root/include/linux/cgroup-defs.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. cgroup_threadgroup_change_begin
  2. cgroup_threadgroup_change_end
  3. cgroup_threadgroup_change_begin
  4. cgroup_threadgroup_change_end
  5. sock_cgroup_prioidx
  6. sock_cgroup_classid
  7. sock_cgroup_set_prioidx
  8. sock_cgroup_set_classid

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  * linux/cgroup-defs.h - basic definitions for cgroup
   4  *
   5  * This file provides basic type and interface.  Include this file directly
   6  * only if necessary to avoid cyclic dependencies.
   7  */
   8 #ifndef _LINUX_CGROUP_DEFS_H
   9 #define _LINUX_CGROUP_DEFS_H
  10 
  11 #include <linux/limits.h>
  12 #include <linux/list.h>
  13 #include <linux/idr.h>
  14 #include <linux/wait.h>
  15 #include <linux/mutex.h>
  16 #include <linux/rcupdate.h>
  17 #include <linux/refcount.h>
  18 #include <linux/percpu-refcount.h>
  19 #include <linux/percpu-rwsem.h>
  20 #include <linux/u64_stats_sync.h>
  21 #include <linux/workqueue.h>
  22 #include <linux/bpf-cgroup.h>
  23 #include <linux/psi_types.h>
  24 
  25 #ifdef CONFIG_CGROUPS
  26 
  27 struct cgroup;
  28 struct cgroup_root;
  29 struct cgroup_subsys;
  30 struct cgroup_taskset;
  31 struct kernfs_node;
  32 struct kernfs_ops;
  33 struct kernfs_open_file;
  34 struct seq_file;
  35 struct poll_table_struct;
  36 
  37 #define MAX_CGROUP_TYPE_NAMELEN 32
  38 #define MAX_CGROUP_ROOT_NAMELEN 64
  39 #define MAX_CFTYPE_NAME         64
  40 
  41 /* define the enumeration of all cgroup subsystems */
  42 #define SUBSYS(_x) _x ## _cgrp_id,
  43 enum cgroup_subsys_id {
  44 #include <linux/cgroup_subsys.h>
  45         CGROUP_SUBSYS_COUNT,
  46 };
  47 #undef SUBSYS
  48 
  49 /* bits in struct cgroup_subsys_state flags field */
  50 enum {
  51         CSS_NO_REF      = (1 << 0), /* no reference counting for this css */
  52         CSS_ONLINE      = (1 << 1), /* between ->css_online() and ->css_offline() */
  53         CSS_RELEASED    = (1 << 2), /* refcnt reached zero, released */
  54         CSS_VISIBLE     = (1 << 3), /* css is visible to userland */
  55         CSS_DYING       = (1 << 4), /* css is dying */
  56 };
  57 
  58 /* bits in struct cgroup flags field */
  59 enum {
  60         /* Control Group requires release notifications to userspace */
  61         CGRP_NOTIFY_ON_RELEASE,
  62         /*
  63          * Clone the parent's configuration when creating a new child
  64          * cpuset cgroup.  For historical reasons, this option can be
  65          * specified at mount time and thus is implemented here.
  66          */
  67         CGRP_CPUSET_CLONE_CHILDREN,
  68 
  69         /* Control group has to be frozen. */
  70         CGRP_FREEZE,
  71 
  72         /* Cgroup is frozen. */
  73         CGRP_FROZEN,
  74 };
  75 
  76 /* cgroup_root->flags */
  77 enum {
  78         CGRP_ROOT_NOPREFIX      = (1 << 1), /* mounted subsystems have no named prefix */
  79         CGRP_ROOT_XATTR         = (1 << 2), /* supports extended attributes */
  80 
  81         /*
  82          * Consider namespaces as delegation boundaries.  If this flag is
  83          * set, controller specific interface files in a namespace root
  84          * aren't writeable from inside the namespace.
  85          */
  86         CGRP_ROOT_NS_DELEGATE   = (1 << 3),
  87 
  88         /*
  89          * Enable cpuset controller in v1 cgroup to use v2 behavior.
  90          */
  91         CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
  92 
  93         /*
  94          * Enable legacy local memory.events.
