root/include/linux/xarray.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. xa_mk_value
  2. xa_to_value
  3. xa_is_value
  4. xa_tag_pointer
  5. xa_untag_pointer
  6. xa_pointer_tag
  7. xa_mk_internal
  8. xa_to_internal
  9. xa_is_internal
  10. xa_is_zero
  11. xa_is_err
  12. xa_err
  13. xa_init_flags
  14. xa_init
  15. xa_empty
  16. xa_marked
  17. xa_store_bh
  18. xa_store_irq
  19. xa_erase_bh
  20. xa_erase_irq
  21. xa_cmpxchg
  22. xa_cmpxchg_bh
  23. xa_cmpxchg_irq
  24. xa_insert
  25. xa_insert_bh
  26. xa_insert_irq
  27. xa_alloc
  28. xa_alloc_bh
  29. xa_alloc_irq
  30. xa_alloc_cyclic
  31. xa_alloc_cyclic_bh
  32. xa_alloc_cyclic_irq
  33. xa_reserve
  34. xa_reserve_bh
  35. xa_reserve_irq
  36. xa_release
  37. xa_head
  38. xa_head_locked
  39. xa_entry
  40. xa_entry_locked
  41. xa_parent
  42. xa_parent_locked
  43. xa_mk_node
  44. xa_to_node
  45. xa_is_node
  46. xa_mk_sibling
  47. xa_to_sibling
  48. xa_is_sibling
  49. xa_is_retry
  50. xa_is_advanced
  51. xas_error
  52. xas_set_err
  53. xas_invalid
  54. xas_valid
  55. xas_is_node
  56. xas_not_node
  57. xas_frozen
  58. xas_top
  59. xas_reset
  60. xas_retry
  61. xas_reload
  62. xas_set
  63. xas_set_order
  64. xas_set_update
  65. xas_next_entry
  66. xas_find_chunk
  67. xas_next_marked
  68. xas_prev
  69. xas_next

   1 /* SPDX-License-Identifier: GPL-2.0+ */
   2 #ifndef _LINUX_XARRAY_H
   3 #define _LINUX_XARRAY_H
   4 /*
   5  * eXtensible Arrays
   6  * Copyright (c) 2017 Microsoft Corporation
   7  * Author: Matthew Wilcox <willy@infradead.org>
   8  *
   9  * See Documentation/core-api/xarray.rst for how to use the XArray.
  10  */
  11 
  12 #include <linux/bug.h>
  13 #include <linux/compiler.h>
  14 #include <linux/gfp.h>
  15 #include <linux/kconfig.h>
  16 #include <linux/kernel.h>
  17 #include <linux/rcupdate.h>
  18 #include <linux/spinlock.h>
  19 #include <linux/types.h>
  20 
  21 /*
  22  * The bottom two bits of the entry determine how the XArray interprets
  23  * the contents:
  24  *
  25  * 00: Pointer entry
  26  * 10: Internal entry
  27  * x1: Value entry or tagged pointer
  28  *
  29  * Attempting to store internal entries in the XArray is a bug.
  30  *
  31  * Most internal entries are pointers to the next node in the tree.
  32  * The following internal entries have a special meaning:
  33  *
  34  * 0-62: Sibling entries
  35  * 256: Zero entry
  36  * 257: Retry entry
  37  *
  38  * Errors are also represented as internal entries, but use the negative
  39  * space (-4094 to -2).  They're never stored in the slots array; only
  40  * returned by the normal API.
  41  */
  42 
  43 #define BITS_PER_XA_VALUE       (BITS_PER_LONG - 1)
  44 
  45 /**
  46  * xa_mk_value() - Create an XArray entry from an integer.
  47  * @v: Value to store in XArray.
  48  *
  49  * Context: Any context.
  50  * Return: An entry suitable for storing in the XArray.
  51  */
  52 static inline void *xa_mk_value(unsigned long v)
  53 {
  54         WARN_ON((long)v < 0);
  55         return (void *)((v << 1) | 1);
  56 }
  57 
  58 /**
  59  * xa_to_value() - Get value stored in an XArray entry.
  60  * @entry: XArray entry.
  61  *
  62  * Context: Any context.
  63  * Return: The value stored in the XArray entry.
  64  */
  65 static inline unsigned long xa_to_value(const void *entry)
  66 {
  67         return (unsigned long)entry >> 1;
  68 }
  69 
  70 /**
  71  * xa_is_value() - Determine if an entry is a value.
  72  * @entry: XArray entry.
  73  *
  74  * Context: Any context.
  75  * Return: True if the entry is a value, false if it is a pointer.
  76  */
  77 static inline bool xa_is_value(const void *entry)
  78 {
  79         return (unsigned long)entry & 1;
  80 }
  81 
  82 /**
  83  * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
  84  * @p: Plain pointer.
  85  * @tag: Tag value (0, 1 or 3).
  86  *
  87  * If the user of the XArray prefers, they can tag their pointers instead
  88  * of storing value entries.  Three tags are available (0, 1 and 3).
  89  * These are distinct from the xa_mark_t as they are not replicated up
  90  * through the array and cannot be searched for.
  91  *
  92  * Context: Any context.
  93  * Return: An XArray entry.
  94  */
  95 static inline void *xa_tag_pointer(void *p, unsigned long tag)
  96 {
  97         return (void *)((unsigned long)p | tag);
  98 }
  99 
 100 /**
 101  * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
 102  * @entry: XArray entry.
 103  *
 104  * If you have stored a tagged pointer in the XArray, call this function
 105  * to get the untagged version of the pointer.
 106  *
 107  * Context: Any context.
 108  * Return: A pointer.
 109  */
 110 static inline void *xa_untag_pointer(void *entry)
 111 {
 112         return (void *)((unsigned long)entry & ~3UL);
 113 }
 114 
 115 /**
 116  * xa_pointer_tag() - Get the tag stored in an XArray entry.
 117  * @entry: XArray entry.
 118  *
 119  * If you have stored a tagged pointer in the XArray, call this function
 120  * to get the tag of that pointer.
 121  *
 122  * Context: Any context.
 123  * Return: A tag.
 124  */
 125 static inline unsigned int xa_pointer_tag(void *entry)
 126 {
 127         return (unsigned long)entry & 3UL;
 128 }
 129 
 130 /*
 131  * xa_mk_internal() - Create an internal entry.
 132  * @v: Value to turn into an internal entry.
 133  *
 134  * Internal entries are used for a number of purposes.  Entries 0-255 are
 135  * used for sibling entries (only 0-62 are used by the current code).  256
 136  * is used for the retry entry.  257 is used for the reserved / zero entry.
 137  * Negative internal entries are used to represent errnos.  Node pointers
 138  * are also tagged as internal entries in some situations.
 139  *
 140  * Context: Any context.
 141  * Return: An XArray internal entry corresponding to this value.
 142  */
 143 static inline void *xa_mk_internal(unsigned long v)
 144 {
 145         return (void *)((v << 2) | 2);
 146 }
 147 
 148 /*
 149  * xa_to_internal() - Extract the value from an internal entry.
 150  * @entry: XArray entry.
 151  *
 152  * Context: Any context.
 153  * Return: The value which was stored in the internal entry.
 154  */
 155 static inline unsigned long xa_to_internal(const void *entry)
 156 {
 157         return (unsigned long)entry >> 2;
 158 }
 159 
 160 /*
 161  * xa_is_internal() - Is the entry an internal entry?
 162  * @entry: XArray entry.
 163  *
 164  * Context: Any context.
 165  * Return: %true if the entry is an internal entry.
 166  */
 167 static inline bool xa_is_internal(const void *entry)
 168 {
 169         return ((unsigned long)entry & 3) == 2;
 170 }
 171 
 172 #define XA_ZERO_ENTRY           xa_mk_internal(257)
 173 
 174 /**
 175  * xa_is_zero() - Is the entry a zero entry?
 176  * @entry: Entry retrieved from the XArray
 177  *
 178  * The normal API will return NULL as the contents of a slot containing
 179  * a zero entry.  You can only see zero entries by using the advanced API.
 180  *
 181  * Return: %true if the entry is a zero entry.
