1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bug.h> 13 #include <linux/compiler.h> 14 #include <linux/gfp.h> 15 #include <linux/kconfig.h> 16 #include <linux/kernel.h> 17 #include <linux/rcupdate.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 21 /* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Zero entry 36 * 257: Retry entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45 /** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52 static inline void *xa_mk_value(unsigned long v) 53 { 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56 } 57 58 /** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65 static inline unsigned long xa_to_value(const void *entry) 66 { 67 return (unsigned long)entry >> 1; 68 } 69 70 /** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77 static inline bool xa_is_value(const void *entry) 78 { 79 return (unsigned long)entry & 1; 80 } 81 82 /** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95 static inline void *xa_tag_pointer(void *p, unsigned long tag) 96 { 97 return (void *)((unsigned long)p | tag); 98 } 99 100 /** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110 static inline void *xa_untag_pointer(void *entry) 111 { 112 return (void *)((unsigned long)entry & ~3UL); 113 } 114 115 /** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125 static inline unsigned int xa_pointer_tag(void *entry) 126 { 127 return (unsigned long)entry & 3UL; 128 } 129 130 /* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Internal entries are used for a number of purposes. Entries 0-255 are 135 * used for sibling entries (only 0-62 are used by the current code). 256 136 * is used for the retry entry. 257 is used for the reserved / zero entry. 137 * Negative internal entries are used to represent errnos. Node pointers 138 * are also tagged as internal entries in some situations. 139 * 140 * Context: Any context. 141 * Return: An XArray internal entry corresponding to this value. 142 */ 143 static inline void *xa_mk_internal(unsigned long v) 144 { 145 return (void *)((v << 2) | 2); 146 } 147 148 /* 149 * xa_to_internal() - Extract the value from an internal entry. 150 * @entry: XArray entry. 151 * 152 * Context: Any context. 153 * Return: The value which was stored in the internal entry. 154 */ 155 static inline unsigned long xa_to_internal(const void *entry) 156 { 157 return (unsigned long)entry >> 2; 158 } 159 160 /* 161 * xa_is_internal() - Is the entry an internal entry? 162 * @entry: XArray entry. 163 * 164 * Context: Any context. 165 * Return: %true if the entry is an internal entry. 166 */ 167 static inline bool xa_is_internal(const void *entry) 168 { 169 return ((unsigned long)entry & 3) == 2; 170 } 171 172 #define XA_ZERO_ENTRY xa_mk_internal(257) 173 174 /** 175 * xa_is_zero() - Is the entry a zero entry? 176 * @entry: Entry retrieved from the XArray 177 * 178 * The normal API will return NULL as the contents of a slot containing 179 * a zero entry. You can only see zero entries by using the advanced API. 180 * 181 * Return: %true if the entry is a zero entry. 182 */ 183 static inline bool xa_is_zero(const void *entry) 184 { 185 return unlikely(entry == XA_ZERO_ENTRY); 186 } 187 188 /** 189 * xa_is_err() - Report whether an XArray operation returned an error 190 * @entry: Result from calling an XArray function 191 * 192 * If an XArray operation cannot complete an operation, it will return 193 * a special value indicating an error. This function tells you 194 * whether an error occurred; xa_err() tells you which error occurred. 195 * 196 * Context: Any context. 197 * Return: %true if the entry indicates an error. 198 */ 199 static inline bool xa_is_err(const void *entry) 200 { 201 return unlikely(xa_is_internal(entry) && 202 entry >= xa_mk_internal(-MAX_ERRNO)); 203 } 204 205 /** 206 * xa_err() - Turn an XArray result into an errno. 207 * @entry: Result from calling an XArray function. 208 * 209 * If an XArray operation cannot complete an operation, it will return 210 * a special pointer value which encodes an errno. This function extracts 211 * the errno from the pointer value, or returns 0 if the pointer does not 212 * represent an errno. 213 * 214 * Context: Any context. 215 * Return: A negative errno or 0. 216 */ 217 static inline int xa_err(void *entry) 218 { 219 /* xa_to_internal() would not do sign extension. */ 220 if (xa_is_err(entry)) 221 return (long)entry >> 2; 222 return 0; 223 } 224 225 /** 226 * struct xa_limit - Represents a range of IDs. 227 * @min: The lowest ID to allocate (inclusive). 228 * @max: The maximum ID to allocate (inclusive). 229 * 230 * This structure is used either directly or via the XA_LIMIT() macro 231 * to communicate the range of IDs that are valid for allocation. 232 * Two common ranges are predefined for you: 233 * * xa_limit_32b - [0 - UINT_MAX] 234 * * xa_limit_31b - [0 - INT_MAX] 235 */ 236 struct xa_limit { 237 u32 max; 238 u32 min; 239 }; 240 241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } 242 243 #define xa_limit_32b XA_LIMIT(0, UINT_MAX) 244 #define xa_limit_31b XA_LIMIT(0, INT_MAX) 245 246 typedef unsigned __bitwise xa_mark_t; 247 #define XA_MARK_0 ((__force xa_mark_t)0U) 248 #define XA_MARK_1 ((__force xa_mark_t)1U) 249 #define XA_MARK_2 ((__force xa_mark_t)2U) 250 #define XA_PRESENT ((__force xa_mark_t)8U) 251 #define XA_MARK_MAX XA_MARK_2 252 #define XA_FREE_MARK XA_MARK_0 253 254 enum xa_lock_type { 255 XA_LOCK_IRQ = 1, 256 XA_LOCK_BH = 2, 257 }; 258 259 /* 260 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 261 * and we remain compatible with that. 262 */ 263 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 264 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 265 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 266 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) 267 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) 268 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) 269 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 270 (__force unsigned)(mark))) 271 272 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ 273 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 274 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) 275 276 /** 277 * struct xarray - The anchor of the XArray. 278 * @xa_lock: Lock that protects the contents of the XArray. 279 * 280 * To use the xarray, define it statically or embed it in your data structure. 281 * It is a very small data structure, so it does not usually make sense to 282 * allocate it separately and keep a pointer to it in your data structure. 283 * 284 * You may use the xa_lock to protect your own data structures as well. 285 */ 286 /* 287 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 288 * If the only non-NULL entry in the array is at index 0, @xa_head is that 289 * entry. If any other entry in the array is non-NULL, @xa_head points 290 * to an @xa_node. 291 */ 292 struct xarray { 293 spinlock_t xa_lock; 294 /* private: The rest of the data structure is not to be used directly. */ 295 gfp_t xa_flags; 296 void __rcu * xa_head; 297 }; 298 299 #define XARRAY_INIT(name, flags) { \ 300 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 301 .xa_flags = flags, \ 302 .xa_head = NULL, \ 303 } 304 305 /** 306 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 307 * @name: A string that names your XArray. 