  95          */
  96         CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
  97 };
  98 
  99 /* cftype->flags */
 100 enum {
 101         CFTYPE_ONLY_ON_ROOT     = (1 << 0),     /* only create on root cgrp */
 102         CFTYPE_NOT_ON_ROOT      = (1 << 1),     /* don't create on root cgrp */
 103         CFTYPE_NS_DELEGATABLE   = (1 << 2),     /* writeable beyond delegation boundaries */
 104 
 105         CFTYPE_NO_PREFIX        = (1 << 3),     /* (DON'T USE FOR NEW FILES) no subsys prefix */
 106         CFTYPE_WORLD_WRITABLE   = (1 << 4),     /* (DON'T USE FOR NEW FILES) S_IWUGO */
 107         CFTYPE_DEBUG            = (1 << 5),     /* create when cgroup_debug */
 108 
 109         /* internal flags, do not use outside cgroup core proper */
 110         __CFTYPE_ONLY_ON_DFL    = (1 << 16),    /* only on default hierarchy */
 111         __CFTYPE_NOT_ON_DFL     = (1 << 17),    /* not on default hierarchy */
 112 };
 113 
 114 /*
 115  * cgroup_file is the handle for a file instance created in a cgroup which
 116  * is used, for example, to generate file changed notifications.  This can
 117  * be obtained by setting cftype->file_offset.
 118  */
 119 struct cgroup_file {
 120         /* do not access any fields from outside cgroup core */
 121         struct kernfs_node *kn;
 122         unsigned long notified_at;
 123         struct timer_list notify_timer;
 124 };
 125 
 126 /*
 127  * Per-subsystem/per-cgroup state maintained by the system.  This is the
 128  * fundamental structural building block that controllers deal with.
 129  *
 130  * Fields marked with "PI:" are public and immutable and may be accessed
 131  * directly without synchronization.
 132  */
 133 struct cgroup_subsys_state {
 134         /* PI: the cgroup that this css is attached to */
 135         struct cgroup *cgroup;
 136 
 137         /* PI: the cgroup subsystem that this css is attached to */
 138         struct cgroup_subsys *ss;
 139 
 140         /* reference count - access via css_[try]get() and css_put() */
 141         struct percpu_ref refcnt;
 142 
 143         /* siblings list anchored at the parent's ->children */
 144         struct list_head sibling;
 145         struct list_head children;
 146 
 147         /* flush target list anchored at cgrp->rstat_css_list */
 148         struct list_head rstat_css_node;
 149 
 150         /*
 151          * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
 152          * matching css can be looked up using css_from_id().
 153          */
 154         int id;
 155 
 156         unsigned int flags;
 157 
 158         /*
 159          * Monotonically increasing unique serial number which defines a
 160          * uniform order among all csses.  It's guaranteed that all
 161          * ->children lists are in the ascending order of ->serial_nr and
 162          * used to allow interrupting and resuming iterations.
 163          */
 164         u64 serial_nr;
 165 
 166         /*
 167          * Incremented by online self and children.  Used to guarantee that
 168          * parents are not offlined before their children.
 169          */
 170         atomic_t online_cnt;
 171 
 172         /* percpu_ref killing and RCU release */
 173         struct work_struct destroy_work;
 174         struct rcu_work destroy_rwork;
 175 
 176         /*
 177          * PI: the parent css.  Placed here for cache proximity to following
 178          * fields of the containing structure.
 179          */
 180         struct cgroup_subsys_state *parent;
 181 };
 182 
 183 /*
 184  * A css_set is a structure holding pointers to a set of
 185  * cgroup_subsys_state objects. This saves space in the task struct
 186  * object and speeds up fork()/exit(), since a single inc/dec and a
 187  * list_add()/del() can bump the reference count on the entire cgroup
 188  * set for a task.
 189  */
 190 struct css_set {
 191         /*
 192          * Set of subsystem states, one for each subsystem. This array is
 193          * immutable after creation apart from the init_css_set during
 194          * subsystem registration (at boot time).