 182  */
 183 static inline bool xa_is_zero(const void *entry)
 184 {
 185         return unlikely(entry == XA_ZERO_ENTRY);
 186 }
 187 
 188 /**
 189  * xa_is_err() - Report whether an XArray operation returned an error
 190  * @entry: Result from calling an XArray function
 191  *
 192  * If an XArray operation cannot complete an operation, it will return
 193  * a special value indicating an error.  This function tells you
 194  * whether an error occurred; xa_err() tells you which error occurred.
 195  *
 196  * Context: Any context.
 197  * Return: %true if the entry indicates an error.
 198  */
 199 static inline bool xa_is_err(const void *entry)
 200 {
 201         return unlikely(xa_is_internal(entry) &&
 202                         entry >= xa_mk_internal(-MAX_ERRNO));
 203 }
 204 
 205 /**
 206  * xa_err() - Turn an XArray result into an errno.
 207  * @entry: Result from calling an XArray function.
 208  *
 209  * If an XArray operation cannot complete an operation, it will return
 210  * a special pointer value which encodes an errno.  This function extracts
 211  * the errno from the pointer value, or returns 0 if the pointer does not
 212  * represent an errno.
 213  *
 214  * Context: Any context.
 215  * Return: A negative errno or 0.
 216  */
 217 static inline int xa_err(void *entry)
 218 {
 219         /* xa_to_internal() would not do sign extension. */
 220         if (xa_is_err(entry))
 221                 return (long)entry >> 2;
 222         return 0;
 223 }
 224 
 225 /**
 226  * struct xa_limit - Represents a range of IDs.
 227  * @min: The lowest ID to allocate (inclusive).
 228  * @max: The maximum ID to allocate (inclusive).
 229  *
 230  * This structure is used either directly or via the XA_LIMIT() macro
 231  * to communicate the range of IDs that are valid for allocation.
 232  * Two common ranges are predefined for you:
 233  * * xa_limit_32b       - [0 - UINT_MAX]
 234  * * xa_limit_31b       - [0 - INT_MAX]
 235  */
 236 struct xa_limit {
 237         u32 max;
 238         u32 min;
 239 };
 240 
 241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
 242 
 243 #define xa_limit_32b    XA_LIMIT(0, UINT_MAX)
 244 #define xa_limit_31b    XA_LIMIT(0, INT_MAX)
 245 
 246 typedef unsigned __bitwise xa_mark_t;
 247 #define XA_MARK_0               ((__force xa_mark_t)0U)
 248 #define XA_MARK_1               ((__force xa_mark_t)1U)
 249 #define XA_MARK_2               ((__force xa_mark_t)2U)
 250 #define XA_PRESENT              ((__force xa_mark_t)8U)
 251 #define XA_MARK_MAX             XA_MARK_2
 252 #define XA_FREE_MARK            XA_MARK_0
 253 
 254 enum xa_lock_type {
 255         XA_LOCK_IRQ = 1,
 256         XA_LOCK_BH = 2,
 257 };
 258 
 259 /*
 260  * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
 261  * and we remain compatible with that.
 262  */
 263 #define XA_FLAGS_LOCK_IRQ       ((__force gfp_t)XA_LOCK_IRQ)
 264 #define XA_FLAGS_LOCK_BH        ((__force gfp_t)XA_LOCK_BH)
 265 #define XA_FLAGS_TRACK_FREE     ((__force gfp_t)4U)
 266 #define XA_FLAGS_ZERO_BUSY      ((__force gfp_t)8U)
 267 #define XA_FLAGS_ALLOC_WRAPPED  ((__force gfp_t)16U)
 268 #define XA_FLAGS_ACCOUNT        ((__force gfp_t)32U)
 269 #define XA_FLAGS_MARK(mark)     ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
 270                                                 (__force unsigned)(mark)))
 271 
 272 /* ALLOC is for a normal 0-based alloc.  ALLOC1 is for an 1-based alloc */
 273 #define XA_FLAGS_ALLOC  (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
 274 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
 275 
 276 /**
 277  * struct xarray - The anchor of the XArray.
 278  * @xa_lock: Lock that protects the contents of the XArray.
 279  *
 280  * To use the xarray, define it statically or embed it in your data structure.
 281  * It is a very small data structure, so it does not usually make sense to
 282  * allocate it separately and keep a pointer to it in your data structure.
 283  *
 284  * You may use the xa_lock to protect your own data structures as well.
 285  */
 286 /*
 287  * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
 288  * If the only non-NULL entry in the array is at index 0, @xa_head is that
 289  * entry.  If any other entry in the array is non-NULL, @xa_head points
 290  * to an @xa_node.
 291  */
 292 struct xarray {
 293         spinlock_t      xa_lock;
 294 /* private: The rest of the data structure is not to be used directly. */
 295         gfp_t           xa_flags;
 296         void __rcu *    xa_head;
 297 };
 298 
 299 #define XARRAY_INIT(name, flags) {                              \
 300         .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),          \
 301         .xa_flags = flags,                                      \
 302         .xa_head = NULL,                                        \
 303 }
 304 
 305 /**
 306  * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
 307  * @name: A string that names your XArray.
 308  * @flags: XA_FLAG values.
 309  *
 310  * This is intended for file scope definitions of XArrays.  It declares
 311  * and initialises an empty XArray with the chosen name and flags.  It is
 312  * equivalent to calling xa_init_flags() on the array, but it does the
 313  * initialisation at compiletime instead of runtime.
 314  */
 315 #define DEFINE_XARRAY_FLAGS(name, flags)                                \
 316         struct xarray name = XARRAY_INIT(name, flags)
 317 
 318 /**
 319  * DEFINE_XARRAY() - Define an XArray.
 320  * @name: A string that names your XArray.
 321  *
 322  * This is intended for file scope definitions of XArrays.  It declares
 323  * and initialises an empty XArray with the chosen name.  It is equivalent
 324  * to calling xa_init() on the array, but it does the initialisation at
 325  * compiletime instead of runtime.
 326  */
 327 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
 328 
 329 /**
 330  * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
 331  * @name: A string that names your XArray.
 332  *
 333  * This is intended for file scope definitions of allocating XArrays.
 334  * See also DEFINE_XARRAY().
 335  */
 336 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
 337 
 338 /**
 339  * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
 340  * @name: A string that names your XArray.
 341  *
 342  * This is intended for file scope definitions of allocating XArrays.
 343  * See also DEFINE_XARRAY().
 344  */
 345 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
 346 
 347 void *xa_load(struct xarray *, unsigned long index);
 348 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 349 void *xa_erase(struct xarray *, unsigned long index);
 350 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
 351                         void *entry, gfp_t);
 352 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
 353 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 354 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 355 void *xa_find(struct xarray *xa, unsigned long *index,
 356                 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 357 void *xa_find_after(struct xarray *xa, unsigned long *index,
 358                 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 359 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
 360                 unsigned long max, unsigned int n, xa_mark_t);
 361 void xa_destroy(struct xarray *);
 362 
 363 /**
 364  * xa_init_flags() - Initialise an empty XArray with flags.
 365  * @xa: XArray.
 366  * @flags: XA_FLAG values.
 367  *
 368  * If you need to initialise an XArray with special flags (eg you need
 369  * to take the lock from interrupt context), use this function instead
 370  * of xa_init().
 371  *
 372  * Context: Any context.
 373  */
 374 static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
 375 {
 376         spin_lock_init(&xa->xa_lock);
 377         xa->xa_flags = flags;
 378         xa->xa_head = NULL;
 379 }
 380 
 381 /**
 382  * xa_init() - Initialise an empty XArray.
 383  * @xa: XArray.
 384  *
 385  * An empty XArray is full of NULL entries.
 386  *
 387  * Context: Any context.
 388  */
 389 static inline void xa_init(struct xarray *xa)
 390 {
 391         xa_init_flags(xa, 0);
 392 }
 393 
 394 /**
 395  * xa_empty() - Determine if an array has any present entries.
 396  * @xa: XArray.
 397  *
 398  * Context: Any context.
 399  * Return: %true if the array contains only NULL pointers.