308 * @flags: XA_FLAG values. 309 * 310 * This is intended for file scope definitions of XArrays. It declares 311 * and initialises an empty XArray with the chosen name and flags. It is 312 * equivalent to calling xa_init_flags() on the array, but it does the 313 * initialisation at compiletime instead of runtime. 314 */ 315 #define DEFINE_XARRAY_FLAGS(name, flags) \ 316 struct xarray name = XARRAY_INIT(name, flags) 317 318 /** 319 * DEFINE_XARRAY() - Define an XArray. 320 * @name: A string that names your XArray. 321 * 322 * This is intended for file scope definitions of XArrays. It declares 323 * and initialises an empty XArray with the chosen name. It is equivalent 324 * to calling xa_init() on the array, but it does the initialisation at 325 * compiletime instead of runtime. 326 */ 327 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 328 329 /** 330 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. 331 * @name: A string that names your XArray. 332 * 333 * This is intended for file scope definitions of allocating XArrays. 334 * See also DEFINE_XARRAY(). 335 */ 336 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 337 338 /** 339 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. 340 * @name: A string that names your XArray. 341 * 342 * This is intended for file scope definitions of allocating XArrays. 343 * See also DEFINE_XARRAY(). 344 */ 345 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) 346 347 void *xa_load(struct xarray *, unsigned long index); 348 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 349 void *xa_erase(struct xarray *, unsigned long index); 350 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 351 void *entry, gfp_t); 352 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 353 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 354 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 355 void *xa_find(struct xarray *xa, unsigned long *index, 356 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 357 void *xa_find_after(struct xarray *xa, unsigned long *index, 358 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 359 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 360 unsigned long max, unsigned int n, xa_mark_t); 361 void xa_destroy(struct xarray *); 362 363 /** 364 * xa_init_flags() - Initialise an empty XArray with flags. 365 * @xa: XArray. 366 * @flags: XA_FLAG values. 367 * 368 * If you need to initialise an XArray with special flags (eg you need 369 * to take the lock from interrupt context), use this function instead 370 * of xa_init(). 371 * 372 * Context: Any context. 373 */ 374 static inline void xa_init_flags(struct xarray *xa, gfp_t flags) 375 { 376 spin_lock_init(&xa->xa_lock); 377 xa->xa_flags = flags; 378 xa->xa_head = NULL; 379 } 380 381 /** 382 * xa_init() - Initialise an empty XArray. 383 * @xa: XArray. 384 * 385 * An empty XArray is full of NULL entries. 386 * 387 * Context: Any context. 388 */ 389 static inline void xa_init(struct xarray *xa) 390 { 391 xa_init_flags(xa, 0); 392 } 393 394 /** 395 * xa_empty() - Determine if an array has any present entries. 396 * @xa: XArray. 397 * 398 * Context: Any context. 399 * Return: %true if the array contains only NULL pointers. 400 */ 401 static inline bool xa_empty(const struct xarray *xa) 402 { 403 return xa->xa_head == NULL; 404 } 405 406 /** 407 * xa_marked() - Inquire whether any entry in this array has a mark set 408 * @xa: Array 409 * @mark: Mark value 410 * 411 * Context: Any context. 412 * Return: %true if any entry has this mark set. 413 */ 414 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 415 { 416 return xa->xa_flags & XA_FLAGS_MARK(mark); 417 } 418 419 /** 420 * xa_for_each_start() - Iterate over a portion of an XArray. 421 * @xa: XArray. 422 * @index: Index of @entry. 423 * @entry: Entry retrieved from array. 424 * @start: First index to retrieve from array. 425 * 426 * During the iteration, @entry will have the value of the entry stored 427 * in @xa at @index. You may modify @index during the iteration if you 428 * want to skip or reprocess indices. It is safe to modify the array 429 * during the iteration. At the end of the iteration, @entry will be set 430 * to NULL and @index will have a value less than or equal to max. 431 * 432 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have 433 * to handle your own locking with xas_for_each(), and if you have to unlock 434 * after each iteration, it will also end up being O(n.log(n)). 435 * xa_for_each_start() will spin if it hits a retry entry; if you intend to 436 * see retry entries, you should use the xas_for_each() iterator instead. 437 * The xas_for_each() iterator will expand into more inline code than 438 * xa_for_each_start(). 439 * 440 * Context: Any context. Takes and releases the RCU lock. 441 */ 442 #define xa_for_each_start(xa, index, entry, start) \ 443 for (index = start, \ 444 entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT); \ 445 entry; \ 446 entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT)) 447 448 /** 449 * xa_for_each() - Iterate over present entries in an XArray. 450 * @xa: XArray. 451 * @index: Index of @entry. 452 * @entry: Entry retrieved from array. 453 * 454 * During the iteration, @entry will have the value of the entry stored 455 * in @xa at @index. You may modify @index during the iteration if you want 456 * to skip or reprocess indices. It is safe to modify the array during the 457 * iteration. At the end of the iteration, @entry will be set to NULL and 458 * @index will have a value less than or equal to max. 459 * 460 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 461 * to handle your own locking with xas_for_each(), and if you have to unlock 462 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 463 * will spin if it hits a retry entry; if you intend to see retry entries, 464 * you should use the xas_for_each() iterator instead. The xas_for_each() 465 * iterator will expand into more inline code than xa_for_each(). 466 * 467 * Context: Any context. Takes and releases the RCU lock. 468 */ 469 #define xa_for_each(xa, index, entry) \ 470 xa_for_each_start(xa, index, entry, 0) 471 472 /** 473 * xa_for_each_marked() - Iterate over marked entries in an XArray. 474 * @xa: XArray. 475 * @index: Index of @entry. 476 * @entry: Entry retrieved from array. 477 * @filter: Selection criterion. 478 * 479 * During the iteration, @entry will have the value of the entry stored 480 * in @xa at @index. The iteration will skip all entries in the array 481 * which do not match @filter. You may modify @index during the iteration 482 * if you want to skip or reprocess indices. It is safe to modify the array 483 * during the iteration. At the end of the iteration, @entry will be set to 484 * NULL and @index will have a value less than or equal to max. 485 * 486 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). 