 195          */
 196         struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
 197 
 198         /* reference count */
 199         refcount_t refcount;
 200 
 201         /*
 202          * For a domain cgroup, the following points to self.  If threaded,
 203          * to the matching cset of the nearest domain ancestor.  The
 204          * dom_cset provides access to the domain cgroup and its csses to
 205          * which domain level resource consumptions should be charged.
 206          */
 207         struct css_set *dom_cset;
 208 
 209         /* the default cgroup associated with this css_set */
 210         struct cgroup *dfl_cgrp;
 211 
 212         /* internal task count, protected by css_set_lock */
 213         int nr_tasks;
 214 
 215         /*
 216          * Lists running through all tasks using this cgroup group.
 217          * mg_tasks lists tasks which belong to this cset but are in the
 218          * process of being migrated out or in.  Protected by
 219          * css_set_rwsem, but, during migration, once tasks are moved to
 220          * mg_tasks, it can be read safely while holding cgroup_mutex.
 221          */
 222         struct list_head tasks;
 223         struct list_head mg_tasks;
 224         struct list_head dying_tasks;
 225 
 226         /* all css_task_iters currently walking this cset */
 227         struct list_head task_iters;
 228 
 229         /*
 230          * On the default hierarhcy, ->subsys[ssid] may point to a css
 231          * attached to an ancestor instead of the cgroup this css_set is
 232          * associated with.  The following node is anchored at
 233          * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
 234          * iterate through all css's attached to a given cgroup.
 235          */
 236         struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
 237 
 238         /* all threaded csets whose ->dom_cset points to this cset */
 239         struct list_head threaded_csets;
 240         struct list_head threaded_csets_node;
 241 
 242         /*
 243          * List running through all cgroup groups in the same hash
 244          * slot. Protected by css_set_lock
 245          */
 246         struct hlist_node hlist;
 247 
 248         /*
 249          * List of cgrp_cset_links pointing at cgroups referenced from this
 250          * css_set.  Protected by css_set_lock.
 251          */
 252         struct list_head cgrp_links;
 253 
 254         /*
 255          * List of csets participating in the on-going migration either as
 256          * source or destination.  Protected by cgroup_mutex.
 257          */
 258         struct list_head mg_preload_node;
 259         struct list_head mg_node;
 260 
 261         /*
 262          * If this cset is acting as the source of migration the following
 263          * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
 264          * respectively the source and destination cgroups of the on-going
 265          * migration.  mg_dst_cset is the destination cset the target tasks
 266          * on this cset should be migrated to.  Protected by cgroup_mutex.
 267          */
 268         struct cgroup *mg_src_cgrp;
 269         struct cgroup *mg_dst_cgrp;
 270         struct css_set *mg_dst_cset;
 271 
 272         /* dead and being drained, ignore for migration */
 273         bool dead;
 274 
 275         /* For RCU-protected deletion */
 276         struct rcu_head rcu_head;
 277 };
 278 
 279 struct cgroup_base_stat {
 280         struct task_cputime cputime;
 281 };
 282 
 283 /*
 284  * rstat - cgroup scalable recursive statistics.  Accounting is done
 285  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
 286  * hierarchy on reads.
 287  *
 288  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
 289  * linked into the updated tree.  On the following read, propagation only
 290  * considers and consumes the updated tree.  This makes reading O(the
 291  * number of descendants which have been active since last read) instead of
 292  * O(the total number of descendants).
 293  *
 294  * This is important because there can be a lot of (draining) cgroups which
 295  * aren't active and stat may be read frequently.  The combination can
 296  * become very expensive.  By propagating selectively, increasing reading
 297  * frequency decreases the cost of each read.
 298  *
 299  * This struct hosts both the fields which implement the above -
 300  * updated_children and updated_next - and the fields which track basic
 301  * resource statistics on top of it - bsync, bstat and last_bstat.
 302  */
 303 struct cgroup_rstat_cpu {
 304         /*
 305          * ->bsync protects ->bstat.  These are the only fields which get
 306          * updated in the hot path.
 307          */
 308         struct u64_stats_sync bsync;
 309         struct cgroup_base_stat bstat;
 310 
 311         /*
 312          * Snapshots at the last reading.  These are used to calculate the
 313          * deltas to propagate to the global counters.