 400  */
 401 static inline bool xa_empty(const struct xarray *xa)
 402 {
 403         return xa->xa_head == NULL;
 404 }
 405 
 406 /**
 407  * xa_marked() - Inquire whether any entry in this array has a mark set
 408  * @xa: Array
 409  * @mark: Mark value
 410  *
 411  * Context: Any context.
 412  * Return: %true if any entry has this mark set.
 413  */
 414 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
 415 {
 416         return xa->xa_flags & XA_FLAGS_MARK(mark);
 417 }
 418 
 419 /**
 420  * xa_for_each_start() - Iterate over a portion of an XArray.
 421  * @xa: XArray.
 422  * @index: Index of @entry.
 423  * @entry: Entry retrieved from array.
 424  * @start: First index to retrieve from array.
 425  *
 426  * During the iteration, @entry will have the value of the entry stored
 427  * in @xa at @index.  You may modify @index during the iteration if you
 428  * want to skip or reprocess indices.  It is safe to modify the array
 429  * during the iteration.  At the end of the iteration, @entry will be set
 430  * to NULL and @index will have a value less than or equal to max.
 431  *
 432  * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n).  You have
 433  * to handle your own locking with xas_for_each(), and if you have to unlock
 434  * after each iteration, it will also end up being O(n.log(n)).
 435  * xa_for_each_start() will spin if it hits a retry entry; if you intend to
 436  * see retry entries, you should use the xas_for_each() iterator instead.
 437  * The xas_for_each() iterator will expand into more inline code than
 438  * xa_for_each_start().
 439  *
 440  * Context: Any context.  Takes and releases the RCU lock.
 441  */
 442 #define xa_for_each_start(xa, index, entry, start)                      \
 443         for (index = start,                                             \
 444              entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT);        \
 445              entry;                                                     \
 446              entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT))
 447 
 448 /**
 449  * xa_for_each() - Iterate over present entries in an XArray.
 450  * @xa: XArray.
 451  * @index: Index of @entry.
 452  * @entry: Entry retrieved from array.
 453  *
 454  * During the iteration, @entry will have the value of the entry stored
 455  * in @xa at @index.  You may modify @index during the iteration if you want
 456  * to skip or reprocess indices.  It is safe to modify the array during the
 457  * iteration.  At the end of the iteration, @entry will be set to NULL and
 458  * @index will have a value less than or equal to max.
 459  *
 460  * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
 461  * to handle your own locking with xas_for_each(), and if you have to unlock
 462  * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
 463  * will spin if it hits a retry entry; if you intend to see retry entries,
 464  * you should use the xas_for_each() iterator instead.  The xas_for_each()
 465  * iterator will expand into more inline code than xa_for_each().
 466  *
 467  * Context: Any context.  Takes and releases the RCU lock.
 468  */
 469 #define xa_for_each(xa, index, entry) \
 470         xa_for_each_start(xa, index, entry, 0)
 471 
 472 /**
 473  * xa_for_each_marked() - Iterate over marked entries in an XArray.
 474  * @xa: XArray.
 475  * @index: Index of @entry.
 476  * @entry: Entry retrieved from array.
 477  * @filter: Selection criterion.
 478  *
 479  * During the iteration, @entry will have the value of the entry stored
 480  * in @xa at @index.  The iteration will skip all entries in the array
 481  * which do not match @filter.  You may modify @index during the iteration
 482  * if you want to skip or reprocess indices.  It is safe to modify the array
 483  * during the iteration.  At the end of the iteration, @entry will be set to
 484  * NULL and @index will have a value less than or equal to max.
 485  *
 486  * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
 487  * You have to handle your own locking with xas_for_each(), and if you have
 488  * to unlock after each iteration, it will also end up being O(n.log(n)).
 489  * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
 490  * see retry entries, you should use the xas_for_each_marked() iterator
 491  * instead.  The xas_for_each_marked() iterator will expand into more inline
 492  * code than xa_for_each_marked().
 493  *
 494  * Context: Any context.  Takes and releases the RCU lock.
 495  */
 496 #define xa_for_each_marked(xa, index, entry, filter) \
 497         for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
 498              entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
 499 
 500 #define xa_trylock(xa)          spin_trylock(&(xa)->xa_lock)
 501 #define xa_lock(xa)             spin_lock(&(xa)->xa_lock)
 502 #define xa_unlock(xa)           spin_unlock(&(xa)->xa_lock)
 503 #define xa_lock_bh(xa)          spin_lock_bh(&(xa)->xa_lock)
 504 #define xa_unlock_bh(xa)        spin_unlock_bh(&(xa)->xa_lock)
 505 #define xa_lock_irq(xa)         spin_lock_irq(&(xa)->xa_lock)
 506 #define xa_unlock_irq(xa)       spin_unlock_irq(&(xa)->xa_lock)
 507 #define xa_lock_irqsave(xa, flags) \
 508                                 spin_lock_irqsave(&(xa)->xa_lock, flags)
 509 #define xa_unlock_irqrestore(xa, flags) \
 510                                 spin_unlock_irqrestore(&(xa)->xa_lock, flags)
 511 
 512 /*
 513  * Versions of the normal API which require the caller to hold the
 514  * xa_lock.  If the GFP flags allow it, they will drop the lock to
 515  * allocate memory, then reacquire it afterwards.  These functions
 516  * may also re-enable interrupts if the XArray flags indicate the
 517  * locking should be interrupt safe.
 518  */
 519 void *__xa_erase(struct xarray *, unsigned long index);
 520 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 521 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
 522                 void *entry, gfp_t);
 523 int __must_check __xa_insert(struct xarray *, unsigned long index,
 524                 void *entry, gfp_t);
 525 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
 526                 struct xa_limit, gfp_t);
 527 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
 528                 struct xa_limit, u32 *next, gfp_t);
 529 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 530 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 531 
 532 /**
 533  * xa_store_bh() - Store this entry in the XArray.
 534  * @xa: XArray.
 535  * @index: Index into array.
 536  * @entry: New entry.
 537  * @gfp: Memory allocation flags.
 538  *
 539  * This function is like calling xa_store() except it disables softirqs
 540  * while holding the array lock.
 541  *
 542  * Context: Any context.  Takes and releases the xa_lock while
 543  * disabling softirqs.
 544  * Return: The entry which used to be at this index.
 545  */
 546 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
 547                 void *entry, gfp_t gfp)
 548 {
 549         void *curr;
 550 
 551         xa_lock_bh(xa);
 552         curr = __xa_store(xa, index, entry, gfp);
 553         xa_unlock_bh(xa);
 554 
 555         return curr;
 556 }
 557 
 558 /**
 559  * xa_store_irq() - Store this entry in the XArray.
 560  * @xa: XArray.
 561  * @index: Index into array.
 562  * @entry: New entry.
 563  * @gfp: Memory allocation flags.
 564  *
 565  * This function is like calling xa_store() except it disables interrupts
 566  * while holding the array lock.
 567  *
 568  * Context: Process context.  Takes and releases the xa_lock while
 569  * disabling interrupts.
 570  * Return: The entry which used to be at this index.
 571  */
 572 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
 573                 void *entry, gfp_t gfp)
 574 {
 575         void *curr;
 576 
 577         xa_lock_irq(xa);
 578         curr = __xa_store(xa, index, entry, gfp);
 579         xa_unlock_irq(xa);
 580 
 581         return curr;
 582 }
 583 
 584 /**
 585  * xa_erase_bh() - Erase this entry from the XArray.
 586  * @xa: XArray.
 587  * @index: Index of entry.
 588  *
 589  * After this function returns, loading from @index will return %NULL.
 590  * If the index is part of a multi-index entry, all indices will be erased
 591  * and none of the entries will be part of a multi-index entry.
 592  *
 593  * Context: Any context.  Takes and releases the xa_lock while
 594  * disabling softirqs.
 595  * Return: The entry which used to be at this index.
 596  */
 597 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
 598 {
 599         void *entry;
 600 
 601         xa_lock_bh(xa);
 602         entry = __xa_erase(xa, index);
 603         xa_unlock_bh(xa);
 604 
 605         return entry;
 606 }
 607 
 608 /**
 609  * xa_erase_irq() - Erase this entry from the XArray.
 610  * @xa: XArray.
 611  * @index: Index of entry.