487 * You have to handle your own locking with xas_for_each(), and if you have 488 * to unlock after each iteration, it will also end up being O(n.log(n)). 489 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to 490 * see retry entries, you should use the xas_for_each_marked() iterator 491 * instead. The xas_for_each_marked() iterator will expand into more inline 492 * code than xa_for_each_marked(). 493 * 494 * Context: Any context. Takes and releases the RCU lock. 495 */ 496 #define xa_for_each_marked(xa, index, entry, filter) \ 497 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ 498 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) 499 500 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 501 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 502 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 503 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 504 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 505 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 506 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 507 #define xa_lock_irqsave(xa, flags) \ 508 spin_lock_irqsave(&(xa)->xa_lock, flags) 509 #define xa_unlock_irqrestore(xa, flags) \ 510 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 511 512 /* 513 * Versions of the normal API which require the caller to hold the 514 * xa_lock. If the GFP flags allow it, they will drop the lock to 515 * allocate memory, then reacquire it afterwards. These functions 516 * may also re-enable interrupts if the XArray flags indicate the 517 * locking should be interrupt safe. 518 */ 519 void *__xa_erase(struct xarray *, unsigned long index); 520 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 521 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 522 void *entry, gfp_t); 523 int __must_check __xa_insert(struct xarray *, unsigned long index, 524 void *entry, gfp_t); 525 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, 526 struct xa_limit, gfp_t); 527 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, 528 struct xa_limit, u32 *next, gfp_t); 529 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 530 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 531 532 /** 533 * xa_store_bh() - Store this entry in the XArray. 534 * @xa: XArray. 535 * @index: Index into array. 536 * @entry: New entry. 537 * @gfp: Memory allocation flags. 538 * 539 * This function is like calling xa_store() except it disables softirqs 540 * while holding the array lock. 541 * 542 * Context: Any context. Takes and releases the xa_lock while 543 * disabling softirqs. 544 * Return: The entry which used to be at this index. 545 */ 546 static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 547 void *entry, gfp_t gfp) 548 { 549 void *curr; 550 551 xa_lock_bh(xa); 552 curr = __xa_store(xa, index, entry, gfp); 553 xa_unlock_bh(xa); 554 555 return curr; 556 } 557 558 /** 559 * xa_store_irq() - Store this entry in the XArray. 560 * @xa: XArray. 561 * @index: Index into array. 562 * @entry: New entry. 563 * @gfp: Memory allocation flags. 564 * 565 * This function is like calling xa_store() except it disables interrupts 566 * while holding the array lock. 567 * 568 * Context: Process context. Takes and releases the xa_lock while 569 * disabling interrupts. 570 * Return: The entry which used to be at this index. 571 */ 572 static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 573 void *entry, gfp_t gfp) 574 { 575 void *curr; 576 577 xa_lock_irq(xa); 578 curr = __xa_store(xa, index, entry, gfp); 579 xa_unlock_irq(xa); 580 581 return curr; 582 } 583 584 /** 585 * xa_erase_bh() - Erase this entry from the XArray. 586 * @xa: XArray. 587 * @index: Index of entry. 588 * 589 * After this function returns, loading from @index will return %NULL. 590 * If the index is part of a multi-index entry, all indices will be erased 591 * and none of the entries will be part of a multi-index entry. 592 * 593 * Context: Any context. Takes and releases the xa_lock while 594 * disabling softirqs. 595 * Return: The entry which used to be at this index. 596 */ 597 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 598 { 599 void *entry; 600 601 xa_lock_bh(xa); 602 entry = __xa_erase(xa, index); 603 xa_unlock_bh(xa); 604 605 return entry; 606 } 607 608 /** 609 * xa_erase_irq() - Erase this entry from the XArray. 610 * @xa: XArray. 611 * @index: Index of entry. 612 * 613 * After this function returns, loading from @index will return %NULL. 614 * If the index is part of a multi-index entry, all indices will be erased 615 * and none of the entries will be part of a multi-index entry. 616 * 617 * Context: Process context. Takes and releases the xa_lock while 618 * disabling interrupts. 619 * Return: The entry which used to be at this index. 620 */ 621 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 622 { 623 void *entry; 624 625 xa_lock_irq(xa); 626 entry = __xa_erase(xa, index); 627 xa_unlock_irq(xa); 628 629 return entry; 630 } 631 632 /** 633 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 634 * @xa: XArray. 635 * @index: Index into array. 636 * @old: Old value to test against. 637 * @entry: New value to place in array. 638 * @gfp: Memory allocation flags. 639 * 640 * If the entry at @index is the same as @old, replace it with @entry. 641 * If the return value is equal to @old, then the exchange was successful. 642 * 643 * Context: Any context. Takes and releases the xa_lock. May sleep 644 * if the @gfp flags permit. 645 * Return: The old value at this index or xa_err() if an error happened. 646 */ 647 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 648 void *old, void *entry, gfp_t gfp) 649 { 650 void *curr; 651 652 xa_lock(xa); 653 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 654 xa_unlock(xa); 655 656 return curr; 657 } 658 659 /** 660 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. 661 * @xa: XArray. 662 * @index: Index into array. 663 * @old: Old value to test against. 664 * @entry: New value to place in array. 665 * @gfp: Memory allocation flags. 666 * 667 * This function is like calling xa_cmpxchg() except it disables softirqs 668 * while holding the array lock. 669 * 670 * Context: Any context. Takes and releases the xa_lock while 671 * disabling softirqs. May sleep if the @gfp flags permit. 672 * Return: The old value at this index or xa_err() if an error happened. 673 */ 674 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, 675 void *old, void *entry, gfp_t gfp) 676 { 677 void *curr; 678 679 xa_lock_bh(xa); 680 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 681 xa_unlock_bh(xa); 682 683 return curr; 684 } 685 686 /** 687 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. 688 * @xa: XArray. 689 * @index: Index into array. 690 * @old: Old value to test against. 691 * @entry: New value to place in array. 692 * @gfp: Memory allocation flags. 693 * 694 * This function is like calling xa_cmpxchg() except it disables interrupts 695 * while holding the array lock. 696 * 697 * Context: Process context. Takes and releases the xa_lock while 698 * disabling interrupts. May sleep if the @gfp flags permit. 699 * Return: The old value at this index or xa_err() if an error happened. 