 314          */
 315         struct cgroup_base_stat last_bstat;
 316 
 317         /*
 318          * Child cgroups with stat updates on this cpu since the last read
 319          * are linked on the parent's ->updated_children through
 320          * ->updated_next.
 321          *
 322          * In addition to being more compact, singly-linked list pointing
 323          * to the cgroup makes it unnecessary for each per-cpu struct to
 324          * point back to the associated cgroup.
 325          *
 326          * Protected by per-cpu cgroup_rstat_cpu_lock.
 327          */
 328         struct cgroup *updated_children;        /* terminated by self cgroup */
 329         struct cgroup *updated_next;            /* NULL iff not on the list */
 330 };
 331 
 332 struct cgroup_freezer_state {
 333         /* Should the cgroup and its descendants be frozen. */
 334         bool freeze;
 335 
 336         /* Should the cgroup actually be frozen? */
 337         int e_freeze;
 338 
 339         /* Fields below are protected by css_set_lock */
 340 
 341         /* Number of frozen descendant cgroups */
 342         int nr_frozen_descendants;
 343 
 344         /*
 345          * Number of tasks, which are counted as frozen:
 346          * frozen, SIGSTOPped, and PTRACEd.
 347          */
 348         int nr_frozen_tasks;
 349 };
 350 
 351 struct cgroup {
 352         /* self css with NULL ->ss, points back to this cgroup */
 353         struct cgroup_subsys_state self;
 354 
 355         unsigned long flags;            /* "unsigned long" so bitops work */
 356 
 357         /*
 358          * idr allocated in-hierarchy ID.
 359          *
 360          * ID 0 is not used, the ID of the root cgroup is always 1, and a
 361          * new cgroup will be assigned with a smallest available ID.
 362          *
 363          * Allocating/Removing ID must be protected by cgroup_mutex.
 364          */
 365         int id;
 366 
 367         /*
 368          * The depth this cgroup is at.  The root is at depth zero and each
 369          * step down the hierarchy increments the level.  This along with
 370          * ancestor_ids[] can determine whether a given cgroup is a
 371          * descendant of another without traversing the hierarchy.
 372          */
 373         int level;
 374 
 375         /* Maximum allowed descent tree depth */
 376         int max_depth;
 377 
 378         /*
 379          * Keep track of total numbers of visible and dying descent cgroups.
 380          * Dying cgroups are cgroups which were deleted by a user,
 381          * but are still existing because someone else is holding a reference.
 382          * max_descendants is a maximum allowed number of descent cgroups.
 383          *
 384          * nr_descendants and nr_dying_descendants are protected
 385          * by cgroup_mutex and css_set_lock. It's fine to read them holding
 386          * any of cgroup_mutex and css_set_lock; for writing both locks
 387          * should be held.
 388          */
 389         int nr_descendants;
 390         int nr_dying_descendants;
 391         int max_descendants;
 392 
 393         /*
 394          * Each non-empty css_set associated with this cgroup contributes
 395          * one to nr_populated_csets.  The counter is zero iff this cgroup
 396          * doesn't have any tasks.
 397          *
 398          * All children which have non-zero nr_populated_csets and/or
 399          * nr_populated_children of their own contribute one to either
 400          * nr_populated_domain_children or nr_populated_threaded_children
 401          * depending on their type.  Each counter is zero iff all cgroups
 402          * of the type in the subtree proper don't have any tasks.
 403          */
 404         int nr_populated_csets;
 405         int nr_populated_domain_children;
 406         int nr_populated_threaded_children;
 407 
 408         int nr_threaded_children;       /* # of live threaded child cgroups */
 409 
 410         struct kernfs_node *kn;         /* cgroup kernfs entry */
 411         struct cgroup_file procs_file;  /* handle for "cgroup.procs" */
 412         struct cgroup_file events_file; /* handle for "cgroup.events" */
 413 
 414         /*
 415          * The bitmask of subsystems enabled on the child cgroups.
 416          * ->subtree_control is the one configured through
 417          * "cgroup.subtree_control" while ->child_ss_mask is the effective
 418          * one which may have more subsystems enabled.  Controller knobs
 419          * are made available iff it's enabled in ->subtree_control.