 612  *
 613  * After this function returns, loading from @index will return %NULL.
 614  * If the index is part of a multi-index entry, all indices will be erased
 615  * and none of the entries will be part of a multi-index entry.
 616  *
 617  * Context: Process context.  Takes and releases the xa_lock while
 618  * disabling interrupts.
 619  * Return: The entry which used to be at this index.
 620  */
 621 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
 622 {
 623         void *entry;
 624 
 625         xa_lock_irq(xa);
 626         entry = __xa_erase(xa, index);
 627         xa_unlock_irq(xa);
 628 
 629         return entry;
 630 }
 631 
 632 /**
 633  * xa_cmpxchg() - Conditionally replace an entry in the XArray.
 634  * @xa: XArray.
 635  * @index: Index into array.
 636  * @old: Old value to test against.
 637  * @entry: New value to place in array.
 638  * @gfp: Memory allocation flags.
 639  *
 640  * If the entry at @index is the same as @old, replace it with @entry.
 641  * If the return value is equal to @old, then the exchange was successful.
 642  *
 643  * Context: Any context.  Takes and releases the xa_lock.  May sleep
 644  * if the @gfp flags permit.
 645  * Return: The old value at this index or xa_err() if an error happened.
 646  */
 647 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
 648                         void *old, void *entry, gfp_t gfp)
 649 {
 650         void *curr;
 651 
 652         xa_lock(xa);
 653         curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 654         xa_unlock(xa);
 655 
 656         return curr;
 657 }
 658 
 659 /**
 660  * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
 661  * @xa: XArray.
 662  * @index: Index into array.
 663  * @old: Old value to test against.
 664  * @entry: New value to place in array.
 665  * @gfp: Memory allocation flags.
 666  *
 667  * This function is like calling xa_cmpxchg() except it disables softirqs
 668  * while holding the array lock.
 669  *
 670  * Context: Any context.  Takes and releases the xa_lock while
 671  * disabling softirqs.  May sleep if the @gfp flags permit.
 672  * Return: The old value at this index or xa_err() if an error happened.
 673  */
 674 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
 675                         void *old, void *entry, gfp_t gfp)
 676 {
 677         void *curr;
 678 
 679         xa_lock_bh(xa);
 680         curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 681         xa_unlock_bh(xa);
 682 
 683         return curr;
 684 }
 685 
 686 /**
 687  * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
 688  * @xa: XArray.
 689  * @index: Index into array.
 690  * @old: Old value to test against.
 691  * @entry: New value to place in array.
 692  * @gfp: Memory allocation flags.
 693  *
 694  * This function is like calling xa_cmpxchg() except it disables interrupts
 695  * while holding the array lock.
 696  *
 697  * Context: Process context.  Takes and releases the xa_lock while
 698  * disabling interrupts.  May sleep if the @gfp flags permit.
 699  * Return: The old value at this index or xa_err() if an error happened.
 700  */
 701 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
 702                         void *old, void *entry, gfp_t gfp)
 703 {
 704         void *curr;
 705 
 706         xa_lock_irq(xa);
 707         curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 708         xa_unlock_irq(xa);
 709 
 710         return curr;
 711 }
 712 
 713 /**
 714  * xa_insert() - Store this entry in the XArray unless another entry is
 715  *                      already present.
 716  * @xa: XArray.
 717  * @index: Index into array.
 718  * @entry: New entry.
 719  * @gfp: Memory allocation flags.
 720  *
 721  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 722  * if no entry is present.  Inserting will fail if a reserved entry is
 723  * present, even though loading from this index will return NULL.
 724  *
 725  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 726  * the @gfp flags permit.
 727  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 728  * -ENOMEM if memory could not be allocated.
 729  */
 730 static inline int __must_check xa_insert(struct xarray *xa,
 731                 unsigned long index, void *entry, gfp_t gfp)
 732 {
 733         int err;
 734 
 735         xa_lock(xa);
 736         err = __xa_insert(xa, index, entry, gfp);
 737         xa_unlock(xa);
 738 
 739         return err;
 740 }
 741 
 742 /**
 743  * xa_insert_bh() - Store this entry in the XArray unless another entry is
 744  *                      already present.
 745  * @xa: XArray.
 746  * @index: Index into array.
 747  * @entry: New entry.
 748  * @gfp: Memory allocation flags.
 749  *
 750  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 751  * if no entry is present.  Inserting will fail if a reserved entry is
 752  * present, even though loading from this index will return NULL.
 753  *
 754  * Context: Any context.  Takes and releases the xa_lock while
 755  * disabling softirqs.  May sleep if the @gfp flags permit.
 756  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 757  * -ENOMEM if memory could not be allocated.
 758  */
 759 static inline int __must_check xa_insert_bh(struct xarray *xa,
 760                 unsigned long index, void *entry, gfp_t gfp)
 761 {
 762         int err;
 763 
 764         xa_lock_bh(xa);
 765         err = __xa_insert(xa, index, entry, gfp);
 766         xa_unlock_bh(xa);
 767 
 768         return err;
 769 }
 770 
 771 /**
 772  * xa_insert_irq() - Store this entry in the XArray unless another entry is
 773  *                      already present.
 774  * @xa: XArray.
 775  * @index: Index into array.
 776  * @entry: New entry.
 777  * @gfp: Memory allocation flags.
 778  *
 779  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 780  * if no entry is present.  Inserting will fail if a reserved entry is
 781  * present, even though loading from this index will return NULL.
 782  *
 783  * Context: Process context.  Takes and releases the xa_lock while
 784  * disabling interrupts.  May sleep if the @gfp flags permit.
 785  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 786  * -ENOMEM if memory could not be allocated.
 787  */
 788 static inline int __must_check xa_insert_irq(struct xarray *xa,
 789                 unsigned long index, void *entry, gfp_t gfp)
 790 {
 791         int err;
 792 
 793         xa_lock_irq(xa);
 794         err = __xa_insert(xa, index, entry, gfp);
 795         xa_unlock_irq(xa);
 796 
 797         return err;
 798 }
 799 
 800 /**
 801  * xa_alloc() - Find somewhere to store this entry in the XArray.
 802  * @xa: XArray.
 803  * @id: Pointer to ID.
 804  * @entry: New entry.
 805  * @limit: Range of ID to allocate.
 806  * @gfp: Memory allocation flags.
 807  *
 808  * Finds an empty entry in @xa between @limit.min and @limit.max,
 809  * stores the index into the @id pointer, then stores the entry at
 810  * that index.  A concurrent lookup will not see an uninitialised @id.
 811  *
 812  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 813  * the @gfp flags permit.
 814  * Return: 0 on success, -ENOMEM if memory could not be allocated or
 815  * -EBUSY if there are no free entries in @limit.
 816  */
 817 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
 818                 void *entry, struct xa_limit limit, gfp_t gfp)
 819 {
 820         int err;
 821 
 822         xa_lock(xa);
 823         err = __xa_alloc(xa, id, entry, limit, gfp);
 824         xa_unlock(xa);
 825 
 826         return err;
 827 }
 828 
 829 /**
 830  * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
 831  * @xa: XArray.
 832  * @id: Pointer to ID.
 833  * @entry: New entry.
 834  * @limit: Range of ID to allocate.
 835  * @gfp: Memory allocation flags.
 836  *
 837  * Finds an empty entry in @xa between @limit.min and @limit.max,
 838  * stores the index into the @id pointer, then stores the entry at
 839  * that index.  A concurrent lookup will not see an uninitialised @id.
 840  *
 841  * Context: Any context.  Takes and releases the xa_lock while
 842  * disabling softirqs.  May sleep if the @gfp flags permit.
 843  * Return: 0 on success, -ENOMEM if memory could not be allocated or
 844  * -EBUSY if there are no free entries in @limit.
 845  */
 846 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
 847                 void *entry, struct xa_limit limit, gfp_t gfp)
 848 {
 849         int err;
 850 
 851         xa_lock_bh(xa);
 852         err = __xa_alloc(xa, id, entry, limit, gfp);
 853         xa_unlock_bh(xa);
 854 
 855         return err;
 856 }
 857 
 858 /**
 859  * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
 860  * @xa: XArray.
