 }
  90 #endif
  91 
  92 /*
  93  *      These inlines deal with timer wrapping correctly. You are 
  94  *      strongly encouraged to use them
  95  *      1. Because people otherwise forget
  96  *      2. Because if the timer wrap changes in future you won't have to
  97  *         alter your driver code.
  98  *
  99  * time_after(a,b) returns true if the time a is after time b.
 100  *
 101  * Do this with "<0" and ">=0" to only test the sign of the result. A
 102  * good compiler would generate better code (and a really good compiler
 103  * wouldn't care). Gcc is currently neither.
 104  */
 105 #define time_after(a,b)         \
 106         (typecheck(unsigned long, a) && \
 107          typecheck(unsigned long, b) && \
 108          ((long)((b) - (a)) < 0))
 109 #define time_before(a,b)        time_after(b,a)
 110 
 111 #define time_after_eq(a,b)      \
 112         (typecheck(unsigned long, a) && \
 113          typecheck(unsigned long, b) && \
 114          ((long)((a) - (b)) >= 0))
 115 #define time_before_eq(a,b)     time_after_eq(b,a)
 116 
 117 /*
 118  * Calculate whether a is in the range of [b, c].
 119  */
 120 #define time_in_range(a,b,c) \
 121         (time_after_eq(a,b) && \
 122          time_before_eq(a,c))
 123 
 124 /*
 125  * Calculate whether a is in the range of [b, c).
 126  */
 127 #define time_in_range_open(a,b,c) \
 128         (time_after_eq(a,b) && \
 129          time_before(a,c))
 130 
 131 /* Same as above, but does so with platform independent 64bit types.
 132  * These must be used when utilizing jiffies_64 (i.e. return value of
 133  * get_jiffies_64() */
 134 #define time_after64(a,b)       \
 135         (typecheck(__u64, a) && \
 136          typecheck(__u64, b) && \
 137          ((__s64)((b) - (a)) < 0))
 138 #define time_before64(a,b)      time_after64(b,a)
 139 
 140 #define time_after_eq64(a,b)    \
 141         (typecheck(__u64, a) && \
 142          typecheck(__u64, b) && \
 143          ((__s64)((a) - (b)) >= 0))
 144 #define time_before_eq64(a,b)   time_after_eq64(b,a)
 145 
 146 #define time_in_range64(a, b, c) \
 147         (time_after_eq64(a, b) && \
 148          time_before_eq64(a, c))
 149 
 150 /*
 151  * These four macros compare jiffies and 'a' for convenience.
 152  */
 153 
 154 /* time_is_before_jiffies(a) return true if a is before jiffies */
 155 #define time_is_before_jiffies(a) time_after(jiffies, a)
 156 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
 157 
 158 /* time_is_after_jiffies(a) return true if a is after jiffies */
 159 #define time_is_after_jiffies(a) time_before(jiffies, a)
 160 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
 161 
 162 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
 163 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
 164 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
 165 
 166 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
 167 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
 168 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
 169 
 170 /*
 171  * Have the 32 bit jiffies value wrap 5 minutes after boot
 172  * so jiffies wrap bugs show up earlier.
 173  */
 174 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
 175 
 176 /*
 177  * Change timeval to jiffies, trying to avoid the
 178  * most obvious overflows..
 179  *
 180  * And some not so obvious.
 181  *
 182  * Note that we don't want to return LONG_MAX, because
 183  * for various timeout reasons we often end up having
 184  * to wait "jiffies+1" in order to guarantee that we wait
 185  * at _least_ "jiffies" - so "jiffies+1" had better still
 186  * be positive.
 187  */
 188 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
 189 
 190 extern unsigned long preset_lpj;
 191 
 192 /*
 193  * We want to do realistic conversions of time so we need to use the same
 194  * values the update wall clock code uses as the jiffies size.  This value
 195  * is: TICK_NSEC (which is defined in timex.h).  This
 196  * is a constant and is in nanoseconds.  We will use scaled math
 197  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
 198  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
 199  * constants and so are computed at compile time.  SHIFT_HZ (computed in
 200  * timex.h) adjusts the scaling for different HZ values.
 201 
 202  * Scaled math???  What is that?
 203  *
 204  * Scaled math is a way to do integer math on values that would,
 205  * otherwise, either overflow, underflow, or cause undesired div
 206  * instructions to appear in the execution path.  In short, we "scale"
 207  * up the operands so they take more bits (more precision, less
 208  * underflow), do the desired operation and then "scale" the result back
 209  * by the same amount.  If we do the scaling by shifting we avoid the
 210  * costly mpy and the dastardly div instructions.