 420          */
 421         u16 subtree_control;
 422         u16 subtree_ss_mask;
 423         u16 old_subtree_control;
 424         u16 old_subtree_ss_mask;
 425 
 426         /* Private pointers for each registered subsystem */
 427         struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
 428 
 429         struct cgroup_root *root;
 430 
 431         /*
 432          * List of cgrp_cset_links pointing at css_sets with tasks in this
 433          * cgroup.  Protected by css_set_lock.
 434          */
 435         struct list_head cset_links;
 436 
 437         /*
 438          * On the default hierarchy, a css_set for a cgroup with some
 439          * susbsys disabled will point to css's which are associated with
 440          * the closest ancestor which has the subsys enabled.  The
 441          * following lists all css_sets which point to this cgroup's css
 442          * for the given subsystem.
 443          */
 444         struct list_head e_csets[CGROUP_SUBSYS_COUNT];
 445 
 446         /*
 447          * If !threaded, self.  If threaded, it points to the nearest
 448          * domain ancestor.  Inside a threaded subtree, cgroups are exempt
 449          * from process granularity and no-internal-task constraint.
 450          * Domain level resource consumptions which aren't tied to a
 451          * specific task are charged to the dom_cgrp.
 452          */
 453         struct cgroup *dom_cgrp;
 454         struct cgroup *old_dom_cgrp;            /* used while enabling threaded */
 455 
 456         /* per-cpu recursive resource statistics */
 457         struct cgroup_rstat_cpu __percpu *rstat_cpu;
 458         struct list_head rstat_css_list;
 459 
 460         /* cgroup basic resource statistics */
 461         struct cgroup_base_stat pending_bstat;  /* pending from children */
 462         struct cgroup_base_stat bstat;
 463         struct prev_cputime prev_cputime;       /* for printing out cputime */
 464 
 465         /*
 466          * list of pidlists, up to two for each namespace (one for procs, one
 467          * for tasks); created on demand.
 468          */
 469         struct list_head pidlists;
 470         struct mutex pidlist_mutex;
 471 
 472         /* used to wait for offlining of csses */
 473         wait_queue_head_t offline_waitq;
 474 
 475         /* used to schedule release agent */
 476         struct work_struct release_agent_work;
 477 
 478         /* used to track pressure stalls */
 479         struct psi_group psi;
 480 
 481         /* used to store eBPF programs */
 482         struct cgroup_bpf bpf;
 483 
 484         /* If there is block congestion on this cgroup. */
 485         atomic_t congestion_count;
 486 
 487         /* Used to store internal freezer state */
 488         struct cgroup_freezer_state freezer;
 489 
 490         /* ids of the ancestors at each level including self */
 491         int ancestor_ids[];
 492 };
 493 
 494 /*
 495  * A cgroup_root represents the root of a cgroup hierarchy, and may be
 496  * associated with a kernfs_root to form an active hierarchy.  This is
 497  * internal to cgroup core.  Don't access directly from controllers.
 498  */
 499 struct cgroup_root {
 500         struct kernfs_root *kf_root;
 501 
 502         /* The bitmask of subsystems attached to this hierarchy */
 503         unsigned int subsys_mask;
 504 
 505         /* Unique id for this hierarchy. */
 506         int hierarchy_id;
 507 
 508         /* The root cgroup.  Root is destroyed on its release. */
 509         struct cgroup cgrp;
 510 
 511         /* for cgrp->ancestor_ids[0] */
 512         int cgrp_ancestor_id_storage;
 513 
 514         /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
 515         atomic_t nr_cgrps;
 516 
 517         /* A list running through the active hierarchies */
 518         struct list_head root_list;
 519 
 520         /* Hierarchy-specific flags */
 521         unsigned int flags;
 522 
 523         /* IDs for cgroups in this hierarchy */
 524         struct idr cgroup_idr;
 525 
 526         /* The path to use for release notifications. */
 527         char release_agent_path[PATH_MAX];
 528 
 529         /* The name for this hierarchy - may be empty */
 530         char name[MAX_CGROUP_ROOT_NAMELEN];
 531 };
 532 
 533 /*
 534  * struct cftype: handler definitions for cgroup control files
 535  *
 536  * When reading/writing to a file:
 537  *      - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
 538  *      - the 'cftype' of the file is file->f_path.dentry->d_fsdata
 539  */
 540 struct cftype {
 541         /*
 542          * By convention, the name should begin with the name of the
 543          * subsystem, followed by a period.  Zero length string indicates
 544          * end of cftype array.