 861  * @id: Pointer to ID.
 862  * @entry: New entry.
 863  * @limit: Range of ID to allocate.
 864  * @gfp: Memory allocation flags.
 865  *
 866  * Finds an empty entry in @xa between @limit.min and @limit.max,
 867  * stores the index into the @id pointer, then stores the entry at
 868  * that index.  A concurrent lookup will not see an uninitialised @id.
 869  *
 870  * Context: Process context.  Takes and releases the xa_lock while
 871  * disabling interrupts.  May sleep if the @gfp flags permit.
 872  * Return: 0 on success, -ENOMEM if memory could not be allocated or
 873  * -EBUSY if there are no free entries in @limit.
 874  */
 875 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
 876                 void *entry, struct xa_limit limit, gfp_t gfp)
 877 {
 878         int err;
 879 
 880         xa_lock_irq(xa);
 881         err = __xa_alloc(xa, id, entry, limit, gfp);
 882         xa_unlock_irq(xa);
 883 
 884         return err;
 885 }
 886 
 887 /**
 888  * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
 889  * @xa: XArray.
 890  * @id: Pointer to ID.
 891  * @entry: New entry.
 892  * @limit: Range of allocated ID.
 893  * @next: Pointer to next ID to allocate.
 894  * @gfp: Memory allocation flags.
 895  *
 896  * Finds an empty entry in @xa between @limit.min and @limit.max,
 897  * stores the index into the @id pointer, then stores the entry at
 898  * that index.  A concurrent lookup will not see an uninitialised @id.
 899  * The search for an empty entry will start at @next and will wrap
 900  * around if necessary.
 901  *
 902  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 903  * the @gfp flags permit.
 904  * Return: 0 if the allocation succeeded without wrapping.  1 if the
 905  * allocation succeeded after wrapping, -ENOMEM if memory could not be
 906  * allocated or -EBUSY if there are no free entries in @limit.
 907  */
 908 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
 909                 struct xa_limit limit, u32 *next, gfp_t gfp)
 910 {
 911         int err;
 912 
 913         xa_lock(xa);
 914         err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 915         xa_unlock(xa);
 916 
 917         return err;
 918 }
 919 
 920 /**
 921  * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
 922  * @xa: XArray.
 923  * @id: Pointer to ID.
 924  * @entry: New entry.
 925  * @limit: Range of allocated ID.
 926  * @next: Pointer to next ID to allocate.
 927  * @gfp: Memory allocation flags.
 928  *
 929  * Finds an empty entry in @xa between @limit.min and @limit.max,
 930  * stores the index into the @id pointer, then stores the entry at
 931  * that index.  A concurrent lookup will not see an uninitialised @id.
 932  * The search for an empty entry will start at @next and will wrap
 933  * around if necessary.
 934  *
 935  * Context: Any context.  Takes and releases the xa_lock while
 936  * disabling softirqs.  May sleep if the @gfp flags permit.
 937  * Return: 0 if the allocation succeeded without wrapping.  1 if the
 938  * allocation succeeded after wrapping, -ENOMEM if memory could not be
 939  * allocated or -EBUSY if there are no free entries in @limit.
 940  */
 941 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
 942                 struct xa_limit limit, u32 *next, gfp_t gfp)
 943 {
 944         int err;
 945 
 946         xa_lock_bh(xa);
 947         err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 948         xa_unlock_bh(xa);
 949 
 950         return err;
 951 }
 952 
 953 /**
 954  * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
 955  * @xa: XArray.
 956  * @id: Pointer to ID.
 957  * @entry: New entry.
 958  * @limit: Range of allocated ID.
 959  * @next: Pointer to next ID to allocate.
 960  * @gfp: Memory allocation flags.
 961  *
 962  * Finds an empty entry in @xa between @limit.min and @limit.max,
 963  * stores the index into the @id pointer, then stores the entry at
 964  * that index.  A concurrent lookup will not see an uninitialised @id.
 965  * The search for an empty entry will start at @next and will wrap
 966  * around if necessary.
 967  *
 968  * Context: Process context.  Takes and releases the xa_lock while
 969  * disabling interrupts.  May sleep if the @gfp flags permit.
 970  * Return: 0 if the allocation succeeded without wrapping.  1 if the
 971  * allocation succeeded after wrapping, -ENOMEM if memory could not be
 972  * allocated or -EBUSY if there are no free entries in @limit.
 973  */
 974 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
 975                 struct xa_limit limit, u32 *next, gfp_t gfp)
 976 {
 977         int err;
 978 
 979         xa_lock_irq(xa);
 980         err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 981         xa_unlock_irq(xa);
 982 
 983         return err;
 984 }
 985 
 986 /**
 987  * xa_reserve() - Reserve this index in the XArray.
 988  * @xa: XArray.
 989  * @index: Index into array.
 990  * @gfp: Memory allocation flags.
 991  *
 992  * Ensures there is somewhere to store an entry at @index in the array.
 993  * If there is already something stored at @index, this function does
 994  * nothing.  If there was nothing there, the entry is marked as reserved.
 995  * Loading from a reserved entry returns a %NULL pointer.
 996  *
 997  * If you do not use the entry that you have reserved, call xa_release()
 998  * or xa_erase() to free any unnecessary memory.
 999  *
1000  * Context: Any context.  Takes and releases the xa_lock.
1001  * May sleep if the @gfp flags permit.
1002  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1003  */
1004 static inline __must_check
1005 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1006 {
1007         return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1008 }
1009 
1010 /**
1011  * xa_reserve_bh() - Reserve this index in the XArray.
1012  * @xa: XArray.
1013  * @index: Index into array.
1014  * @gfp: Memory allocation flags.
1015  *
1016  * A softirq-disabling version of xa_reserve().
1017  *
1018  * Context: Any context.  Takes and releases the xa_lock while
1019  * disabling softirqs.
1020  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1021  */
1022 static inline __must_check
1023 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1024 {
1025         return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1026 }
1027 
1028 /**
1029  * xa_reserve_irq() - Reserve this index in the XArray.
1030  * @xa: XArray.
1031  * @index: Index into array.
1032  * @gfp: Memory allocation flags.
1033  *
1034  * An interrupt-disabling version of xa_reserve().
1035  *
1036  * Context: Process context.  Takes and releases the xa_lock while
1037  * disabling interrupts.
1038  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1039  */
1040 static inline __must_check
1041 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1042 {
1043         return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1044 }
1045 
1046 /**
1047  * xa_release() - Release a reserved entry.
1048  * @xa: XArray.
1049  * @index: Index of entry.
1050  *
1051  * After calling xa_reserve(), you can call this function to release the
1052  * reservation.  If the entry at @index has been stored to, this function
1053  * will do nothing.
1054  */
1055 static inline void xa_release(struct xarray *xa, unsigned long index)
1056 {
1057         xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1058 }
1059 
1060 /* Everything below here is the Advanced API.  Proceed with caution. */
1061 
1062 /*
1063  * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
1064  * the best chunk size requires some tradeoffs.  A power of two recommends
1065  * itself so that we can walk the tree based purely on shifts and masks.
1066  * Generally, the larger the better; as the number of slots per level of the
1067  * tree increases, the less tall the tree needs to be.  But that needs to be
1068  * balanced against the memory consumption of each node.  On a 64-bit system,
1069  * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
1070  * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1071  */
1072 #ifndef XA_CHUNK_SHIFT
1073 #define XA_CHUNK_SHIFT          (CONFIG_BASE_SMALL ? 4 : 6)
1074 #endif
1075 #define XA_CHUNK_SIZE           (1UL << XA_CHUNK_SHIFT)
1076 #define XA_CHUNK_MASK           (XA_CHUNK_SIZE - 1)
1077 #define XA_MAX_MARKS            3
1078 #define XA_MARK_LONGS           DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1079 
1080 /*
1081  * @count is the count of every non-NULL element in the ->slots array
1082  * whether that is a value entry, a retry entry, a user pointer,
1083  * a sibling entry or a pointer to the next level of the tree.
1084  * @nr_values is the count of every element in ->slots which is
1085  * either a value entry or a sibling of a value entry.
