1 /* 2 * Generic EDAC defs 3 * 4 * Author: Dave Jiang <djiang@mvista.com> 5 * 6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under 7 * the terms of the GNU General Public License version 2. This program 8 * is licensed "as is" without any warranty of any kind, whether express 9 * or implied. 10 * 11 */ 12 #ifndef _LINUX_EDAC_H_ 13 #define _LINUX_EDAC_H_ 14 15 #include <linux/atomic.h> 16 #include <linux/device.h> 17 #include <linux/completion.h> 18 #include <linux/workqueue.h> 19 #include <linux/debugfs.h> 20 #include <linux/numa.h> 21 22 #define EDAC_DEVICE_NAME_LEN 31 23 24 struct device; 25 26 #define EDAC_OPSTATE_INVAL -1 27 #define EDAC_OPSTATE_POLL 0 28 #define EDAC_OPSTATE_NMI 1 29 #define EDAC_OPSTATE_INT 2 30 31 extern int edac_op_state; 32 33 struct bus_type *edac_get_sysfs_subsys(void); 34 int edac_get_report_status(void); 35 void edac_set_report_status(int new); 36 37 enum { 38 EDAC_REPORTING_ENABLED, 39 EDAC_REPORTING_DISABLED, 40 EDAC_REPORTING_FORCE 41 }; 42 43 static inline void opstate_init(void) 44 { 45 switch (edac_op_state) { 46 case EDAC_OPSTATE_POLL: 47 case EDAC_OPSTATE_NMI: 48 break; 49 default: 50 edac_op_state = EDAC_OPSTATE_POLL; 51 } 52 return; 53 } 54 55 /* Max length of a DIMM label*/ 56 #define EDAC_MC_LABEL_LEN 31 57 58 /* Maximum size of the location string */ 59 #define LOCATION_SIZE 256 60 61 /* Defines the maximum number of labels that can be reported */ 62 #define EDAC_MAX_LABELS 8 63 64 /* String used to join two or more labels */ 65 #define OTHER_LABEL " or " 66 67 /** 68 * enum dev_type - describe the type of memory DRAM chips used at the stick 69 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it 70 * @DEV_X1: 1 bit for data 71 * @DEV_X2: 2 bits for data 72 * @DEV_X4: 4 bits for data 73 * @DEV_X8: 8 bits for data 74 * @DEV_X16: 16 bits for data 75 * @DEV_X32: 32 bits for data 76 * @DEV_X64: 64 bits for data 77 * 78 * Typical values are x4 and x8. 79 */ 80 enum dev_type { 81 DEV_UNKNOWN = 0, 82 DEV_X1, 83 DEV_X2, 84 DEV_X4, 85 DEV_X8, 86 DEV_X16, 87 DEV_X32, /* Do these parts exist? */ 88 DEV_X64 /* Do these parts exist? */ 89 }; 90 91 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) 92 #define DEV_FLAG_X1 BIT(DEV_X1) 93 #define DEV_FLAG_X2 BIT(DEV_X2) 94 #define DEV_FLAG_X4 BIT(DEV_X4) 95 #define DEV_FLAG_X8 BIT(DEV_X8) 96 #define DEV_FLAG_X16 BIT(DEV_X16) 97 #define DEV_FLAG_X32 BIT(DEV_X32) 98 #define DEV_FLAG_X64 BIT(DEV_X64) 99 100 /** 101 * enum hw_event_mc_err_type - type of the detected error 102 * 103 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC 104 * corrected error was detected 105 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that 106 * can't be corrected by ECC, but it is not 107 * fatal (maybe it is on an unused memory area, 108 * or the memory controller could recover from 109 * it for example, by re-trying the operation). 110 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable 111 * error whose handling is not urgent. This could 112 * be due to hardware data poisoning where the 113 * system can continue operation until the poisoned 114 * data is consumed. Preemptive measures may also 115 * be taken, e.g. offlining pages, etc. 116 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not 117 * be recovered. 