 545          */
 546         char name[MAX_CFTYPE_NAME];
 547         unsigned long private;
 548 
 549         /*
 550          * The maximum length of string, excluding trailing nul, that can
 551          * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
 552          */
 553         size_t max_write_len;
 554 
 555         /* CFTYPE_* flags */
 556         unsigned int flags;
 557 
 558         /*
 559          * If non-zero, should contain the offset from the start of css to
 560          * a struct cgroup_file field.  cgroup will record the handle of
 561          * the created file into it.  The recorded handle can be used as
 562          * long as the containing css remains accessible.
 563          */
 564         unsigned int file_offset;
 565 
 566         /*
 567          * Fields used for internal bookkeeping.  Initialized automatically
 568          * during registration.
 569          */
 570         struct cgroup_subsys *ss;       /* NULL for cgroup core files */
 571         struct list_head node;          /* anchored at ss->cfts */
 572         struct kernfs_ops *kf_ops;
 573 
 574         int (*open)(struct kernfs_open_file *of);
 575         void (*release)(struct kernfs_open_file *of);
 576 
 577         /*
 578          * read_u64() is a shortcut for the common case of returning a
 579          * single integer. Use it in place of read()
 580          */
 581         u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
 582         /*
 583          * read_s64() is a signed version of read_u64()
 584          */
 585         s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
 586 
 587         /* generic seq_file read interface */
 588         int (*seq_show)(struct seq_file *sf, void *v);
 589 
 590         /* optional ops, implement all or none */
 591         void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
 592         void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
 593         void (*seq_stop)(struct seq_file *sf, void *v);
 594 
 595         /*
 596          * write_u64() is a shortcut for the common case of accepting
 597          * a single integer (as parsed by simple_strtoull) from
 598          * userspace. Use in place of write(); return 0 or error.
 599          */
 600         int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
 601                          u64 val);
 602         /*
 603          * write_s64() is a signed version of write_u64()
 604          */
 605         int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
 606                          s64 val);
 607 
 608         /*
 609          * write() is the generic write callback which maps directly to
 610          * kernfs write operation and overrides all other operations.
 611          * Maximum write size is determined by ->max_write_len.  Use
 612          * of_css/cft() to access the associated css and cft.
 613          */
 614         ssize_t (*write)(struct kernfs_open_file *of,
 615                          char *buf, size_t nbytes, loff_t off);
 616 
 617         __poll_t (*poll)(struct kernfs_open_file *of,
 618                          struct poll_table_struct *pt);
 619 
 620 #ifdef CONFIG_DEBUG_LOCK_ALLOC
 621         struct lock_class_key   lockdep_key;
 622 #endif
 623 };
 624 
 625 /*
 626  * Control Group subsystem type.
 627  * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
 628  */
 629 struct cgroup_subsys {
 630         struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
 631         int (*css_online)(struct cgroup_subsys_state *css);
 632         void (*css_offline)(struct cgroup_subsys_state *css);
 633         void (*css_released)(struct cgroup_subsys_state *css);
 634         void (*css_free)(struct cgroup_subsys_state *css);
 635         void (*css_reset)(struct cgroup_subsys_state *css);
 636         void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
 637         int (*css_extra_stat_show)(struct seq_file *seq,
 638                                    struct cgroup_subsys_state *css);
 639 
 640         int (*can_attach)(struct cgroup_taskset *tset);
 641         void (*cancel_attach)(struct cgroup_taskset *tset);
 642         void (*attach)(struct cgroup_taskset *tset);
 643         void (*post_attach)(void);
 644         int (*can_fork)(struct task_struct *task);
 645         void (*cancel_fork)(struct task_struct *task);
 646         void (*fork)(struct task_struct *task);
 647         void (*exit)(struct task_struct *task);
 648         void (*release)(struct task_struct *task);
 649         void (*bind)(struct cgroup_subsys_state *root_css);
 650 
 651         bool early_init:1;
 652 
 653         /*
 654          * If %true, the controller, on the default hierarchy, doesn't show
 655          * up in "cgroup.controllers" or "cgroup.subtree_control", is
 656          * implicitly enabled on all cgroups on the default hierarchy, and
 657          * bypasses the "no internal process" constraint.  This is for
 658          * utility type controllers which is transparent to userland.