700 */ 701 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, 702 void *old, void *entry, gfp_t gfp) 703 { 704 void *curr; 705 706 xa_lock_irq(xa); 707 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 708 xa_unlock_irq(xa); 709 710 return curr; 711 } 712 713 /** 714 * xa_insert() - Store this entry in the XArray unless another entry is 715 * already present. 716 * @xa: XArray. 717 * @index: Index into array. 718 * @entry: New entry. 719 * @gfp: Memory allocation flags. 720 * 721 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 722 * if no entry is present. Inserting will fail if a reserved entry is 723 * present, even though loading from this index will return NULL. 724 * 725 * Context: Any context. Takes and releases the xa_lock. May sleep if 726 * the @gfp flags permit. 727 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 728 * -ENOMEM if memory could not be allocated. 729 */ 730 static inline int __must_check xa_insert(struct xarray *xa, 731 unsigned long index, void *entry, gfp_t gfp) 732 { 733 int err; 734 735 xa_lock(xa); 736 err = __xa_insert(xa, index, entry, gfp); 737 xa_unlock(xa); 738 739 return err; 740 } 741 742 /** 743 * xa_insert_bh() - Store this entry in the XArray unless another entry is 744 * already present. 745 * @xa: XArray. 746 * @index: Index into array. 747 * @entry: New entry. 748 * @gfp: Memory allocation flags. 749 * 750 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 751 * if no entry is present. Inserting will fail if a reserved entry is 752 * present, even though loading from this index will return NULL. 753 * 754 * Context: Any context. Takes and releases the xa_lock while 755 * disabling softirqs. May sleep if the @gfp flags permit. 756 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 757 * -ENOMEM if memory could not be allocated. 758 */ 759 static inline int __must_check xa_insert_bh(struct xarray *xa, 760 unsigned long index, void *entry, gfp_t gfp) 761 { 762 int err; 763 764 xa_lock_bh(xa); 765 err = __xa_insert(xa, index, entry, gfp); 766 xa_unlock_bh(xa); 767 768 return err; 769 } 770 771 /** 772 * xa_insert_irq() - Store this entry in the XArray unless another entry is 773 * already present. 774 * @xa: XArray. 775 * @index: Index into array. 776 * @entry: New entry. 777 * @gfp: Memory allocation flags. 778 * 779 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 780 * if no entry is present. Inserting will fail if a reserved entry is 781 * present, even though loading from this index will return NULL. 782 * 783 * Context: Process context. Takes and releases the xa_lock while 784 * disabling interrupts. May sleep if the @gfp flags permit. 785 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 786 * -ENOMEM if memory could not be allocated. 787 */ 788 static inline int __must_check xa_insert_irq(struct xarray *xa, 789 unsigned long index, void *entry, gfp_t gfp) 790 { 791 int err; 792 793 xa_lock_irq(xa); 794 err = __xa_insert(xa, index, entry, gfp); 795 xa_unlock_irq(xa); 796 797 return err; 798 } 799 800 /** 801 * xa_alloc() - Find somewhere to store this entry in the XArray. 802 * @xa: XArray. 803 * @id: Pointer to ID. 804 * @entry: New entry. 805 * @limit: Range of ID to allocate. 806 * @gfp: Memory allocation flags. 807 * 808 * Finds an empty entry in @xa between @limit.min and @limit.max, 809 * stores the index into the @id pointer, then stores the entry at 810 * that index. A concurrent lookup will not see an uninitialised @id. 811 * 812 * Context: Any context. Takes and releases the xa_lock. May sleep if 813 * the @gfp flags permit. 814 * Return: 0 on success, -ENOMEM if memory could not be allocated or 815 * -EBUSY if there are no free entries in @limit. 816 */ 817 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, 818 void *entry, struct xa_limit limit, gfp_t gfp) 819 { 820 int err; 821 822 xa_lock(xa); 823 err = __xa_alloc(xa, id, entry, limit, gfp); 824 xa_unlock(xa); 825 826 return err; 827 } 828 829 /** 830 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 831 * @xa: XArray. 832 * @id: Pointer to ID. 833 * @entry: New entry. 834 * @limit: Range of ID to allocate. 835 * @gfp: Memory allocation flags. 836 * 837 * Finds an empty entry in @xa between @limit.min and @limit.max, 838 * stores the index into the @id pointer, then stores the entry at 839 * that index. A concurrent lookup will not see an uninitialised @id. 840 * 841 * Context: Any context. Takes and releases the xa_lock while 842 * disabling softirqs. May sleep if the @gfp flags permit. 843 * Return: 0 on success, -ENOMEM if memory could not be allocated or 844 * -EBUSY if there are no free entries in @limit. 845 */ 846 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, 847 void *entry, struct xa_limit limit, gfp_t gfp) 848 { 849 int err; 850 851 xa_lock_bh(xa); 852 err = __xa_alloc(xa, id, entry, limit, gfp); 853 xa_unlock_bh(xa); 854 855 return err; 856 } 857 858 /** 859 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 860 * @xa: XArray. 861 * @id: Pointer to ID. 862 * @entry: New entry. 863 * @limit: Range of ID to allocate. 864 * @gfp: Memory allocation flags. 865 * 866 * Finds an empty entry in @xa between @limit.min and @limit.max, 867 * stores the index into the @id pointer, then stores the entry at 868 * that index. A concurrent lookup will not see an uninitialised @id. 869 * 870 * Context: Process context. Takes and releases the xa_lock while 871 * disabling interrupts. May sleep if the @gfp flags permit. 872 * Return: 0 on success, -ENOMEM if memory could not be allocated or 873 * -EBUSY if there are no free entries in @limit. 874 */ 875 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, 876 void *entry, struct xa_limit limit, gfp_t gfp) 877 { 878 int err; 879 880 xa_lock_irq(xa); 881 err = __xa_alloc(xa, id, entry, limit, gfp); 882 xa_unlock_irq(xa); 883 884 return err; 885 } 886 887 /** 888 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 889 * @xa: XArray. 890 * @id: Pointer to ID. 891 * @entry: New entry. 892 * @limit: Range of allocated ID. 893 * @next: Pointer to next ID to allocate. 894 * @gfp: Memory allocation flags. 895 * 896 * Finds an empty entry in @xa between @limit.min and @limit.max, 897 * stores the index into the @id pointer, then stores the entry at 898 * that index. A concurrent lookup will not see an uninitialised @id. 899 * The search for an empty entry will start at @next and will wrap 900 * around if necessary. 901 * 902 * Context: Any context. Takes and releases the xa_lock. May sleep if 903 * the @gfp flags permit. 904 * Return: 0 if the allocation succeeded without wrapping. 1 if the 905 * allocation succeeded after wrapping, -ENOMEM if memory could not be 906 * allocated or -EBUSY if there are no free entries in @limit. 907 */ 908 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 909 struct xa_limit limit, u32 *next, gfp_t gfp) 910 { 911 int err; 912 913 xa_lock(xa); 914 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 915 xa_unlock(xa); 916 917 return err; 918 } 919 920 /** 921 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. 922 * @xa: XArray. 923 * @id: Pointer to ID. 924 * @entry: New entry. 