118 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth 119 * type of error: informational logs. 120 */ 121 enum hw_event_mc_err_type { 122 HW_EVENT_ERR_CORRECTED, 123 HW_EVENT_ERR_UNCORRECTED, 124 HW_EVENT_ERR_DEFERRED, 125 HW_EVENT_ERR_FATAL, 126 HW_EVENT_ERR_INFO, 127 }; 128 129 static inline char *mc_event_error_type(const unsigned int err_type) 130 { 131 switch (err_type) { 132 case HW_EVENT_ERR_CORRECTED: 133 return "Corrected"; 134 case HW_EVENT_ERR_UNCORRECTED: 135 return "Uncorrected"; 136 case HW_EVENT_ERR_DEFERRED: 137 return "Deferred"; 138 case HW_EVENT_ERR_FATAL: 139 return "Fatal"; 140 default: 141 case HW_EVENT_ERR_INFO: 142 return "Info"; 143 } 144 } 145 146 /** 147 * enum mem_type - memory types. For a more detailed reference, please see 148 * http://en.wikipedia.org/wiki/DRAM 149 * 150 * @MEM_EMPTY: Empty csrow 151 * @MEM_RESERVED: Reserved csrow type 152 * @MEM_UNKNOWN: Unknown csrow type 153 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. 154 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998. 155 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant. 156 * @MEM_SDR: SDR - Single data rate SDRAM 157 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory 158 * They use 3 pins for chip select: Pins 0 and 2 are 159 * for rank 0; pins 1 and 3 are for rank 1, if the memory 160 * is dual-rank. 161 * @MEM_RDR: Registered SDR SDRAM 162 * @MEM_DDR: Double data rate SDRAM 163 * http://en.wikipedia.org/wiki/DDR_SDRAM 164 * @MEM_RDDR: Registered Double data rate SDRAM 165 * This is a variant of the DDR memories. 166 * A registered memory has a buffer inside it, hiding 167 * part of the memory details to the memory controller. 168 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. 169 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. 170 * Those memories are labeled as "PC2-" instead of "PC" to 171 * differentiate from DDR. 172 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 173 * and JESD206. 174 * Those memories are accessed per DIMM slot, and not by 175 * a chip select signal. 176 * @MEM_RDDR2: Registered DDR2 RAM 177 * This is a variant of the DDR2 memories. 178 * @MEM_XDR: Rambus XDR 179 * It is an evolution of the original RAMBUS memories, 180 * created to compete with DDR2. Weren't used on any 181 * x86 arch, but cell_edac PPC memory controller uses it. 182 * @MEM_DDR3: DDR3 RAM 183 * @MEM_RDDR3: Registered DDR3 RAM 184 * This is a variant of the DDR3 memories. 185 * @MEM_LRDDR3: Load-Reduced DDR3 memory. 186 * @MEM_DDR4: Unbuffered DDR4 RAM 187 * @MEM_RDDR4: Registered DDR4 RAM 188 * This is a variant of the DDR4 memories. 189 * @MEM_LRDDR4: Load-Reduced DDR4 memory. 190 * @MEM_NVDIMM: Non-volatile RAM 191 */ 192 enum mem_type { 193 MEM_EMPTY = 0, 194 MEM_RESERVED, 195 MEM_UNKNOWN, 196 MEM_FPM, 197 MEM_EDO, 198 MEM_BEDO, 199 MEM_SDR, 200 MEM_RDR, 201 MEM_DDR, 202 MEM_RDDR, 203 MEM_RMBS, 204 MEM_DDR2, 205 MEM_FB_DDR2, 206 MEM_RDDR2, 207 MEM_XDR, 208 MEM_DDR3, 209 MEM_RDDR3, 210 MEM_LRDDR3, 211 MEM_DDR4, 212 MEM_RDDR4, 213 MEM_LRDDR4, 214 MEM_NVDIMM, 215 }; 216 217 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY) 218 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED) 219 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) 220 #define MEM_FLAG_FPM BIT(MEM_FPM) 221 #define MEM_FLAG_EDO BIT(MEM_EDO) 222 #define MEM_FLAG_BEDO BIT(MEM_BEDO) 223 #define MEM_FLAG_SDR BIT(MEM_SDR) 224 #define MEM_FLAG_RDR BIT(MEM_RDR) 225 #define MEM_FLAG_DDR BIT(MEM_DDR) 226 #define MEM_FLAG_RDDR BIT(MEM_RDDR) 227 #define MEM_FLAG_RMBS BIT(MEM_RMBS) 228 #define MEM_FLAG_DDR2 BIT(MEM_DDR2) 229 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) 230 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) 231 #define MEM_FLAG_XDR BIT(MEM_XDR) 232 #define MEM_FLAG_DDR3 BIT(MEM_DDR3) 233 #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) 234 #define MEM_FLAG_DDR4 BIT(MEM_DDR4) 235 #define MEM_FLAG_RDDR4 BIT(MEM_RDDR4) 236 #define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4) 237 #define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM) 238 239 /** 240 * enum edac-type - Error Detection and Correction capabilities and mode 241 * @EDAC_UNKNOWN: Unknown if ECC is available 242 * @EDAC_NONE: Doesn't support ECC 243 * @EDAC_RESERVED: Reserved ECC type 244 * @EDAC_PARITY: Detects parity errors 245 * @EDAC_EC: Error Checking - no correction 246 * @EDAC_SECDED: Single bit error correction, Double detection 247 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist? 248 * @EDAC_S4ECD4ED: Chipkill x4 devices 249 * @EDAC_S8ECD8ED: Chipkill x8 devices 250 * @EDAC_S16ECD16ED: Chipkill x16 devices 251 */ 252 enum edac_type { 253 EDAC_UNKNOWN = 0, 254 EDAC_NONE, 255 EDAC_RESERVED, 256 EDAC_PARITY, 257 EDAC_EC, 258 EDAC_SECDED, 259 EDAC_S2ECD2ED, 260 EDAC_S4ECD4ED, 261 EDAC_S8ECD8ED, 262 EDAC_S16ECD16ED, 263 }; 264 265 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) 266 #define EDAC_FLAG_NONE BIT(EDAC_NONE) 267 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY) 268 #define EDAC_FLAG_EC BIT(EDAC_EC) 269 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED) 270 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) 271 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) 272 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) 273 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) 274 275 /** 276 * enum scrub_type - scrubbing capabilities 277 * @SCRUB_UNKNOWN: Unknown if scrubber is available 278 * @SCRUB_NONE: No scrubber 279 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing 280 * @SCRUB_SW_SRC: Software scrub only errors 281 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error 282 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable 283 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing 284 * @SCRUB_HW_SRC: Hardware scrub only errors 285 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error 286 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable 287 */ 288 enum scrub_type { 289 SCRUB_UNKNOWN = 0, 290 SCRUB_NONE, 291 SCRUB_SW_PROG, 292 SCRUB_SW_SRC, 293 SCRUB_SW_PROG_SRC, 294 SCRUB_SW_TUNABLE, 295 SCRUB_HW_PROG, 296 SCRUB_HW_SRC, 297 SCRUB_HW_PROG_SRC, 298 SCRUB_HW_TUNABLE 299 }; 300 301 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) 302 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) 303 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) 304 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) 305 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) 306 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) 307 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) 308 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) 309 310 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ 311 312 /* EDAC internal operation states */ 313 #define OP_ALLOC 0x100 314 #define OP_RUNNING_POLL 0x201 315 #define OP_RUNNING_INTERRUPT 0x202 316 #define OP_RUNNING_POLL_INTR 0x203 317 #define OP_OFFLINE 0x300 318 319 /** 320 * enum edac_mc_layer - memory controller hierarchy layer 321 * 322 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch" 323 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel" 324 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot" 325 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select" 326 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped 327 * as a single memory area. This is used when 328 * retrieving errors from a firmware driven driver. 329 * 330 * This enum is used by the drivers to tell edac_mc_sysfs what name should 331 * be used when describing a memory stick location. 