 659          *
 660          * An implicit controller can be stolen from the default hierarchy
 661          * anytime and thus must be okay with offline csses from previous
 662          * hierarchies coexisting with csses for the current one.
 663          */
 664         bool implicit_on_dfl:1;
 665 
 666         /*
 667          * If %true, the controller, supports threaded mode on the default
 668          * hierarchy.  In a threaded subtree, both process granularity and
 669          * no-internal-process constraint are ignored and a threaded
 670          * controllers should be able to handle that.
 671          *
 672          * Note that as an implicit controller is automatically enabled on
 673          * all cgroups on the default hierarchy, it should also be
 674          * threaded.  implicit && !threaded is not supported.
 675          */
 676         bool threaded:1;
 677 
 678         /*
 679          * If %false, this subsystem is properly hierarchical -
 680          * configuration, resource accounting and restriction on a parent
 681          * cgroup cover those of its children.  If %true, hierarchy support
 682          * is broken in some ways - some subsystems ignore hierarchy
 683          * completely while others are only implemented half-way.
 684          *
 685          * It's now disallowed to create nested cgroups if the subsystem is
 686          * broken and cgroup core will emit a warning message on such
 687          * cases.  Eventually, all subsystems will be made properly
 688          * hierarchical and this will go away.
 689          */
 690         bool broken_hierarchy:1;
 691         bool warned_broken_hierarchy:1;
 692 
 693         /* the following two fields are initialized automtically during boot */
 694         int id;
 695         const char *name;
 696 
 697         /* optional, initialized automatically during boot if not set */
 698         const char *legacy_name;
 699 
 700         /* link to parent, protected by cgroup_lock() */
 701         struct cgroup_root *root;
 702 
 703         /* idr for css->id */
 704         struct idr css_idr;
 705 
 706         /*
 707          * List of cftypes.  Each entry is the first entry of an array
 708          * terminated by zero length name.
 709          */
 710         struct list_head cfts;
 711 
 712         /*
 713          * Base cftypes which are automatically registered.  The two can
 714          * point to the same array.
 715          */
 716         struct cftype *dfl_cftypes;     /* for the default hierarchy */
 717         struct cftype *legacy_cftypes;  /* for the legacy hierarchies */
 718 
 719         /*
 720          * A subsystem may depend on other subsystems.  When such subsystem
 721          * is enabled on a cgroup, the depended-upon subsystems are enabled
 722          * together if available.  Subsystems enabled due to dependency are
 723          * not visible to userland until explicitly enabled.  The following
 724          * specifies the mask of subsystems that this one depends on.
 725          */
 726         unsigned int depends_on;
 727 };
 728 
 729 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
 730 
 731 /**
 732  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
 733  * @tsk: target task
 734  *
 735  * Allows cgroup operations to synchronize against threadgroup changes
 736  * using a percpu_rw_semaphore.
 737  */
 738 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
 739 {
 740         percpu_down_read(&cgroup_threadgroup_rwsem);
 741 }
 742 
 743 /**
 744  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
 745  * @tsk: target task
 746  *
 747  * Counterpart of cgroup_threadcgroup_change_begin().
 748  */
 749 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
 750 {
 751         percpu_up_read(&cgroup_threadgroup_rwsem);
 752 }
 753 
 754 #else   /* CONFIG_CGROUPS */
 755 
 756 #define CGROUP_SUBSYS_COUNT 0
 757 
 758 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
 759 {
 760         might_sleep();
 761 }
 762 
 763 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
 764 
 765 #endif  /* CONFIG_CGROUPS */
 766 
 767 #ifdef CONFIG_SOCK_CGROUP_DATA
 768 
 769 /*
 770  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
 771  * per-socket cgroup information except for memcg association.