925 * @limit: Range of allocated ID. 926 * @next: Pointer to next ID to allocate. 927 * @gfp: Memory allocation flags. 928 * 929 * Finds an empty entry in @xa between @limit.min and @limit.max, 930 * stores the index into the @id pointer, then stores the entry at 931 * that index. A concurrent lookup will not see an uninitialised @id. 932 * The search for an empty entry will start at @next and will wrap 933 * around if necessary. 934 * 935 * Context: Any context. Takes and releases the xa_lock while 936 * disabling softirqs. May sleep if the @gfp flags permit. 937 * Return: 0 if the allocation succeeded without wrapping. 1 if the 938 * allocation succeeded after wrapping, -ENOMEM if memory could not be 939 * allocated or -EBUSY if there are no free entries in @limit. 940 */ 941 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, 942 struct xa_limit limit, u32 *next, gfp_t gfp) 943 { 944 int err; 945 946 xa_lock_bh(xa); 947 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 948 xa_unlock_bh(xa); 949 950 return err; 951 } 952 953 /** 954 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. 955 * @xa: XArray. 956 * @id: Pointer to ID. 957 * @entry: New entry. 958 * @limit: Range of allocated ID. 959 * @next: Pointer to next ID to allocate. 960 * @gfp: Memory allocation flags. 961 * 962 * Finds an empty entry in @xa between @limit.min and @limit.max, 963 * stores the index into the @id pointer, then stores the entry at 964 * that index. A concurrent lookup will not see an uninitialised @id. 965 * The search for an empty entry will start at @next and will wrap 966 * around if necessary. 967 * 968 * Context: Process context. Takes and releases the xa_lock while 969 * disabling interrupts. May sleep if the @gfp flags permit. 970 * Return: 0 if the allocation succeeded without wrapping. 1 if the 971 * allocation succeeded after wrapping, -ENOMEM if memory could not be 972 * allocated or -EBUSY if there are no free entries in @limit. 973 */ 974 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, 975 struct xa_limit limit, u32 *next, gfp_t gfp) 976 { 977 int err; 978 979 xa_lock_irq(xa); 980 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 981 xa_unlock_irq(xa); 982 983 return err; 984 } 985 986 /** 987 * xa_reserve() - Reserve this index in the XArray. 988 * @xa: XArray. 989 * @index: Index into array. 990 * @gfp: Memory allocation flags. 991 * 992 * Ensures there is somewhere to store an entry at @index in the array. 993 * If there is already something stored at @index, this function does 994 * nothing. If there was nothing there, the entry is marked as reserved. 995 * Loading from a reserved entry returns a %NULL pointer. 996 * 997 * If you do not use the entry that you have reserved, call xa_release() 998 * or xa_erase() to free any unnecessary memory. 999 * 1000 * Context: Any context. Takes and releases the xa_lock. 1001 * May sleep if the @gfp flags permit. 1002 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1003 */ 1004 static inline __must_check 1005 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1006 { 1007 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1008 } 1009 1010 /** 1011 * xa_reserve_bh() - Reserve this index in the XArray. 1012 * @xa: XArray. 1013 * @index: Index into array. 1014 * @gfp: Memory allocation flags. 1015 * 1016 * A softirq-disabling version of xa_reserve(). 1017 * 1018 * Context: Any context. Takes and releases the xa_lock while 1019 * disabling softirqs. 1020 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1021 */ 1022 static inline __must_check 1023 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 1024 { 1025 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1026 } 1027 1028 /** 1029 * xa_reserve_irq() - Reserve this index in the XArray. 1030 * @xa: XArray. 1031 * @index: Index into array. 1032 * @gfp: Memory allocation flags. 1033 * 1034 * An interrupt-disabling version of xa_reserve(). 1035 * 1036 * Context: Process context. Takes and releases the xa_lock while 1037 * disabling interrupts. 1038 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1039 */ 1040 static inline __must_check 1041 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 1042 { 1043 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1044 } 1045 1046 /** 1047 * xa_release() - Release a reserved entry. 1048 * @xa: XArray. 1049 * @index: Index of entry. 1050 * 1051 * After calling xa_reserve(), you can call this function to release the 1052 * reservation. If the entry at @index has been stored to, this function 1053 * will do nothing. 1054 */ 1055 static inline void xa_release(struct xarray *xa, unsigned long index) 1056 { 1057 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); 1058 } 1059 1060 /* Everything below here is the Advanced API. Proceed with caution. */ 1061 1062 /* 1063 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 1064 * the best chunk size requires some tradeoffs. A power of two recommends 1065 * itself so that we can walk the tree based purely on shifts and masks. 1066 * Generally, the larger the better; as the number of slots per level of the 1067 * tree increases, the less tall the tree needs to be. But that needs to be 1068 * balanced against the memory consumption of each node. On a 64-bit system, 1069 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 1070 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 1071 */ 1072 #ifndef XA_CHUNK_SHIFT 1073 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 1074 #endif 1075 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 1076 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 1077 #define XA_MAX_MARKS 3 1078 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 1079 1080 /* 1081 * @count is the count of every non-NULL element in the ->slots array 1082 * whether that is a value entry, a retry entry, a user pointer, 1083 * a sibling entry or a pointer to the next level of the tree. 1084 * @nr_values is the count of every element in ->slots which is 1085 * either a value entry or a sibling of a value entry. 1086 */ 1087 struct xa_node { 1088 unsigned char shift; /* Bits remaining in each slot */ 1089 unsigned char offset; /* Slot offset in parent */ 1090 unsigned char count; /* Total entry count */ 1091 unsigned char nr_values; /* Value entry count */ 1092 struct xa_node __rcu *parent; /* NULL at top of tree */ 1093 struct xarray *array; /* The array we belong to */ 1094 union { 1095 struct list_head private_list; /* For tree user */ 1096 struct rcu_head rcu_head; /* Used when freeing node */ 1097 }; 1098 void __rcu *slots[XA_CHUNK_SIZE]; 1099 union { 1100 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 1101 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 1102 }; 1103 }; 1104 1105 void xa_dump(const struct xarray *); 1106 void xa_dump_node(const struct xa_node *); 1107 1108 #ifdef XA_DEBUG 1109 #define XA_BUG_ON(xa, x) do { \ 1110 if (x) { \ 1111 xa_dump(xa); \ 1112 BUG(); \ 1113 } \ 1114 } while (0) 1115 #define XA_NODE_BUG_ON(node, x) do { \ 1116 if (x) { \ 1117 if (node) xa_dump_node(node); \ 1118 BUG(); \ 1119 } \ 1120 } while (0) 1121 #else 1122 #define XA_BUG_ON(xa, x) do { } while (0) 1123 #define XA_NODE_BUG_ON(node, x) do { } while (0) 1124 #endif 1125 1126 /* Private */ 1127 static inline void *xa_head(const struct xarray *xa) 1128 { 1129 return rcu_dereference_check(xa->xa_head, 1130 lockdep_is_held(&xa->xa_lock)); 1131 } 1132 1133 /* Private */ 1134 static inline void *xa_head_locked(const struct xarray *xa) 1135 { 1136 return rcu_dereference_protected(xa->xa_head, 1137 lockdep_is_held(&xa->xa_lock)); 1138 } 1139 1140 /* Private */ 1141 static inline void *xa_entry(const struct xarray *xa, 1142 const struct xa_node *node, unsigned int offset) 1143 { 1144 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1145 return rcu_dereference_check(node->slots[offset], 1146 lockdep_is_held(&xa->xa_lock)); 1147 } 1148 1149 /* Private */ 1150 static inline void *xa_entry_locked(const struct xarray *xa, 1151 const struct xa_node *node, unsigned int offset) 1152 { 1153 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1154 return rcu_dereference_protected(node->slots[offset], 1155 lockdep_is_held(&xa->xa_lock)); 1156 } 1157 1158 /* Private */ 1159 static inline struct xa_node *xa_parent(const struct xarray *xa, 1160 const struct xa_node *node) 1161 { 1162 return rcu_dereference_check(node->parent, 1163 lockdep_is_held(&xa->xa_lock)); 1164 } 1165 1166 /* Private */ 1167 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 1168 const struct xa_node *node) 1169 { 1170 return rcu_dereference_protected(node->parent, 1171 lockdep_is_held(&xa->xa_lock)); 1172 } 1173 1174 /* Private */ 1175 static inline void *xa_mk_node(const struct xa_node *node) 1176 { 1177 return (void *)((unsigned long)node | 2); 1178 } 1179 1180 /* Private */ 1181 static inline struct xa_node *xa_to_node(const void *entry) 1182 { 1183 return (struct xa_node *)((unsigned long)entry - 2); 1184 } 1185 1186 /* Private */ 1187 static inline bool xa_is_node(const void *entry) 1188 { 1189 return xa_is_internal(entry) && (unsigned long)entry > 4096; 1190 } 1191 1192 /* Private */ 1193 static inline void *xa_mk_sibling(unsigned int offset) 1194 { 1195 return xa_mk_internal(offset); 1196 } 1197 1198 /* Private */ 1199 static inline unsigned long xa_to_sibling(const void *entry) 1200 { 1201 return xa_to_internal(entry); 1202 } 1203 1204 /** 1205 * xa_is_sibling() - Is the entry a sibling entry? 1206 * @entry: Entry retrieved from the XArray 1207 * 1208 * Return: %true if the entry is a sibling entry. 1209 */ 1210 static inline bool xa_is_sibling(const void *entry) 1211 { 1212 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 1213 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 1214 } 1215 1216 #define XA_RETRY_ENTRY xa_mk_internal(256) 1217 1218 /** 1219 * xa_is_retry() - Is the entry a retry entry? 1220 * @entry: Entry retrieved from the XArray 1221 * 1222 * Return: %true if the entry is a retry entry. 1223 */ 1224 static inline bool xa_is_retry(const void *entry) 1225 { 1226 return unlikely(entry == XA_RETRY_ENTRY); 1227 } 1228 1229 /** 1230 * xa_is_advanced() - Is the entry only permitted for the advanced API? 1231 * @entry: Entry to be stored in the XArray. 1232 * 1233 * Return: %true if the entry cannot be stored by the normal API. 1234 */ 1235 static inline bool xa_is_advanced(const void *entry) 1236 { 1237 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); 1238 } 1239 1240 /** 1241 * typedef xa_update_node_t - A callback function from the XArray. 1242 * @node: The node which is being processed 1243 * 1244 * This function is called every time the XArray updates the count of 1245 * present and value entries in a node. It allows advanced users to 1246 * maintain the private_list in the node. 1247 * 1248 * Context: The xa_lock is held and interrupts may be disabled. 1249 * Implementations should not drop the xa_lock, nor re-enable 1250 * interrupts. 1251 */ 1252 typedef void (*xa_update_node_t)(struct xa_node *node); 1253 1254 /* 1255 * The xa_state is opaque to its users. It contains various different pieces 1256 * of state involved in the current operation on the XArray. It should be 1257 * declared on the stack and passed between the various internal routines. 1258 * The various elements in it should not be accessed directly, but only 1259 * through the provided accessor functions. The below documentation is for 1260 * the benefit of those working on the code, not for users of the XArray. 1261 * 1262 * @xa_node usually points to the xa_node containing the slot we're operating 1263 * on (and @xa_offset is the offset in the slots array). If there is a 1264 * single entry in the array at index 0, there are no allocated xa_nodes to 1265 * point to, and so we store %NULL in @xa_node. @xa_node is set to 1266 * the value %XAS_RESTART if the xa_state is not walked to the correct 1267 * position in the tree of nodes for this operation. If an error occurs 1268 * during an operation, it is set to an %XAS_ERROR value. If we run off the 1269 * end of the allocated nodes, it is set to %XAS_BOUNDS. 1270 */ 1271 struct xa_state { 1272 struct xarray *xa; 1273 unsigned long xa_index; 1274 unsigned char xa_shift; 1275 unsigned char xa_sibs; 1276 unsigned char xa_offset; 1277 unsigned char xa_pad; /* Helps gcc generate better code */ 1278 struct xa_node *xa_node; 1279 struct xa_node *xa_alloc; 1280 xa_update_node_t xa_update; 1281 }; 1282 1283 /* 1284 * We encode errnos in the xas->xa_node. If an error has happened, we need to 1285 * drop the lock to fix it, and once we've done so the xa_state is invalid. 1286 */ 1287 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 1288 #define XAS_BOUNDS ((struct xa_node *)1UL) 1289 #define XAS_RESTART ((struct xa_node *)3UL) 1290 1291 #define __XA_STATE(array, index, shift, sibs) { \ 1292 .xa = array, \ 1293 .xa_index = index, \ 1294 .xa_shift = shift, \ 1295 .xa_sibs = sibs, \ 1296 .xa_offset = 0, \ 1297 .xa_pad = 0, \ 1298 .xa_node = XAS_RESTART, \ 1299 .xa_alloc = NULL, \ 1300 .xa_update = NULL \ 1301 } 1302 1303 /** 1304 * XA_STATE() - Declare an XArray operation state. 1305 * @name: Name of this operation state (usually xas). 1306 * @array: Array to operate on. 1307 * @index: Initial index of interest. 1308 * 1309 * Declare and initialise an xa_state on the stack. 1310 */ 1311 #define XA_STATE(name, array, index) \ 1312 struct xa_state name = __XA_STATE(array, index, 0, 0) 1313 1314 /** 1315 * XA_STATE_ORDER() - Declare an XArray operation state. 1316 * @name: Name of this operation state (usually xas). 1317 * @array: Array to operate on. 1318 * @index: Initial index of interest. 1319 * @order: Order of entry. 1320 * 1321 * Declare and initialise an xa_state on the stack. This variant of 1322 * XA_STATE() allows you to specify the 'order' of the element you 1323 * want to operate on.` 1324 */ 1325 #define XA_STATE_ORDER(name, array, index, order) \ 1326 struct xa_state name = __XA_STATE(array, \ 1327 (index >> order) << order, \ 1328 order - (order % XA_CHUNK_SHIFT), \ 1329 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1330 1331 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1332 #define xas_trylock(xas) xa_trylock((xas)->xa) 1333 #define xas_lock(xas) xa_lock((xas)->xa) 1334 #define xas_unlock(xas) xa_unlock((xas)->xa) 1335 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1336 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1337 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1338 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1339 #define xas_lock_irqsave(xas, flags) \ 1340 xa_lock_irqsave((xas)->xa, flags) 1341 #define xas_unlock_irqrestore(xas, flags) \ 1342 xa_unlock_irqrestore((xas)->xa, flags) 1343 1344 /** 1345 * xas_error() - Return an errno stored in the xa_state. 