1086  */
1087 struct xa_node {
1088         unsigned char   shift;          /* Bits remaining in each slot */
1089         unsigned char   offset;         /* Slot offset in parent */
1090         unsigned char   count;          /* Total entry count */
1091         unsigned char   nr_values;      /* Value entry count */
1092         struct xa_node __rcu *parent;   /* NULL at top of tree */
1093         struct xarray   *array;         /* The array we belong to */
1094         union {
1095                 struct list_head private_list;  /* For tree user */
1096                 struct rcu_head rcu_head;       /* Used when freeing node */
1097         };
1098         void __rcu      *slots[XA_CHUNK_SIZE];
1099         union {
1100                 unsigned long   tags[XA_MAX_MARKS][XA_MARK_LONGS];
1101                 unsigned long   marks[XA_MAX_MARKS][XA_MARK_LONGS];
1102         };
1103 };
1104 
1105 void xa_dump(const struct xarray *);
1106 void xa_dump_node(const struct xa_node *);
1107 
1108 #ifdef XA_DEBUG
1109 #define XA_BUG_ON(xa, x) do {                                   \
1110                 if (x) {                                        \
1111                         xa_dump(xa);                            \
1112                         BUG();                                  \
1113                 }                                               \
1114         } while (0)
1115 #define XA_NODE_BUG_ON(node, x) do {                            \
1116                 if (x) {                                        \
1117                         if (node) xa_dump_node(node);           \
1118                         BUG();                                  \
1119                 }                                               \
1120         } while (0)
1121 #else
1122 #define XA_BUG_ON(xa, x)        do { } while (0)
1123 #define XA_NODE_BUG_ON(node, x) do { } while (0)
1124 #endif
1125 
1126 /* Private */
1127 static inline void *xa_head(const struct xarray *xa)
1128 {
1129         return rcu_dereference_check(xa->xa_head,
1130                                                 lockdep_is_held(&xa->xa_lock));
1131 }
1132 
1133 /* Private */
1134 static inline void *xa_head_locked(const struct xarray *xa)
1135 {
1136         return rcu_dereference_protected(xa->xa_head,
1137                                                 lockdep_is_held(&xa->xa_lock));
1138 }
1139 
1140 /* Private */
1141 static inline void *xa_entry(const struct xarray *xa,
1142                                 const struct xa_node *node, unsigned int offset)
1143 {
1144         XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1145         return rcu_dereference_check(node->slots[offset],
1146                                                 lockdep_is_held(&xa->xa_lock));
1147 }
1148 
1149 /* Private */
1150 static inline void *xa_entry_locked(const struct xarray *xa,
1151                                 const struct xa_node *node, unsigned int offset)
1152 {
1153         XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1154         return rcu_dereference_protected(node->slots[offset],
1155                                                 lockdep_is_held(&xa->xa_lock));
1156 }
1157 
1158 /* Private */
1159 static inline struct xa_node *xa_parent(const struct xarray *xa,
1160                                         const struct xa_node *node)
1161 {
1162         return rcu_dereference_check(node->parent,
1163                                                 lockdep_is_held(&xa->xa_lock));
1164 }
1165 
1166 /* Private */
1167 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1168                                         const struct xa_node *node)
1169 {
1170         return rcu_dereference_protected(node->parent,
1171                                                 lockdep_is_held(&xa->xa_lock));
1172 }
1173 
1174 /* Private */
1175 static inline void *xa_mk_node(const struct xa_node *node)
1176 {
1177         return (void *)((unsigned long)node | 2);
1178 }
1179 
1180 /* Private */
1181 static inline struct xa_node *xa_to_node(const void *entry)
1182 {
1183         return (struct xa_node *)((unsigned long)entry - 2);
1184 }
1185 
1186 /* Private */
1187 static inline bool xa_is_node(const void *entry)
1188 {
1189         return xa_is_internal(entry) && (unsigned long)entry > 4096;
1190 }
1191 
1192 /* Private */
1193 static inline void *xa_mk_sibling(unsigned int offset)
1194 {
1195         return xa_mk_internal(offset);
1196 }
1197 
1198 /* Private */
1199 static inline unsigned long xa_to_sibling(const void *entry)
1200 {
1201         return xa_to_internal(entry);
1202 }
1203 
1204 /**
1205  * xa_is_sibling() - Is the entry a sibling entry?
1206  * @entry: Entry retrieved from the XArray
1207  *
1208  * Return: %true if the entry is a sibling entry.
1209  */
1210 static inline bool xa_is_sibling(const void *entry)
1211 {
1212         return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1213                 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1214 }
1215 
1216 #define XA_RETRY_ENTRY          xa_mk_internal(256)
1217 
1218 /**
1219  * xa_is_retry() - Is the entry a retry entry?
1220  * @entry: Entry retrieved from the XArray
1221  *
1222  * Return: %true if the entry is a retry entry.
1223  */
1224 static inline bool xa_is_retry(const void *entry)
1225 {
1226         return unlikely(entry == XA_RETRY_ENTRY);
1227 }
1228 
1229 /**
1230  * xa_is_advanced() - Is the entry only permitted for the advanced API?
1231  * @entry: Entry to be stored in the XArray.
1232  *
1233  * Return: %true if the entry cannot be stored by the normal API.
1234  */
1235 static inline bool xa_is_advanced(const void *entry)
1236 {
1237         return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1238 }
1239 
1240 /**
1241  * typedef xa_update_node_t - A callback function from the XArray.
1242  * @node: The node which is being processed
1243  *
1244  * This function is called every time the XArray updates the count of
1245  * present and value entries in a node.  It allows advanced users to
1246  * maintain the private_list in the node.
1247  *
1248  * Context: The xa_lock is held and interrupts may be disabled.
1249  *          Implementations should not drop the xa_lock, nor re-enable
1250  *          interrupts.
1251  */
1252 typedef void (*xa_update_node_t)(struct xa_node *node);
1253 
1254 /*
1255  * The xa_state is opaque to its users.  It contains various different pieces
1256  * of state involved in the current operation on the XArray.  It should be
1257  * declared on the stack and passed between the various internal routines.
1258  * The various elements in it should not be accessed directly, but only
1259  * through the provided accessor functions.  The below documentation is for
1260  * the benefit of those working on the code, not for users of the XArray.
1261  *
1262  * @xa_node usually points to the xa_node containing the slot we're operating
1263  * on (and @xa_offset is the offset in the slots array).  If there is a
1264  * single entry in the array at index 0, there are no allocated xa_nodes to
1265  * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1266  * the value %XAS_RESTART if the xa_state is not walked to the correct
1267  * position in the tree of nodes for this operation.  If an error occurs
1268  * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1269  * end of the allocated nodes, it is set to %XAS_BOUNDS.
1270  */
1271 struct xa_state {
1272         struct xarray *xa;
1273         unsigned long xa_index;
1274         unsigned char xa_shift;
1275         unsigned char xa_sibs;
1276         unsigned char xa_offset;
1277         unsigned char xa_pad;           /* Helps gcc generate better code */
1278         struct xa_node *xa_node;
1279         struct xa_node *xa_alloc;
1280         xa_update_node_t xa_update;
1281 };
1282 
1283 /*
1284  * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1285  * drop the lock to fix it, and once we've done so the xa_state is invalid.
1286  */
1287 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1288 #define XAS_BOUNDS      ((struct xa_node *)1UL)
1289 #define XAS_RESTART     ((struct xa_node *)3UL)
1290 
1291 #define __XA_STATE(array, index, shift, sibs)  {        \
1292         .xa = array,                                    \
1293         .xa_index = index,                              \
1294         .xa_shift = shift,                              \
1295         .xa_sibs = sibs,                                \
1296         .xa_offset = 0,                                 \
1297         .xa_pad = 0,                                    \
1298         .xa_node = XAS_RESTART,                         \
1299         .xa_alloc = NULL,                               \
1300         .xa_update = NULL                               \
1301 }
1302 
1303 /**
1304  * XA_STATE() - Declare an XArray operation state.
1305  * @name: Name of this operation state (usually xas).
1306  * @array: Array to operate on.
1307  * @index: Initial index of interest.
1308  *
1309  * Declare and initialise an xa_state on the stack.