 211 
 212  * Suppose, for example, we want to convert from seconds to jiffies
 213  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
 214  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
 215  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
 216  * might calculate at compile time, however, the result will only have
 217  * about 3-4 bits of precision (less for smaller values of HZ).
 218  *
 219  * So, we scale as follows:
 220  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
 221  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
 222  * Then we make SCALE a power of two so:
 223  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
 224  * Now we define:
 225  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
 226  * jiff = (sec * SEC_CONV) >> SCALE;
 227  *
 228  * Often the math we use will expand beyond 32-bits so we tell C how to
 229  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
 230  * which should take the result back to 32-bits.  We want this expansion
 231  * to capture as much precision as possible.  At the same time we don't
 232  * want to overflow so we pick the SCALE to avoid this.  In this file,
 233  * that means using a different scale for each range of HZ values (as
 234  * defined in timex.h).
 235  *
 236  * For those who want to know, gcc will give a 64-bit result from a "*"
 237  * operator if the result is a long long AND at least one of the
 238  * operands is cast to long long (usually just prior to the "*" so as
 239  * not to confuse it into thinking it really has a 64-bit operand,
 240  * which, buy the way, it can do, but it takes more code and at least 2
 241  * mpys).
 242 
 243  * We also need to be aware that one second in nanoseconds is only a
 244  * couple of bits away from overflowing a 32-bit word, so we MUST use
 245  * 64-bits to get the full range time in nanoseconds.
 246 
 247  */
 248 
 249 /*
 250  * Here are the scales we will use.  One for seconds, nanoseconds and
 251  * microseconds.
 252  *
 253  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
 254  * check if the sign bit is set.  If not, we bump the shift count by 1.
 255  * (Gets an extra bit of precision where we can use it.)
 256  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
 257  * Haven't tested others.
 258 
 259  * Limits of cpp (for #if expressions) only long (no long long), but
 260  * then we only need the most signicant bit.
 261  */
 262 
 263 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
 264 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
 265 #undef SEC_JIFFIE_SC
 266 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
 267 #endif
 268 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
 269 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
 270                                 TICK_NSEC -1) / (u64)TICK_NSEC))
 271 
 272 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
 273                                         TICK_NSEC -1) / (u64)TICK_NSEC))
 274 /*
 275  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
 276  * into seconds.  The 64-bit case will overflow if we are not careful,
 277  * so use the messy SH_DIV macro to do it.  Still all constants.
 278  */
 279 #if BITS_PER_LONG < 64
 280 # define MAX_SEC_IN_JIFFIES \
 281         (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
 282 #else   /* take care of overflow on 64 bits machines */
 283 # define MAX_SEC_IN_JIFFIES \
 284         (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
 285 
 286 #endif
 287 
 288 /*
 289  * Convert various time units to each other:
 290  */
 291 extern unsigned int jiffies_to_msecs(const unsigned long j);
 292 extern unsigned int jiffies_to_usecs(const unsigned long j);
 293 
 294 static inline u64 jiffies_to_nsecs(const unsigned long j)
 295 {
 296         return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
 297 }
 298 
 299 extern u64 jiffies64_to_nsecs(u64 j);
 300 extern u64 jiffies64_to_msecs(u64 j);
 301 
 302 extern unsigned long __msecs_to_jiffies(const unsigned int m);
 303 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 304 /*
 305  * HZ is equal to or smaller than 1000, and 1000 is a nice round
 306  * multiple of HZ, divide with the factor between them, but round
 307  * upwards:
 308  */
 309 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 310 {
 311         return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 312 }
 313 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 314 /*
 315  * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
 316  * simply multiply with the factor between them.
 317  *
 318  * But first make sure the multiplication result cannot overflow:
 319  */
 320 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 321 {
 322         if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 323                 return MAX_JIFFY_OFFSET;
 324         return m * (HZ / MSEC_PER_SEC);
 325 }
 326 #else
 327 /*
 328  * Generic case - multiply, round and divide. But first check that if
 329  * we are doing a net multiplication, that we wouldn't overflow:
 330  */
 331 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 332 {
 333         if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 334                 return MAX_JIFFY_OFFSET;
 335 
 336         return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
 337 }
 338 #endif
 339 /**
 340  * msecs_to_jiffies: - convert milliseconds to jiffies
 341  * @m:  time in milliseconds
 342  *
 343  * conversion is done as follows:
 344  *
 345  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 346  *
 347  * - 'too large' values [that would result in larger than
 348  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 349  *
 350  * - all other values are converted to jiffies by either multiplying
 351  *   the input value by a factor or dividing it with a factor and
 352  *   handling any 32-bit overflows.