1346 * @xas: XArray operation state. 1347 * 1348 * Return: 0 if no error has been noted. A negative errno if one has. 1349 */ 1350 static inline int xas_error(const struct xa_state *xas) 1351 { 1352 return xa_err(xas->xa_node); 1353 } 1354 1355 /** 1356 * xas_set_err() - Note an error in the xa_state. 1357 * @xas: XArray operation state. 1358 * @err: Negative error number. 1359 * 1360 * Only call this function with a negative @err; zero or positive errors 1361 * will probably not behave the way you think they should. If you want 1362 * to clear the error from an xa_state, use xas_reset(). 1363 */ 1364 static inline void xas_set_err(struct xa_state *xas, long err) 1365 { 1366 xas->xa_node = XA_ERROR(err); 1367 } 1368 1369 /** 1370 * xas_invalid() - Is the xas in a retry or error state? 1371 * @xas: XArray operation state. 1372 * 1373 * Return: %true if the xas cannot be used for operations. 1374 */ 1375 static inline bool xas_invalid(const struct xa_state *xas) 1376 { 1377 return (unsigned long)xas->xa_node & 3; 1378 } 1379 1380 /** 1381 * xas_valid() - Is the xas a valid cursor into the array? 1382 * @xas: XArray operation state. 1383 * 1384 * Return: %true if the xas can be used for operations. 1385 */ 1386 static inline bool xas_valid(const struct xa_state *xas) 1387 { 1388 return !xas_invalid(xas); 1389 } 1390 1391 /** 1392 * xas_is_node() - Does the xas point to a node? 1393 * @xas: XArray operation state. 1394 * 1395 * Return: %true if the xas currently references a node. 1396 */ 1397 static inline bool xas_is_node(const struct xa_state *xas) 1398 { 1399 return xas_valid(xas) && xas->xa_node; 1400 } 1401 1402 /* True if the pointer is something other than a node */ 1403 static inline bool xas_not_node(struct xa_node *node) 1404 { 1405 return ((unsigned long)node & 3) || !node; 1406 } 1407 1408 /* True if the node represents RESTART or an error */ 1409 static inline bool xas_frozen(struct xa_node *node) 1410 { 1411 return (unsigned long)node & 2; 1412 } 1413 1414 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 1415 static inline bool xas_top(struct xa_node *node) 1416 { 1417 return node <= XAS_RESTART; 1418 } 1419 1420 /** 1421 * xas_reset() - Reset an XArray operation state. 1422 * @xas: XArray operation state. 1423 * 1424 * Resets the error or walk state of the @xas so future walks of the 1425 * array will start from the root. Use this if you have dropped the 1426 * xarray lock and want to reuse the xa_state. 1427 * 1428 * Context: Any context. 1429 */ 1430 static inline void xas_reset(struct xa_state *xas) 1431 { 1432 xas->xa_node = XAS_RESTART; 1433 } 1434 1435 /** 1436 * xas_retry() - Retry the operation if appropriate. 1437 * @xas: XArray operation state. 1438 * @entry: Entry from xarray. 1439 * 1440 * The advanced functions may sometimes return an internal entry, such as 1441 * a retry entry or a zero entry. This function sets up the @xas to restart 1442 * the walk from the head of the array if needed. 1443 * 1444 * Context: Any context. 1445 * Return: true if the operation needs to be retried. 1446 */ 1447 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1448 { 1449 if (xa_is_zero(entry)) 1450 return true; 1451 if (!xa_is_retry(entry)) 1452 return false; 1453 xas_reset(xas); 1454 return true; 1455 } 1456 1457 void *xas_load(struct xa_state *); 1458 void *xas_store(struct xa_state *, void *entry); 1459 void *xas_find(struct xa_state *, unsigned long max); 1460 void *xas_find_conflict(struct xa_state *); 1461 1462 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1463 void xas_set_mark(const struct xa_state *, xa_mark_t); 1464 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1465 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1466 void xas_init_marks(const struct xa_state *); 1467 1468 bool xas_nomem(struct xa_state *, gfp_t); 1469 void xas_pause(struct xa_state *); 1470 1471 void xas_create_range(struct xa_state *); 1472 1473 /** 1474 * xas_reload() - Refetch an entry from the xarray. 1475 * @xas: XArray operation state. 1476 * 1477 * Use this function to check that a previously loaded entry still has 1478 * the same value. This is useful for the lockless pagecache lookup where 1479 * we walk the array with only the RCU lock to protect us, lock the page, 1480 * then check that the page hasn't moved since we looked it up. 1481 * 1482 * The caller guarantees that @xas is still valid. If it may be in an 1483 * error or restart state, call xas_load() instead. 1484 * 1485 * Return: The entry at this location in the xarray. 1486 */ 1487 static inline void *xas_reload(struct xa_state *xas) 1488 { 1489 struct xa_node *node = xas->xa_node; 1490 1491 if (node) 1492 return xa_entry(xas->xa, node, xas->xa_offset); 1493 return xa_head(xas->xa); 1494 } 1495 1496 /** 1497 * xas_set() - Set up XArray operation state for a different index. 1498 * @xas: XArray operation state. 1499 * @index: New index into the XArray. 1500 * 1501 * Move the operation state to refer to a different index. This will 1502 * have the effect of starting a walk from the top; see xas_next() 1503 * to move to an adjacent index. 1504 */ 1505 static inline void xas_set(struct xa_state *xas, unsigned long index) 1506 { 1507 xas->xa_index = index; 1508 xas->xa_node = XAS_RESTART; 1509 } 1510 1511 /** 1512 * xas_set_order() - Set up XArray operation state for a multislot entry. 1513 * @xas: XArray operation state. 1514 * @index: Target of the operation. 1515 * @order: Entry occupies 2^@order indices. 1516 */ 1517 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1518 unsigned int order) 1519 { 1520 #ifdef CONFIG_XARRAY_MULTI 1521 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1522 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1523 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1524 xas->xa_node = XAS_RESTART; 1525 #else 1526 BUG_ON(order > 0); 1527 xas_set(xas, index); 1528 #endif 1529 } 1530 1531 /** 1532 * xas_set_update() - Set up XArray operation state for a callback. 1533 * @xas: XArray operation state. 1534 * @update: Function to call when updating a node. 1535 * 1536 * The XArray can notify a caller after it has updated an xa_node. 1537 * This is advanced functionality and is only needed by the page cache. 1538 */ 1539 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1540 { 1541 xas->xa_update = update; 1542 } 1543 1544 /** 1545 * xas_next_entry() - Advance iterator to next present entry. 1546 * @xas: XArray operation state. 1547 * @max: Highest index to return. 1548 * 1549 * xas_next_entry() is an inline function to optimise xarray traversal for 1550 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1551 * for all the hard cases. 