332 */ 333 enum edac_mc_layer_type { 334 EDAC_MC_LAYER_BRANCH, 335 EDAC_MC_LAYER_CHANNEL, 336 EDAC_MC_LAYER_SLOT, 337 EDAC_MC_LAYER_CHIP_SELECT, 338 EDAC_MC_LAYER_ALL_MEM, 339 }; 340 341 /** 342 * struct edac_mc_layer - describes the memory controller hierarchy 343 * @type: layer type 344 * @size: number of components per layer. For example, 345 * if the channel layer has two channels, size = 2 346 * @is_virt_csrow: This layer is part of the "csrow" when old API 347 * compatibility mode is enabled. Otherwise, it is 348 * a channel 349 */ 350 struct edac_mc_layer { 351 enum edac_mc_layer_type type; 352 unsigned size; 353 bool is_virt_csrow; 354 }; 355 356 /* 357 * Maximum number of layers used by the memory controller to uniquely 358 * identify a single memory stick. 359 * NOTE: Changing this constant requires not only to change the constant 360 * below, but also to change the existing code at the core, as there are 361 * some code there that are optimized for 3 layers. 362 */ 363 #define EDAC_MAX_LAYERS 3 364 365 /** 366 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer 367 * array for the element given by [layer0,layer1,layer2] 368 * position 369 * 370 * @layers: a struct edac_mc_layer array, describing how many elements 371 * were allocated for each layer 372 * @nlayers: Number of layers at the @layers array 373 * @layer0: layer0 position 374 * @layer1: layer1 position. Unused if n_layers < 2 375 * @layer2: layer2 position. Unused if n_layers < 3 376 * 377 * For 1 layer, this macro returns "var[layer0] - var"; 378 * 379 * For 2 layers, this macro is similar to allocate a bi-dimensional array 380 * and to return "var[layer0][layer1] - var"; 381 * 382 * For 3 layers, this macro is similar to allocate a tri-dimensional array 383 * and to return "var[layer0][layer1][layer2] - var". 384 * 385 * A loop could be used here to make it more generic, but, as we only have 386 * 3 layers, this is a little faster. 387 * 388 * By design, layers can never be 0 or more than 3. If that ever happens, 389 * a NULL is returned, causing an OOPS during the memory allocation routine, 390 * with would point to the developer that he's doing something wrong. 391 */ 392 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \ 393 int __i; \ 394 if ((nlayers) == 1) \ 395 __i = layer0; \ 396 else if ((nlayers) == 2) \ 397 __i = (layer1) + ((layers[1]).size * (layer0)); \ 398 else if ((nlayers) == 3) \ 399 __i = (layer2) + ((layers[2]).size * ((layer1) + \ 400 ((layers[1]).size * (layer0)))); \ 401 else \ 402 __i = -EINVAL; \ 403 __i; \ 404 }) 405 406 /** 407 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array 408 * for the element given by [layer0,layer1,layer2] position 409 * 410 * @layers: a struct edac_mc_layer array, describing how many elements 411 * were allocated for each layer 412 * @var: name of the var where we want to get the pointer 413 * (like mci->dimms) 414 * @nlayers: Number of layers at the @layers array 415 * @layer0: layer0 position 416 * @layer1: layer1 position. Unused if n_layers < 2 417 * @layer2: layer2 position. Unused if n_layers < 3 418 * 419 * For 1 layer, this macro returns "var[layer0]"; 420 * 421 * For 2 layers, this macro is similar to allocate a bi-dimensional array 422 * and to return "var[layer0][layer1]"; 423 * 424 * For 3 layers, this macro is similar to allocate a tri-dimensional array 425 * and to return "var[layer0][layer1][layer2]"; 426 */ 427 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \ 428 typeof(*var) __p; \ 429 int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \ 430 if (___i < 0) \ 431 __p = NULL; \ 432 else \ 433 __p = (var)[___i]; \ 434 __p; \ 435 }) 436 437 struct dimm_info { 438 struct device dev; 439 440 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ 441 442 /* Memory location data */ 443 unsigned int location[EDAC_MAX_LAYERS]; 444 445 struct mem_ctl_info *mci; /* the parent */ 446 447 u32 grain; /* granularity of reported error in bytes */ 448 enum dev_type dtype; /* memory