1310  */
1311 #define XA_STATE(name, array, index)                            \
1312         struct xa_state name = __XA_STATE(array, index, 0, 0)
1313 
1314 /**
1315  * XA_STATE_ORDER() - Declare an XArray operation state.
1316  * @name: Name of this operation state (usually xas).
1317  * @array: Array to operate on.
1318  * @index: Initial index of interest.
1319  * @order: Order of entry.
1320  *
1321  * Declare and initialise an xa_state on the stack.  This variant of
1322  * XA_STATE() allows you to specify the 'order' of the element you
1323  * want to operate on.`
1324  */
1325 #define XA_STATE_ORDER(name, array, index, order)               \
1326         struct xa_state name = __XA_STATE(array,                \
1327                         (index >> order) << order,              \
1328                         order - (order % XA_CHUNK_SHIFT),       \
1329                         (1U << (order % XA_CHUNK_SHIFT)) - 1)
1330 
1331 #define xas_marked(xas, mark)   xa_marked((xas)->xa, (mark))
1332 #define xas_trylock(xas)        xa_trylock((xas)->xa)
1333 #define xas_lock(xas)           xa_lock((xas)->xa)
1334 #define xas_unlock(xas)         xa_unlock((xas)->xa)
1335 #define xas_lock_bh(xas)        xa_lock_bh((xas)->xa)
1336 #define xas_unlock_bh(xas)      xa_unlock_bh((xas)->xa)
1337 #define xas_lock_irq(xas)       xa_lock_irq((xas)->xa)
1338 #define xas_unlock_irq(xas)     xa_unlock_irq((xas)->xa)
1339 #define xas_lock_irqsave(xas, flags) \
1340                                 xa_lock_irqsave((xas)->xa, flags)
1341 #define xas_unlock_irqrestore(xas, flags) \
1342                                 xa_unlock_irqrestore((xas)->xa, flags)
1343 
1344 /**
1345  * xas_error() - Return an errno stored in the xa_state.
1346  * @xas: XArray operation state.
1347  *
1348  * Return: 0 if no error has been noted.  A negative errno if one has.
1349  */
1350 static inline int xas_error(const struct xa_state *xas)
1351 {
1352         return xa_err(xas->xa_node);
1353 }
1354 
1355 /**
1356  * xas_set_err() - Note an error in the xa_state.
1357  * @xas: XArray operation state.
1358  * @err: Negative error number.
1359  *
1360  * Only call this function with a negative @err; zero or positive errors
1361  * will probably not behave the way you think they should.  If you want
1362  * to clear the error from an xa_state, use xas_reset().
1363  */
1364 static inline void xas_set_err(struct xa_state *xas, long err)
1365 {
1366         xas->xa_node = XA_ERROR(err);
1367 }
1368 
1369 /**
1370  * xas_invalid() - Is the xas in a retry or error state?
1371  * @xas: XArray operation state.
1372  *
1373  * Return: %true if the xas cannot be used for operations.
1374  */
1375 static inline bool xas_invalid(const struct xa_state *xas)
1376 {
1377         return (unsigned long)xas->xa_node & 3;
1378 }
1379 
1380 /**
1381  * xas_valid() - Is the xas a valid cursor into the array?
1382  * @xas: XArray operation state.
1383  *
1384  * Return: %true if the xas can be used for operations.
1385  */
1386 static inline bool xas_valid(const struct xa_state *xas)
1387 {
1388         return !xas_invalid(xas);
1389 }
1390 
1391 /**
1392  * xas_is_node() - Does the xas point to a node?
1393  * @xas: XArray operation state.
1394  *
1395  * Return: %true if the xas currently references a node.
1396  */
1397 static inline bool xas_is_node(const struct xa_state *xas)
1398 {
1399         return xas_valid(xas) && xas->xa_node;
1400 }
1401 
1402 /* True if the pointer is something other than a node */
1403 static inline bool xas_not_node(struct xa_node *node)
1404 {
1405         return ((unsigned long)node & 3) || !node;
1406 }
1407 
1408 /* True if the node represents RESTART or an error */
1409 static inline bool xas_frozen(struct xa_node *node)
1410 {
1411         return (unsigned long)node & 2;
1412 }
1413 
1414 /* True if the node represents head-of-tree, RESTART or BOUNDS */
1415 static inline bool xas_top(struct xa_node *node)
1416 {
1417         return node <= XAS_RESTART;
1418 }
1419 
1420 /**
1421  * xas_reset() - Reset an XArray operation state.
1422  * @xas: XArray operation state.
1423  *
1424  * Resets the error or walk state of the @xas so future walks of the
1425  * array will start from the root.  Use this if you have dropped the
1426  * xarray lock and want to reuse the xa_state.
1427  *
1428  * Context: Any context.
1429  */
1430 static inline void xas_reset(struct xa_state *xas)
1431 {
1432         xas->xa_node = XAS_RESTART;
1433 }
1434 
1435 /**
1436  * xas_retry() - Retry the operation if appropriate.
1437  * @xas: XArray operation state.
1438  * @entry: Entry from xarray.
1439  *
1440  * The advanced functions may sometimes return an internal entry, such as
1441  * a retry entry or a zero entry.  This function sets up the @xas to restart
1442  * the walk from the head of the array if needed.
1443  *
1444  * Context: Any context.
1445  * Return: true if the operation needs to be retried.
1446  */
1447 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1448 {
1449         if (xa_is_zero(entry))
1450                 return true;
1451         if (!xa_is_retry(entry))
1452                 return false;
1453         xas_reset(xas);
1454         return true;
1455 }
1456 
1457 void *xas_load(struct xa_state *);
1458 void *xas_store(struct xa_state *, void *entry);
1459 void *xas_find(struct xa_state *, unsigned long max);
1460 void *xas_find_conflict(struct xa_state *);
1461 
1462 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1463 void xas_set_mark(const struct xa_state *, xa_mark_t);
1464 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1465 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1466 void xas_init_marks(const struct xa_state *);
1467 
1468 bool xas_nomem(struct xa_state *, gfp_t);
1469 void xas_pause(struct xa_state *);
1470 
1471 void xas_create_range(struct xa_state *);
1472 
1473 /**
1474  * xas_reload() - Refetch an entry from the xarray.
1475  * @xas: XArray operation state.
1476  *
1477  * Use this function to check that a previously loaded entry still has
1478  * the same value.  This is useful for the lockless pagecache lookup where
1479  * we walk the array with only the RCU lock to protect us, lock the page,
1480  * then check that the page hasn't moved since we looked it up.
1481  *
1482  * The caller guarantees that @xas is still valid.  If it may be in an
1483  * error or restart state, call xas_load() instead.
1484  *
1485  * Return: The entry at this location in the xarray.
1486  */
1487 static inline void *xas_reload(struct xa_state *xas)
1488 {
1489         struct xa_node *node = xas->xa_node;
1490 
1491         if (node)
1492                 return xa_entry(xas->xa, node, xas->xa_offset);
1493         return xa_head(xas->xa);
1494 }
1495 
1496 /**
1497  * xas_set() - Set up XArray operation state for a different index.
1498  * @xas: XArray operation state.
1499  * @index: New index into the XArray.
1500  *
1501  * Move the operation state to refer to a different index.  This will
1502  * have the effect of starting a walk from the top; see xas_next()
1503  * to move to an adjacent index.
1504  */
1505 static inline void xas_set(struct xa_state *xas, unsigned long index)
1506 {
1507         xas->xa_index = index;
1508         xas->xa_node = XAS_RESTART;
1509 }
1510 
1511 /**
1512  * xas_set_order() - Set up XArray operation state for a multislot entry.
1513  * @xas: XArray operation state.
1514  * @index: Target of the operation.
1515  * @order: Entry occupies 2^@order indices.
1516  */
1517 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1518                                         unsigned int order)
1519 {
1520 #ifdef CONFIG_XARRAY_MULTI
1521         xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1522         xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1523         xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1524         xas->xa_node = XAS_RESTART;
1525 #else
1526         BUG_ON(order > 0);
1527         xas_set(xas, index);
1528 #endif
1529 }
1530 
1531 /**
1532  * xas_set_update() - Set up XArray operation state for a callback.
1533  * @xas: XArray operation state.