 353  *   for the details see __msecs_to_jiffies()
 354  *
 355  * msecs_to_jiffies() checks for the passed in value being a constant
 356  * via __builtin_constant_p() allowing gcc to eliminate most of the
 357  * code, __msecs_to_jiffies() is called if the value passed does not
 358  * allow constant folding and the actual conversion must be done at
 359  * runtime.
 360  * the HZ range specific helpers _msecs_to_jiffies() are called both
 361  * directly here and from __msecs_to_jiffies() in the case where
 362  * constant folding is not possible.
 363  */
 364 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
 365 {
 366         if (__builtin_constant_p(m)) {
 367                 if ((int)m < 0)
 368                         return MAX_JIFFY_OFFSET;
 369                 return _msecs_to_jiffies(m);
 370         } else {
 371                 return __msecs_to_jiffies(m);
 372         }
 373 }
 374 
 375 extern unsigned long __usecs_to_jiffies(const unsigned int u);
 376 #if !(USEC_PER_SEC % HZ)
 377 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 378 {
 379         return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 380 }
 381 #else
 382 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 383 {
 384         return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
 385                 >> USEC_TO_HZ_SHR32;
 386 }
 387 #endif
 388 
 389 /**
 390  * usecs_to_jiffies: - convert microseconds to jiffies
 391  * @u:  time in microseconds
 392  *
 393  * conversion is done as follows:
 394  *
 395  * - 'too large' values [that would result in larger than
 396  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 397  *
 398  * - all other values are converted to jiffies by either multiplying
 399  *   the input value by a factor or dividing it with a factor and
 400  *   handling any 32-bit overflows as for msecs_to_jiffies.
 401  *
 402  * usecs_to_jiffies() checks for the passed in value being a constant
 403  * via __builtin_constant_p() allowing gcc to eliminate most of the
 404  * code, __usecs_to_jiffies() is called if the value passed does not
 405  * allow constant folding and the actual conversion must be done at
 406  * runtime.
 407  * the HZ range specific helpers _usecs_to_jiffies() are called both
 408  * directly here and from __msecs_to_jiffies() in the case where
 409  * constant folding is not possible.
 410  */
 411 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
 412 {
 413         if (__builtin_constant_p(u)) {
 414                 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 415                         return MAX_JIFFY_OFFSET;
 416                 return _usecs_to_jiffies(u);
 417         } else {
 418                 return __usecs_to_jiffies(u);
 419         }
 420 }
 421 
 422 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
 423 extern void jiffies_to_timespec64(const unsigned long jiffies,
 424                                   struct timespec64 *value);
 425 static inline unsigned long timespec_to_jiffies(const struct timespec *value)
 426 {
 427         struct timespec64 ts = timespec_to_timespec64(*value);
 428 
 429         return timespec64_to_jiffies(&ts);
 430 }
 431 
 432 static inline void jiffies_to_timespec(const unsigned long jiffies,
 433                                        struct timespec *value)
 434 {
 435         struct timespec64 ts;
 436 
 437         jiffies_to_timespec64(jiffies, &ts);
 438         *value = timespec64_to_timespec(ts);
 439 }
 440 
 441 extern unsigned long timeval_to_jiffies(const struct timeval *value);
 442 extern void jiffies_to_timeval(const unsigned long jiffies,
 443                                struct timeval *value);
 444 
 445 extern clock_t jiffies_to_clock_t(unsigned long x);
 446 static inline clock_t jiffies_delta_to_clock_t(long delta)
 447 {
 448         return jiffies_to_clock_t(max(0L, delta));
 449 }
 450 
 451 static inline unsigned int jiffies_delta_to_msecs(long delta)
 452 {
 453         return jiffies_to_msecs(max(0L, delta));
 454 }
 455 
 456 extern unsigned long clock_t_to_jiffies(unsigned long x);
 457 extern u64 jiffies_64_to_clock_t(u64 x);
 458 extern u64 nsec_to_clock_t(u64 x);
 459 extern u64 nsecs_to_jiffies64(u64 n);
 460 extern unsigned long nsecs_to_jiffies(u64 n);
 461 
 462 #define TIMESTAMP_SIZE  30
 463 
 464 #endif

/* [<][>][^][v][top][bottom][index][help] */