device type */ 449 enum mem_type mtype; /* memory dimm type */ 450 enum edac_type edac_mode; /* EDAC mode for this dimm */ 451 452 u32 nr_pages; /* number of pages on this dimm */ 453 454 unsigned int csrow, cschannel; /* Points to the old API data */ 455 456 u16 smbios_handle; /* Handle for SMBIOS type 17 */ 457 }; 458 459 /** 460 * struct rank_info - contains the information for one DIMM rank 461 * 462 * @chan_idx: channel number where the rank is (typically, 0 or 1) 463 * @ce_count: number of correctable errors for this rank 464 * @csrow: A pointer to the chip select row structure (the parent 465 * structure). The location of the rank is given by 466 * the (csrow->csrow_idx, chan_idx) vector. 467 * @dimm: A pointer to the DIMM structure, where the DIMM label 468 * information is stored. 469 * 470 * FIXME: Currently, the EDAC core model will assume one DIMM per rank. 471 * This is a bad assumption, but it makes this patch easier. Later 472 * patches in this series will fix this issue. 473 */ 474 struct rank_info { 475 int chan_idx; 476 struct csrow_info *csrow; 477 struct dimm_info *dimm; 478 479 u32 ce_count; /* Correctable Errors for this csrow */ 480 }; 481 482 struct csrow_info { 483 struct device dev; 484 485 /* Used only by edac_mc_find_csrow_by_page() */ 486 unsigned long first_page; /* first page number in csrow */ 487 unsigned long last_page; /* last page number in csrow */ 488 unsigned long page_mask; /* used for interleaving - 489 * 0UL for non intlv */ 490 491 int csrow_idx; /* the chip-select row */ 492 493 u32 ue_count; /* Uncorrectable Errors for this csrow */ 494 u32 ce_count; /* Correctable Errors for this csrow */ 495 496 struct mem_ctl_info *mci; /* the parent */ 497 498 /* channel information for this csrow */ 499 u32 nr_channels; 500 struct rank_info **channels; 501 }; 502 503 /* 504 * struct errcount_attribute - used to store the several error counts 505 */ 506 struct errcount_attribute_data { 507 int n_layers; 508 int pos[EDAC_MAX_LAYERS]; 509 int layer0, layer1, layer2; 510 }; 511 512 /** 513 * struct edac_raw_error_desc - Raw error report structure 514 * @grain: minimum granularity for an error report, in bytes 515 * @error_count: number of errors of the same type 516 * @top_layer: top layer of the error (layer[0]) 517 * @mid_layer: middle layer of the error (layer[1]) 518 * @low_layer: low layer of the error (layer[2]) 519 * @page_frame_number: page where the error happened 520 * @offset_in_page: page offset 521 * @syndrome: syndrome of the error (or 0 if unknown or if 522 * the syndrome is not applicable) 523 * @msg: error message 524 * @location: location of the error 525 * @label: label of the affected DIMM(s) 526 * @other_detail: other driver-specific detail about the error 527 * @enable_per_layer_report: if false, the error affects all layers 528 * (typically, a memory controller error) 529 */ 530 struct edac_raw_error_desc { 531 /* 532 * NOTE: everything before grain won't be cleaned by 533 * edac_raw_error_desc_clean() 534 */ 535 char location[LOCATION_SIZE]; 536 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS]; 537 long grain; 538 539 /* the vars below and grain will be cleaned on every new error report */ 540 u16 error_count; 541 int top_layer; 542 int mid_layer; 543 int low_layer; 544 unsigned long page_frame_number; 545 unsigned long offset_in_page; 546 unsigned long syndrome; 547 const char *msg; 548 const char *other_detail; 549 bool enable_per_layer_report; 550 }; 551 552 /* MEMORY controller information structure 553 */ 554 struct mem_ctl_info { 555 struct device dev; 556 struct bus_type *bus; 557 558 struct list_head link; /* for global list of mem_ctl_info structs */ 559 560 struct module *owner; /* Module owner of this control struct */ 561 562 unsigned long mtype_cap; /* memory types supported by mc */ 563 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ 564 unsigned long edac_cap; /* configuration capabilities - this is 565 * closely related to edac_ctl_cap. The 566 * difference is that the controller may be 567 * capable of s4ecd4ed which would be listed 568 * in edac_ctl_cap, but if channels aren't 569 * capable of s4ecd4ed then the edac_cap would 570 * not have that capability. 