1534  * @update: Function to call when updating a node.
1535  *
1536  * The XArray can notify a caller after it has updated an xa_node.
1537  * This is advanced functionality and is only needed by the page cache.
1538  */
1539 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1540 {
1541         xas->xa_update = update;
1542 }
1543 
1544 /**
1545  * xas_next_entry() - Advance iterator to next present entry.
1546  * @xas: XArray operation state.
1547  * @max: Highest index to return.
1548  *
1549  * xas_next_entry() is an inline function to optimise xarray traversal for
1550  * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1551  * for all the hard cases.
1552  *
1553  * Return: The next present entry after the one currently referred to by @xas.
1554  */
1555 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1556 {
1557         struct xa_node *node = xas->xa_node;
1558         void *entry;
1559 
1560         if (unlikely(xas_not_node(node) || node->shift ||
1561                         xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1562                 return xas_find(xas, max);
1563 
1564         do {
1565                 if (unlikely(xas->xa_index >= max))
1566                         return xas_find(xas, max);
1567                 if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1568                         return xas_find(xas, max);
1569                 entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1570                 if (unlikely(xa_is_internal(entry)))
1571                         return xas_find(xas, max);
1572                 xas->xa_offset++;
1573                 xas->xa_index++;
1574         } while (!entry);
1575 
1576         return entry;
1577 }
1578 
1579 /* Private */
1580 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1581                 xa_mark_t mark)
1582 {
1583         unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1584         unsigned int offset = xas->xa_offset;
1585 
1586         if (advance)
1587                 offset++;
1588         if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1589                 if (offset < XA_CHUNK_SIZE) {
1590                         unsigned long data = *addr & (~0UL << offset);
1591                         if (data)
1592                                 return __ffs(data);
1593                 }
1594                 return XA_CHUNK_SIZE;
1595         }
1596 
1597         return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1598 }
1599 
1600 /**
1601  * xas_next_marked() - Advance iterator to next marked entry.
1602  * @xas: XArray operation state.
1603  * @max: Highest index to return.
1604  * @mark: Mark to search for.
1605  *
1606  * xas_next_marked() is an inline function to optimise xarray traversal for
1607  * speed.  It is equivalent to calling xas_find_marked(), and will call
1608  * xas_find_marked() for all the hard cases.
1609  *
1610  * Return: The next marked entry after the one currently referred to by @xas.
1611  */
1612 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1613                                                                 xa_mark_t mark)
1614 {
1615         struct xa_node *node = xas->xa_node;
1616         void *entry;
1617         unsigned int offset;
1618 
1619         if (unlikely(xas_not_node(node) || node->shift))
1620                 return xas_find_marked(xas, max, mark);
1621         offset = xas_find_chunk(xas, true, mark);
1622         xas->xa_offset = offset;
1623         xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1624         if (xas->xa_index > max)
1625                 return NULL;
1626         if (offset == XA_CHUNK_SIZE)
1627                 return xas_find_marked(xas, max, mark);
1628         entry = xa_entry(xas->xa, node, offset);
1629         if (!entry)
1630                 return xas_find_marked(xas, max, mark);
1631         return entry;
1632 }
1633 
1634 /*
1635  * If iterating while holding a lock, drop the lock and reschedule
1636  * every %XA_CHECK_SCHED loops.
1637  */
1638 enum {
1639         XA_CHECK_SCHED = 4096,
1640 };
1641 
1642 /**
1643  * xas_for_each() - Iterate over a range of an XArray.
1644  * @xas: XArray operation state.
1645  * @entry: Entry retrieved from the array.
1646  * @max: Maximum index to retrieve from array.
1647  *
1648  * The loop body will be executed for each entry present in the xarray
1649  * between the current xas position and @max.  @entry will be set to
1650  * the entry retrieved from the xarray.  It is safe to delete entries
1651  * from the array in the loop body.  You should hold either the RCU lock
1652  * or the xa_lock while iterating.  If you need to drop the lock, call
1653  * xas_pause() first.
1654  */
1655 #define xas_for_each(xas, entry, max) \
1656         for (entry = xas_find(xas, max); entry; \
1657              entry = xas_next_entry(xas, max))
1658 
1659 /**
1660  * xas_for_each_marked() - Iterate over a range of an XArray.
1661  * @xas: XArray operation state.
1662  * @entry: Entry retrieved from the array.
1663  * @max: Maximum index to retrieve from array.
1664  * @mark: Mark to search for.
1665  *
1666  * The loop body will be executed for each marked entry in the xarray
1667  * between the current xas position and @max.  @entry will be set to
1668  * the entry retrieved from the xarray.  It is safe to delete entries
1669  * from the array in the loop body.  You should hold either the RCU lock
1670  * or the xa_lock while iterating.  If you need to drop the lock, call
1671  * xas_pause() first.
1672  */
1673 #define xas_for_each_marked(xas, entry, max, mark) \
1674         for (entry = xas_find_marked(xas, max, mark); entry; \
1675              entry = xas_next_marked(xas, max, mark))
1676 
1677 /**
1678  * xas_for_each_conflict() - Iterate over a range of an XArray.
1679  * @xas: XArray operation state.
1680  * @entry: Entry retrieved from the array.
1681  *
1682  * The loop body will be executed for each entry in the XArray that lies
1683  * within the range specified by @xas.  If the loop completes successfully,
1684  * any entries that lie in this range will be replaced by @entry.  The caller
1685  * may break out of the loop; if they do so, the contents of the XArray will
1686  * be unchanged.  The operation may fail due to an out of memory condition.
1687  * The caller may also call xa_set_err() to exit the loop while setting an
1688  * error to record the reason.
1689  */
1690 #define xas_for_each_conflict(xas, entry) \
1691         while ((entry = xas_find_conflict(xas)))
1692 
1693 void *__xas_next(struct xa_state *);
1694 void *__xas_prev(struct xa_state *);
1695 
1696 /**
1697  * xas_prev() - Move iterator to previous index.
1698  * @xas: XArray operation state.
1699  *
1700  * If the @xas was in an error state, it will remain in an error state
1701  * and this function will return %NULL.  If the @xas has never been walked,
1702  * it will have the effect of calling xas_load().  Otherwise one will be
1703  * subtracted from the index and the state will be walked to the correct
1704  * location in the array for the next operation.
1705  *
1706  * If the iterator was referencing index 0, this function wraps
1707  * around to %ULONG_MAX.
1708  *
1709  * Return: The entry at the new index.  This may be %NULL or an internal
1710  * entry.
1711  */
1712 static inline void *xas_prev(struct xa_state *xas)
1713 {
1714         struct xa_node *node = xas->xa_node;
1715 
1716         if (unlikely(xas_not_node(node) || node->shift ||
1717                                 xas->xa_offset == 0))
1718                 return __xas_prev(xas);
1719 
1720         xas->xa_index--;
1721         xas->xa_offset--;
1722         return xa_entry(xas->xa, node, xas->xa_offset);
1723 }
1724 
1725 /**
1726  * xas_next() - Move state to next index.
1727  * @xas: XArray operation state.
1728  *
1729  * If the @xas was in an error state, it will remain in an error state
1730  * and this function will return %NULL.  If the @xas has never been walked,
1731  * it will have the effect of calling xas_load().  Otherwise one will be
1732  * added to the index and the state will be walked to the correct
1733  * location in the array for the next operation.
1734  *
1735  * If the iterator was referencing index %ULONG_MAX, this function wraps
1736  * around to 0.
1737  *
1738  * Return: The entry at the new index.  This may be %NULL or an internal
1739  * entry.
1740  */
1741 static inline void *xas_next(struct xa_state *xas)
1742 {
1743         struct xa_node *node = xas->xa_node;
1744 
1745         if (unlikely(xas_not_node(node) || node->shift ||
1746                                 xas->xa_offset == XA_CHUNK_MASK))
1747                 return __xas_next(xas);
1748 
1749         xas->xa_index++;
1750         xas->xa_offset++;
1751         return xa_entry(xas->xa, node, xas->xa_offset);
1752 }
1753 
1754 #endif /* _LINUX_XARRAY_H */

/* [<][>][^][v][top][bottom][index][help] */