1552 * 1553 * Return: The next present entry after the one currently referred to by @xas. 1554 */ 1555 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1556 { 1557 struct xa_node *node = xas->xa_node; 1558 void *entry; 1559 1560 if (unlikely(xas_not_node(node) || node->shift || 1561 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1562 return xas_find(xas, max); 1563 1564 do { 1565 if (unlikely(xas->xa_index >= max)) 1566 return xas_find(xas, max); 1567 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1568 return xas_find(xas, max); 1569 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1570 if (unlikely(xa_is_internal(entry))) 1571 return xas_find(xas, max); 1572 xas->xa_offset++; 1573 xas->xa_index++; 1574 } while (!entry); 1575 1576 return entry; 1577 } 1578 1579 /* Private */ 1580 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1581 xa_mark_t mark) 1582 { 1583 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1584 unsigned int offset = xas->xa_offset; 1585 1586 if (advance) 1587 offset++; 1588 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1589 if (offset < XA_CHUNK_SIZE) { 1590 unsigned long data = *addr & (~0UL << offset); 1591 if (data) 1592 return __ffs(data); 1593 } 1594 return XA_CHUNK_SIZE; 1595 } 1596 1597 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1598 } 1599 1600 /** 1601 * xas_next_marked() - Advance iterator to next marked entry. 1602 * @xas: XArray operation state. 1603 * @max: Highest index to return. 1604 * @mark: Mark to search for. 1605 * 1606 * xas_next_marked() is an inline function to optimise xarray traversal for 1607 * speed. It is equivalent to calling xas_find_marked(), and will call 1608 * xas_find_marked() for all the hard cases. 1609 * 1610 * Return: The next marked entry after the one currently referred to by @xas. 1611 */ 1612 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1613 xa_mark_t mark) 1614 { 1615 struct xa_node *node = xas->xa_node; 1616 void *entry; 1617 unsigned int offset; 1618 1619 if (unlikely(xas_not_node(node) || node->shift)) 1620 return xas_find_marked(xas, max, mark); 1621 offset = xas_find_chunk(xas, true, mark); 1622 xas->xa_offset = offset; 1623 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1624 if (xas->xa_index > max) 1625 return NULL; 1626 if (offset == XA_CHUNK_SIZE) 1627 return xas_find_marked(xas, max, mark); 1628 entry = xa_entry(xas->xa, node, offset); 1629 if (!entry) 1630 return xas_find_marked(xas, max, mark); 1631 return entry; 1632 } 1633 1634 /* 1635 * If iterating while holding a lock, drop the lock and reschedule 1636 * every %XA_CHECK_SCHED loops. 1637 */ 1638 enum { 1639 XA_CHECK_SCHED = 4096, 1640 }; 1641 1642 /** 1643 * xas_for_each() - Iterate over a range of an XArray. 1644 * @xas: XArray operation state. 1645 * @entry: Entry retrieved from the array. 1646 * @max: Maximum index to retrieve from array. 1647 * 1648 * The loop body will be executed for each entry present in the xarray 1649 * between the current xas position and @max. @entry will be set to 1650 * the entry retrieved from the xarray. It is safe to delete entries 1651 * from the array in the loop body. You should hold either the RCU lock 1652 * or the xa_lock while iterating. If you need to drop the lock, call 1653 * xas_pause() first. 1654 */ 1655 #define xas_for_each(xas, entry, max) \ 1656 for (entry = xas_find(xas, max); entry; \ 1657 entry = xas_next_entry(xas, max)) 1658 1659 /** 1660 * xas_for_each_marked() - Iterate over a range of an XArray. 1661 * @xas: XArray operation state. 1662 * @entry: Entry retrieved from the array. 1663 * @max: Maximum index to retrieve from array. 1664 * @mark: Mark to search for. 1665 * 1666 * The loop body will be executed for each marked entry in the xarray 1667 * between the current xas position and @max. @entry will be set to 1668 * the entry retrieved from the xarray. It is safe to delete entries 1669 * from the array in the loop body. You should hold either the RCU lock 1670 * or the xa_lock while iterating. If you need to drop the lock, call 1671 * xas_pause() first. 1672 */ 1673 #define xas_for_each_marked(xas, entry, max, mark) \ 1674 for (entry = xas_find_marked(xas, max, mark); entry; \ 1675 entry = xas_next_marked(xas, max, mark)) 1676 1677 /** 1678 * xas_for_each_conflict() - Iterate over a range of an XArray. 1679 * @xas: XArray operation state. 1680 * @entry: Entry retrieved from the array. 1681 * 1682 * The loop body will be executed for each entry in the XArray that lies 1683 * within the range specified by @xas. If the loop completes successfully, 1684 * any entries that lie in this range will be replaced by @entry. The caller 1685 * may break out of the loop; if they do so, the contents of the XArray will 1686 * be unchanged. The operation may fail due to an out of memory condition. 1687 * The caller may also call xa_set_err() to exit the loop while setting an 1688 * error to record the reason. 1689 */ 1690 #define xas_for_each_conflict(xas, entry) \ 1691 while ((entry = xas_find_conflict(xas))) 1692 1693 void *__xas_next(struct xa_state *); 1694 void *__xas_prev(struct xa_state *); 1695 1696 /** 1697 * xas_prev() - Move iterator to previous index. 1698 * @xas: XArray operation state. 1699 * 1700 * If the @xas was in an error state, it will remain in an error state 1701 * and this function will return %NULL. If the @xas has never been walked, 1702 * it will have the effect of calling xas_load(). Otherwise one will be 1703 * subtracted from the index and the state will be walked to the correct 1704 * location in the array for the next operation. 1705 * 1706 * If the iterator was referencing index 0, this function wraps 1707 * around to %ULONG_MAX. 1708 * 1709 * Return: The entry at the new index. This may be %NULL or an internal 1710 * entry. 1711 */ 1712 static inline void *xas_prev(struct xa_state *xas) 1713 { 1714 struct xa_node *node = xas->xa_node; 1715 1716 if (unlikely(xas_not_node(node) || node->shift || 1717 xas->xa_offset == 0)) 1718 return __xas_prev(xas); 1719 1720 xas->xa_index--; 1721 xas->xa_offset--; 1722 return xa_entry(xas->xa, node, xas->xa_offset); 1723 } 1724 1725 /** 1726 * xas_next() - Move state to next index. 1727 * @xas: XArray operation state. 1728 * 1729 * If the @xas was in an error state, it will remain in an error state 1730 * and this function will return %NULL. If the @xas has never been walked, 1731 * it will have the effect of calling xas_load(). Otherwise one will be 1732 * added to the index and the state will be walked to the correct 1733 * location in the array for the next operation. 1734 * 1735 * If the iterator was referencing index %ULONG_MAX, this function wraps 1736 * around to 0. 1737 * 1738 * Return: The entry at the new index. This may be %NULL or an internal 1739 * entry. 1740 */ 1741 static inline void *xas_next(struct xa_state *xas) 1742 { 1743 struct xa_node *node = xas->xa_node; 1744 1745 if (unlikely(xas_not_node(node) || node->shift || 1746 xas->xa_offset == XA_CHUNK_MASK)) 1747 return __xas_next(xas); 1748 1749 xas->xa_index++; 1750 xas->xa_offset++; 1751 return xa_entry(xas->xa, node, xas->xa_offset); 1752 } 1753 1754 #endif /* _LINUX_XARRAY_H */