 772  *
 773  * On legacy hierarchies, net_prio and net_cls controllers directly set
 774  * attributes on each sock which can then be tested by the network layer.
 775  * On the default hierarchy, each sock is associated with the cgroup it was
 776  * created in and the networking layer can match the cgroup directly.
 777  *
 778  * To avoid carrying all three cgroup related fields separately in sock,
 779  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
 780  * On boot, sock_cgroup_data records the cgroup that the sock was created
 781  * in so that cgroup2 matches can be made; however, once either net_prio or
 782  * net_cls starts being used, the area is overriden to carry prioidx and/or
 783  * classid.  The two modes are distinguished by whether the lowest bit is
 784  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
 785  * classid.
 786  *
 787  * While userland may start using net_prio or net_cls at any time, once
 788  * either is used, cgroup2 matching no longer works.  There is no reason to
 789  * mix the two and this is in line with how legacy and v2 compatibility is
 790  * handled.  On mode switch, cgroup references which are already being
 791  * pointed to by socks may be leaked.  While this can be remedied by adding
 792  * synchronization around sock_cgroup_data, given that the number of leaked
 793  * cgroups is bound and highly unlikely to be high, this seems to be the
 794  * better trade-off.
 795  */
 796 struct sock_cgroup_data {
 797         union {
 798 #ifdef __LITTLE_ENDIAN
 799                 struct {
 800                         u8      is_data;
 801                         u8      padding;
 802                         u16     prioidx;
 803                         u32     classid;
 804                 } __packed;
 805 #else
 806                 struct {
 807                         u32     classid;
 808                         u16     prioidx;
 809                         u8      padding;
 810                         u8      is_data;
 811                 } __packed;
 812 #endif
 813                 u64             val;
 814         };
 815 };
 816 
 817 /*
 818  * There's a theoretical window where the following accessors race with
 819  * updaters and return part of the previous pointer as the prioidx or
 820  * classid.  Such races are short-lived and the result isn't critical.
 821  */
 822 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
 823 {
 824         /* fallback to 1 which is always the ID of the root cgroup */
 825         return (skcd->is_data & 1) ? skcd->prioidx : 1;
 826 }
 827 
 828 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
 829 {
 830         /* fallback to 0 which is the unconfigured default classid */
 831         return (skcd->is_data & 1) ? skcd->classid : 0;
 832 }
 833 
 834 /*
 835  * If invoked concurrently, the updaters may clobber each other.  The
 836  * caller is responsible for synchronization.
 837  */
 838 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
 839                                            u16 prioidx)
 840 {
 841         struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
 842 
 843         if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
 844                 return;
 845 
 846         if (!(skcd_buf.is_data & 1)) {
 847                 skcd_buf.val = 0;
 848                 skcd_buf.is_data = 1;
 849         }
 850 
 851         skcd_buf.prioidx = prioidx;
 852         WRITE_ONCE(skcd->val, skcd_buf.val);    /* see sock_cgroup_ptr() */
 853 }
 854 
 855 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
 856                                            u32 classid)
 857 {
 858         struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
 859 
 860         if (sock_cgroup_classid(&skcd_buf) == classid)
 861                 return;
 862 
 863         if (!(skcd_buf.is_data & 1)) {
 864                 skcd_buf.val = 0;
 865                 skcd_buf.is_data = 1;
 866         }
 867 
 868         skcd_buf.classid = classid;
 869         WRITE_ONCE(skcd->val, skcd_buf.val);    /* see sock_cgroup_ptr() */
 870 }
 871 
 872 #else   /* CONFIG_SOCK_CGROUP_DATA */
 873 
 874 struct sock_cgroup_data {
 875 };
 876 
 877 #endif  /* CONFIG_SOCK_CGROUP_DATA */
 878 
 879 #endif  /* _LINUX_CGROUP_DEFS_H */

/* [<][>][^][v][top][bottom][index][help] */