571 */ 572 unsigned long scrub_cap; /* chipset scrub capabilities */ 573 enum scrub_type scrub_mode; /* current scrub mode */ 574 575 /* Translates sdram memory scrub rate given in bytes/sec to the 576 internal representation and configures whatever else needs 577 to be configured. 578 */ 579 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); 580 581 /* Get the current sdram memory scrub rate from the internal 582 representation and converts it to the closest matching 583 bandwidth in bytes/sec. 584 */ 585 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); 586 587 588 /* pointer to edac checking routine */ 589 void (*edac_check) (struct mem_ctl_info * mci); 590 591 /* 592 * Remaps memory pages: controller pages to physical pages. 593 * For most MC's, this will be NULL. 594 */ 595 /* FIXME - why not send the phys page to begin with? */ 596 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, 597 unsigned long page); 598 int mc_idx; 599 struct csrow_info **csrows; 600 unsigned int nr_csrows, num_cschannel; 601 602 /* 603 * Memory Controller hierarchy 604 * 605 * There are basically two types of memory controller: the ones that 606 * sees memory sticks ("dimms"), and the ones that sees memory ranks. 607 * All old memory controllers enumerate memories per rank, but most 608 * of the recent drivers enumerate memories per DIMM, instead. 609 * When the memory controller is per rank, csbased is true. 610 */ 611 unsigned int n_layers; 612 struct edac_mc_layer *layers; 613 bool csbased; 614 615 /* 616 * DIMM info. Will eventually remove the entire csrows_info some day 617 */ 618 unsigned int tot_dimms; 619 struct dimm_info **dimms; 620 621 /* 622 * FIXME - what about controllers on other busses? - IDs must be 623 * unique. dev pointer should be sufficiently unique, but 624 * BUS:SLOT.FUNC numbers may not be unique. 625 */ 626 struct device *pdev; 627 const char *mod_name; 628 const char *ctl_name; 629 const char *dev_name; 630 void *pvt_info; 631 unsigned long start_time; /* mci load start time (in jiffies) */ 632 633 /* 634 * drivers shouldn't access those fields directly, as the core 635 * already handles that. 636 */ 637 u32 ce_noinfo_count, ue_noinfo_count; 638 u32 ue_mc, ce_mc; 639 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 640 641 struct completion complete; 642 643 /* Additional top controller level attributes, but specified 644 * by the low level driver. 645 * 646 * Set by the low level driver to provide attributes at the 647 * controller level. 648 * An array of structures, NULL terminated 649 * 650 * If attributes are desired, then set to array of attributes 651 * If no attributes are desired, leave NULL 652 */ 653 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; 654 655 /* work struct for this MC */ 656 struct delayed_work work; 657 658 /* 659 * Used to report an error - by being at the global struct 660 * makes the memory allocated by the EDAC core 661 */ 662 struct edac_raw_error_desc error_desc; 663 664 /* the internal state of this controller instance */ 665 int op_state; 666 667 struct dentry *debugfs; 668 u8 fake_inject_layer[EDAC_MAX_LAYERS]; 669 bool fake_inject_ue; 670 u16 fake_inject_count; 671 }; 672 #endif